

High-Level Languages for
Synthetic Biology

Jacob Beal

November, 2010
BBN: Fusun Yaman, Aaron Adler, Richard Schantz
MIT: Ron Weiss, Jonathan Babb, Noah Davidsohn
BU: Doug Densmore, Swapnil Bhatia

Agenda

● What's “high-level language”, and why bother?
● State of the Art
● Proto & Tool Chain

Definition

A “high-level” programming language is any
language that abstracts away many of the details
of how a computation will be implemented.

High-Level Language in SynBio

High-Level Language in SynBio
Colony-Level Description

“Can I have this
network of parts?”

“Here's a set of parts,
1-N, that implement
your network”

Why bother with HLLs?

● Accessibility: knowledge in software
● Scalability: routine work automated;

higher portability
● Reliability: less human code; verifcation

Is SynBio there yet? Maybe...

HLL Design

● How will a SynBio system be described?

● How will a high-level description be
transformed to in vivo execution?

HLL Design

● How will a SynBio system be described?

HLL Design

● How will a SynBio system be described?

HLL Design

● How will a SynBio system be described?

HLL Design

● How will a SynBio system be described?

HLL Design

● How will a SynBio system be described?

Syntax Is NothingSyntax Is Nothing

HLL Design

● How will a SynBio system be described?

Syntax Is NothingSyntax Is Nothing
Semantics Is EverythingSemantics Is Everything

HLL Design

● How will a SynBio system be described?

Syntax Is NothingSyntax Is Nothing

OBEYOBEY

DOMAINDOMAIN

Semantics Is EverythingSemantics Is Everything

YOURYOUR

What do we really need?

● Primitives
● Means of Combination
● Means of Abstraction

Everything else follows...

Agenda

● What's “high-level language”, and why bother?
● State of the Art
● Proto & Tool Chain

ribosome

Computation via Transcription Network

DNA

RNA
RNA polymerase

promoter

regulatory
protein

Protein
Decay

ribosome

Computation via Transcription Network

Stablizes at decay = production

DNA

RNA

promoter

regulatory
protein

Protein
Decay

Signal = Concentration

RNA polymerase

Alternatives:

 PoPS

 RNA concentration

GenoCAD [Cai et al., '07]

CFG to generate/check part sequences

Eugene [Densmore et al., '10]

Circuit “parts list” w. constraints, variables

Device xor(cp, lacI, tetR, rpType1, gfp, rpType2, gfp);

GEC [Pederson & Phillips, '09]

Transcriptional logic programming

prom<con(RT)>; rbs; pcr<codes(PA)>; rbs; pcr<codes(PB)>; ter

Proto [Beal & Bachrach, '08]

Functional space/time datafow

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let
 ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

Proto [Beal & Bachrach, '08]

● High-level primitives map to GRN design motifs

(primitive and (boolean boolean) boolean
 :grn-motif ((P high R- arg0 ?X T)
 (P high R- arg1 ?X T)
 (P high R- ?X outputs T)))

Promoters with high basal expression

Repressed by first input Terminators

Coding for output proteins

Repressed by second input

Coding for motif-internal proteins

Repressed by motif-internal proteins

arg0

arg1

outputs
?X

?X

Agenda

● What's “high-level language”, and why bother?
● State of the Art
● Proto & Tool Chain

Prototype Tool Chain

X

Abstract GRN Design Space

Y

Z

X
Inputs:
[none]

,
,

X

Abstract GRN Design Space

Y

Z

X

d [X]=Ri⋅1K Y
−1[Y]/DY

H Y

1[Y]/DY
H Y ⋅ 1K Z [Z]/DZ

H Z

1[Z]/DZ
H Z −log2/ t X [X]

K ∈ [2,1000]

D ∈ [10,1000] nM

[X] ∈ [0,1000] nM

t > 300 s

H ∈ [1,4]

R < 10 nM/s

Inputs:
[none]

,
,

K
Y
 D

Y
 H

Y

K
Z
 D

Z
 H

Z

t
X

R
i

Major Challenge: Interference

● Effective part characterics changed by:
● Cellular context (endogenous pathways, synthetic parts)
● Expression noise

● Our approach: noise-rejection

● Digital - static discipline: V
low,out

 < V
low,in

 < V
high,in

 < V
high,out

But part variance makes a uniform standard impossible!

V
low,in

V
high,in

V
low,out

V
high,out

[In]

[Out]

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Experimental Input to Family Relation

[Basu & Weiss, '05]

Model constrained by characterization experiments...

