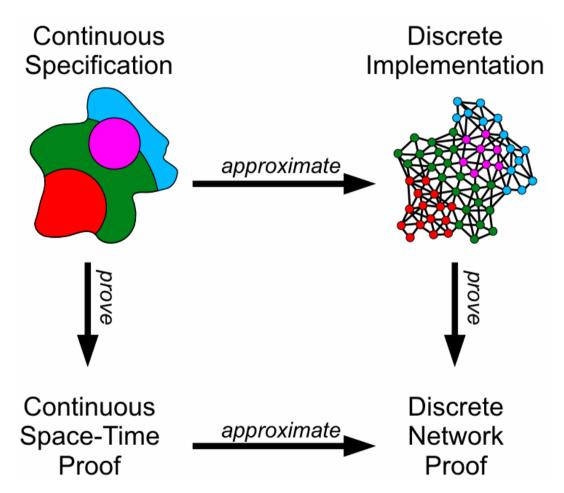
A Basis Set of Operators for Space-Time Computations

Jacob Beal 3rd Spatial Computing Workshop SASO 2010

Problem: Analysis for Spatial Computing

- Model-to-model: comparison: MGS, Proto, TOTA, LDP, etc... equivalent? complete?
- Platform-to-platform comparison: can we prove algorithms in the continuous model instead?

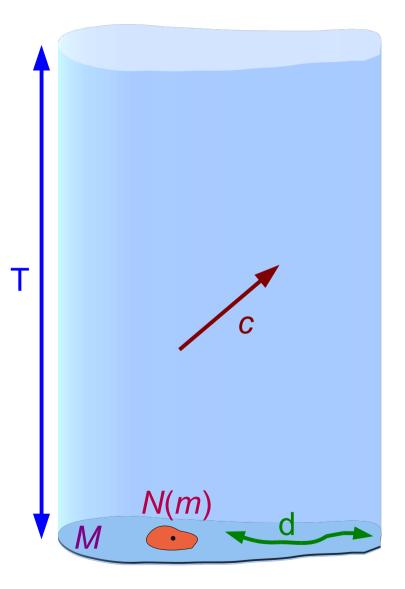


Continuous model = *super-Turing*?

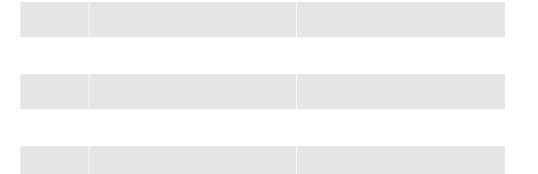
Talk Outline

- General definition of space-time computation
- Basis set of operators
- Is Proto universal?

Amorphous Medium



MSpatial regioncompact Reimannian manifoldTTime interval $T \subseteq (-\infty, \infty)$ dDistance fn on M $d: M \times M \rightarrow \mathbb{R}$ cMax speed of informationmeters per secondN(m)Neighborhoods on M $N: M \rightarrow P(M)$	Var.	Definition	Туре
dDistance fn on M $d: M \times M \rightarrow \mathbb{R}$ cMax speed of informationmeters per second	М	Spatial region	•
c Max speed of meters per second information	Т	Time interval	$T \subseteq (-^{\infty}, ^{\infty})$
information	d	Distance fn on M	$d: M imes M o \mathbb{R}$
$N(m)$ Neighborhoods on M $N: M \rightarrow P(M)$	С	•	meters per second
	N(m)	Neighborhoods on M	$N: M \to P(M)$



Computation as Function

- Computed state:
 - Instant: $S_t : M \to V$
 - Initial: $S_o: M \to V$
 - Interval: $S_{\tau} : M \times T \to V$
- Sensing:
 - $E: M \times T \rightarrow V$
- Computation:

• $C: M \times T \times E \times S_o \rightarrow S_\tau$

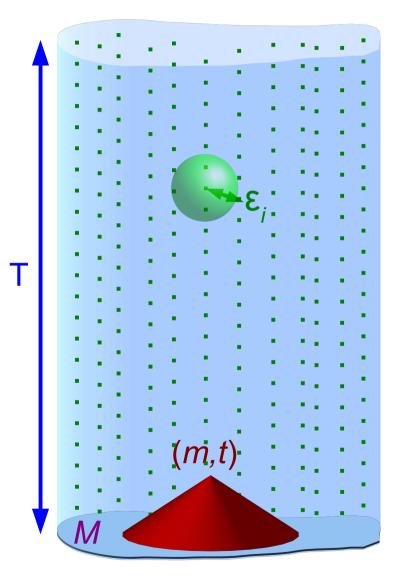
Var.	Definition	Туре
М	Spatial region	compact Reimannian manifold
Т	Time interval	$T \subseteq (\texttt{-}^{\infty}, \infty)$
d	Distance fn on M	$d: M \times M \rightarrow \mathbb{R}$
С	Max speed of information	meters per second
N(m)	Neighborhoods on M	$N: M \to P(M)$
V	Function values	$\bigcup_{k\geq 0} \mathbb{R}^k$
S _t	State at time t	$S_t: M \to V$
S _o	Initial state	$S_o: M \to V$
S_{τ}	State on interval T	$S_{\tau}: M \times T \to V$
Е	Environmental state	$E: M \times T \rightarrow V$
С	Computation	$C: M \times T \times E \times S_0 \to S_T$

Space-Time Universality

- Definition: a computation *C'* **implements** computation *C* if there is a restriction of S_{τ} that is equal to S_t almost everywhere, and if for any non-equal point *p*, there is a sequence of points p_i converging on *p* such that $\lim_{i\to\infty} S'_{\tau}(p_i) = \lim_{i\to\infty} S_{\tau}(p_i)$.
- A basis set of operators *B* is **space-time universal** if, for any computation *C* that can be specified by some besis set of operators (we need not know what or how), it is possible to implement an equivalent comptuation *C'* using operators in *B*.

