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What's a distributed first-class function?

Many different devices simultaneously...
● … define
● … invoke
● … and execute

the same function, with

interaction between

them as needed.
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But what is “the same”?
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Motivation: Aggregate Programming

P2P systems

Decentralized cloud

Sensor networks

Robotics

Massive multicore

Bioengineering

...

Users / 
Applicatons

Global-to-Local
Compilaton

System of Myriad 
Interconnected 

Computng Devices



  

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition



  

Prior models limit generality

● Many-to-one (i.e. client-server)
● One-to-Many (i.e. parallel batch processing)
● Limited many-to-many:

● Specialized p2p
● Population protocols
● Replicated state machine
● etc...



  

Approach: Continuous Model

Extreme case can specialize to all applications

 Continuous space & time
 Infinite number of devices
 See neighbors' past state

Approximable with:
 Discrete network of devices
 Signals transmitting state

neighborhood

device



Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization
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[Beal & Bachrach, '06]



  

Continuous Space-Time Programs

test-
sense
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Manifold
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(+ 1 (test-sense))

Well-defined iff:
each operator's 
inputs and outputs 
have same domain.

(except domain-
change operators)



  

3 1

Function Calls

Arg:
x

+

1

(def inc (x) (+ x 1))
(inc (test-sense))

inc:
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First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔



Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+
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48

any-hoodnbr



  

Focus: Restriction

Sub-manifold

Selectorrestrict



  

Changing Field Domains

restrict
F T

2 4

Well-defined iff 
output domain becomes 
subspace of input domain

4  

Operator implicit in all domain-crossing uses of field.



  

Example: Branching

(let ((z 3)) 
  (if (bool-sense) 2 (+ z 1)))

mux
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Branches and Function Calls

mux

bool-
sense

2

not

inc

restrictT F F T

2

2 4
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Arg:
x

+

1

inc:

+
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(let ((z 3)) (if (bool-sense) 2 (inc z)))

3     3

Manifold restriction → well-defined distributed function calls

z

Call function 
iff domain
not empty 



  

Distributed Recursion

Arg:
x

factorial:

factorial

13

(def factorial (x)
  (if (= x 0)
      1 
      (* x (factorial (- x 1)))))
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x

factorial:

factorial
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Arg:
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First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔



  

Anonymous & Nested Functions

(let ((z 3))
  (if (bool-sense)
      2
      (inc z)))

(let ((z 3))
  (def inc (x) (+ x 1))
  (if (bool-sense)
      2
      (inc z)))

(let ((z 3))
  (if (bool-sense)
      2
      ((fun (x) (+ x 1))
       z)))

purely syntactic solution...



  

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔
✔
✔



  

Closures via Restriction

(let ((y 2))
  (def inc-by (x) (+ x y))
  (inc-by (test-sense)))

Arg:
x

+

inc-by:

inc-by

test-
sense2restrict

y

External references pass through restrict
Well-definedness moves to evaluation...



  

First Class Functions Checklist

● Function Calls
● Recursion
● Anonymous Functions
● Nested Functions
● Closures
● Higher-Order Functions
● Function-valued Fields
● Runtime Function Definition

✔
✔
✔
✔

Partial

This is as far as we're 
confident...

Notice that so far everything 
is handled at compile time



  

Aggregate vs. Local Definition
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✔



  

Problem #1: Well-Definedness
test-
sense

2 4

fun

...
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How can field 
domains within 
a function be 
expanded?



  

Problem #2: Function Equality

When should 
local function 
instances share 
their state?

(if (bool-sense)
  (fun (x) (any-hood (nbr x)))
  (fun (x) (any-hood (nbr x))))

(let ((x (test-sense)))
  (if (bool-sense)
    (fun () (any-hood (nbr x)))
    (fun () (any-hood (nbr x)))))

(if (bool-sense)
  (fun (x) (any-hood (nbr x)))
  (fun (x) (all-hood (nbr x))))

(let ((f (fun (x) (any-hood (nbr x)))))
  (if (bool-sense) f f))
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f(2)

f(3)

f(4)

f(5)

f(1)

f(2)

f(3)

Problem #2: Function Equality

When should 
local function 
instances share 
their state?

(let ((x (vector-sense)))
  (map f x))

Device
#1

Device
#2

x = (1 2 3) x = (2 3 4 5)



An unsatisfactory syntactic solution:

    (procs (elt sources)

        ((var init evolve) ...)

      (same? run? &optional terminate?)

      . body)

This definition permits some intriguing possibilities, like 
functions with domains that self-overlap, but it's awkward.

There's got to be a more elegant way...



Conclusions & Invitation

● Aggregate programs need first-class functions.
● Restriction models enable function properties 

that can be resolved at compile-time.
● Runtime properties require expanding domains 

and testing function equality.

We need more elegant ways of doing this!

Get involved: http://proto.bbn.com

http://proto.bbn.com/
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