[Karig, '07]
[Subramanian, '08]

[Weiss, '01]

Prototype Tool Chain

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators:

(primitive not (boolean) boolean
 :bb-template ((P 0.193 R- arg0 RBS outputs T)))

arg0 output

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators:

(primitive green (scalar) scalar :side-effect
 :bb-template ((P R+ arg0 RBS GFP outputs T)))

GFP outputarg0

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators, sensors:

(primitive IPTG () scalar
 :bb-template ((P 0.193 RBS LacI T)
 (rxn LacI (IPTG 180000) -> LacI*)

 (P 0.193 R- LacI RBS outputs T)))

outputLacI

IPTG

Motif-Based Compilation

● Functional program gives dataflow computation:

(green (not (IPTG)))

Motif-Based Compilation

● Functional program gives dataflow computation:

(green (not (IPTG)))

IPTG not green

Motif-Based Compilation

● Operators translated to motifs:

IPTG not green

Motif-Based Compilation

● Operators translated to motifs:

IPTG not green

LacI

A
IPTG

B

GFPoutputs outputs outputsarg0arg0

Motif-Based Compilation

● Operators translated to motifs:

IPTG not green

LacI A

IPTG

B GFP

LacI

A
IPTG

B

GFPoutputs outputs outputsarg0arg0

Optimization

LacI A

IPTG

B GFP

Optimization

LacI A

IPTG

B GFP

LacI A

IPTG

B GFP

Copy Propagation

Optimization

LacI A

IPTG

B GFP

LacI A

IPTG

B GFP

LacI A

IPTG

GFP

Copy Propagation

Dead Code Elimination

Optimization

LacI A

IPTG

B GFP

LacI A

IPTG

B GFP

LacI A

IPTG

GFP

LacI A

IPTG

GFP

Copy Propagation

Dead Code Elimination

Dead Code Elimination

Example Complex Compilation

● 2-bit adder:

(def xor (a b)
 (or (and a (not b))

 (and b (not a))))

(def 2bit-adder (a1 a0 b1 b0)
 (green (xor a0 b0)) ; low bit
 (let ((c0 (and a0 b0))
 (x1 (xor a1 b1)))
 (red (xor x1 c0)) ; high bit
 (blue (or (and x1 c0) ; carry bit
 (and a1 b1)))))

(2bit-adder (aTc) (IPTG) (C4HSL) (3OC12HSL))

Example Complex Compilation

● 2-bit adder:

Sample Optimization Results:

Prototype Tool Chain

α1

α2

α3

α4

α5

P1

P2

P3

P4

P5

Regulating Proteins Promoters

Abstract Feature Mapping

● Parts Database: bipartte regulaton graph

Find a non-confictng subgraph isomorphic to design

Inital Feature Matching Results

?a1 = P4
?b1 = R1
?a2 = P2
?b2 = R3
?b3 = R2

AGRN

Database

Prototype Tool Chain

Clotho: Planning for Assembly

Courtesy: Nathan Hillson

a cb b cd

bc

abc

bc

bcd

a cb d

bc

abc bcd

Automated Assembly

Toward a broadly integrated future...

Available Free Open-Source Tools

Proto

http://proto.bbn.com

High level design, simulation

Clotho

http://clothocad.org

Data management, automation

http://proto.bbn.com/
http://clothocad.org/

Backup material

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry

1

true

3

2

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry
2

3

1

true

1

0
0

1

1

1

1

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carryaTc
IPTG

C
4
HSL

3OC
12

HSL

blue

red
green

2

3

1

true

1

0
0

1

1

1

1

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder
(macro xor (a b)
 (muxor (muxand ,a (not ,b))

 (muxand ,b (not ,a))))

(macro 2bit-adder (a1 a0 b1 b0)
 (all
 (green (xor ,a0 ,b0)) ; x_0 low bit
 (let ((c0 (muxand ,a0 ,b0))

(x1 (xor ,a1 ,b1)))
 (red (xor x1 c0)) ; x_1 high bit
 (blue (muxor (muxand x1 c0) ; carry bit
 (muxand ,a1 ,b1))))))

(2bit-adder (aTc) (IPTG) (C4HSL) (3OC12HSL))

Simulation Results

● Compiled 2-bit adder
(unoptimized)
● 60 signal chemicals
● 52 regulatory regions

● Generated ODE
simulation in MATLAB

00+00

Bit 0
Bit 1
Carry

10+01 11+10 01+01

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Parts Database
	Initial Feature Matching Results
	Slide 58
	Clotho: #3 Planning for Assembly
	Automated assembly hardware
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

