

Problems of First-Class Functions
over Space-Time

Jacob Beal

NEPLS, June 2012

Work partially sponsored by DARPA; the views and conclusions contained in this
document are those of the authors and not DARPA or the U.S. Government.

What's a distributed first-class function?

Many different devices simultaneously...
● … define
● … invoke
● … and execute

the same function, with

interaction between

them as needed.

Device
#3

Device
#10

Device
#4

Device
#1

Device
#11

Device
#8

Device
#7

Device
#9

Device
#6

Device
#5

Device
#2

f

f

f

f

But what is “the same”?

ff

ff

f

Motivation: Aggregate Programming

P2P systems

Decentralized cloud

Sensor networks

Robotics

Massive multicore

Bioengineering

...

Users /
Applicatons

Global-to-Local
Compilaton

System of Myriad
Interconnected

Computng Devices

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

Prior models limit generality

● Many-to-one (i.e. client-server)
● One-to-Many (i.e. parallel batch processing)
● Limited many-to-many:

● Specialized p2p
● Population protocols
● Replicated state machine
● etc...

Approach: Continuous Model

Extreme case can specialize to all applications

 Continuous space & time
 Infinite number of devices
 See neighbors' past state

Approximable with:
 Discrete network of devices
 Signals transmitting state

neighborhood

device

Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (gradient src)
 (gradient dst))
 d)))
 (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization

G
lob a

l Lo cal D
i scre te

[Beal & Bachrach, '06]

Continuous Space-Time Programs

test-
sense

+

Manifold

Field

Operator

Return Value

1

13 1

24

(+ 1 (test-sense))

Well-defined iff:
each operator's
inputs and outputs
have same domain.

(except domain-
change operators)

3 1

Function Calls

Arg:
x

+

1

(def inc (x) (+ x 1))
(inc (test-sense))

inc:

inc

test-
sense

+

1

1

24

3 1

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔

Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr

Focus: Restriction

Sub-manifold

Selectorrestrict

Changing Field Domains

restrict
F T

2 4

Well-defined iff
output domain becomes
subspace of input domain

4

Operator implicit in all domain-crossing uses of field.

Example: Branching

(let ((z 3))
 (if (bool-sense) 2 (+ z 1)))

mux

bool-
sense

2

not

+

restrictT F F T

2

2 4

3
1

1

4

3 3z

Branches and Function Calls

mux

bool-
sense

2

not

inc

restrictT F F T

2

2 4

3

Arg:
x

+

1

inc:

+

1

1

3

4

(let ((z 3)) (if (bool-sense) 2 (inc z)))

3 3

Manifold restriction → well-defined distributed function calls

z

Call function
iff domain
not empty

Distributed Recursion

Arg:
x

factorial:

factorial

13

(def factorial (x)
 (if (= x 0)
 1
 (* x (factorial (- x 1)))))

Arg:
x

factorial:

factorial

02

Arg:
x

factorial:

factorial

1

Arg:
x

factorial:

factorial

0

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔

Anonymous & Nested Functions

(let ((z 3))
 (if (bool-sense)
 2
 (inc z)))

(let ((z 3))
 (def inc (x) (+ x 1))
 (if (bool-sense)
 2
 (inc z)))

(let ((z 3))
 (if (bool-sense)
 2
 ((fun (x) (+ x 1))
 z)))

purely syntactic solution...

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔
✔
✔

Closures via Restriction

(let ((y 2))
 (def inc-by (x) (+ x y))
 (inc-by (test-sense)))

Arg:
x

+

inc-by:

inc-by

test-
sense2restrict

y

External references pass through restrict
Well-definedness moves to evaluation...

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔
✔
✔

Partial

This is as far as we're
confident...

Notice that so far everything
is handled at compile time

Aggregate vs. Local Definition

X

✔

Problem #1: Well-Definedness
test-
sense

2 4

fun

...

f
2

f
4

broadcast
...

f
2

f
4

f
??

f
??

f
??

How can field
domains within
a function be
expanded?

Problem #2: Function Equality

When should
local function
instances share
their state?

(if (bool-sense)
 (fun (x) (any-hood (nbr x)))
 (fun (x) (any-hood (nbr x))))

(let ((x (test-sense)))
 (if (bool-sense)
 (fun () (any-hood (nbr x)))
 (fun () (any-hood (nbr x)))))

(if (bool-sense)
 (fun (x) (any-hood (nbr x)))
 (fun (x) (all-hood (nbr x))))

(let ((f (fun (x) (any-hood (nbr x)))))
 (if (bool-sense) f f))

M
or

e
S

im
ila

r

f(2)

f(3)

f(4)

f(5)

f(1)

f(2)

f(3)

Problem #2: Function Equality

When should
local function
instances share
their state?

(let ((x (vector-sense)))
 (map f x))

Device
#1

Device
#2

x = (1 2 3) x = (2 3 4 5)

An unsatisfactory syntactic solution:

 (procs (elt sources)

 ((var init evolve) ...)

 (same? run? &optional terminate?)

 . body)

This definition permits some intriguing possibilities, like
functions with domains that self-overlap, but it's awkward.

There's got to be a more elegant way...

Conclusions & Invitation

● Aggregate programs need first-class functions.
● Restriction models enable function properties

that can be resolved at compile-time.
● Runtime properties require expanding domains

and testing function equality.

We need more elegant ways of doing this!

Get involved: http://proto.bbn.com

http://proto.bbn.com/

Acknowledgements

● Kyle Usbeck
● Brett Benyo

External Collaborators:
● Mirko Viroli
● Stefan Dulman
● Nikolaus Correll

Partially funded by:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