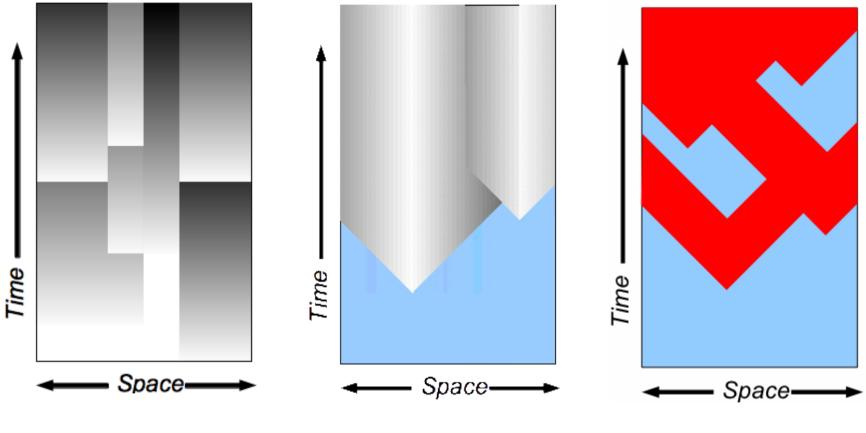
Note: definition of universality not dependent on a model.

Causal & Finitely-Apprxomable



- A computation *C* is **causal** if at every point *(m,t)*, the value depends only on the past light cone.
- A computation is finitelyapproximable if all countable sequences of ε_iapproximations C_i with decreasing ε_i converge to an implementation of C

Examples of Finitely-Approximable Causal Computation



Elapsed time since environmental cue

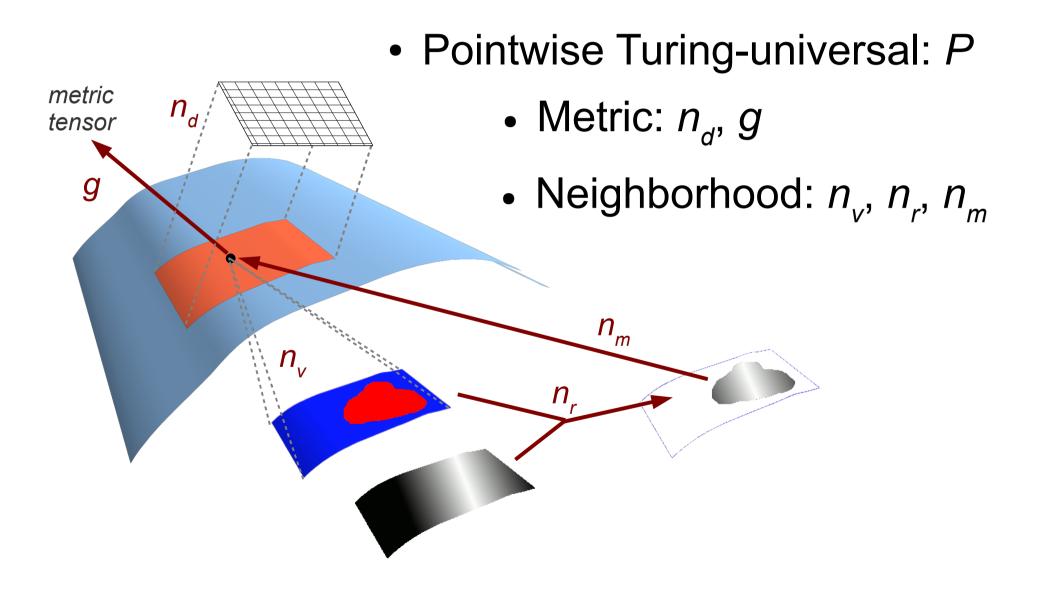
Distance to nearest environmental cue

Is an environmental cue currently present?

Talk Outline

- General definition of space-time computation
- Basis set of operators
- Is Proto universal?

Basis Set of Operators

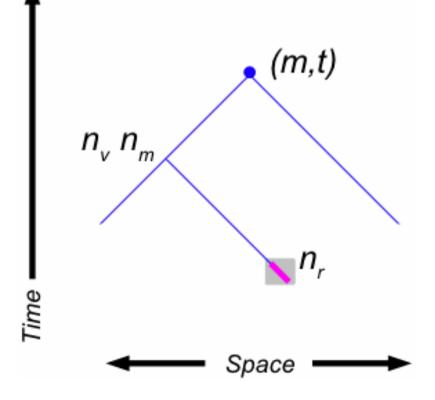


Universality of Basis

Theorem: any finitely-approximable causal computation *C* can be implemented using the basis set of operators $\{g, n_d, n_v, n_r, n_m\} \cup P$.

Intuition:

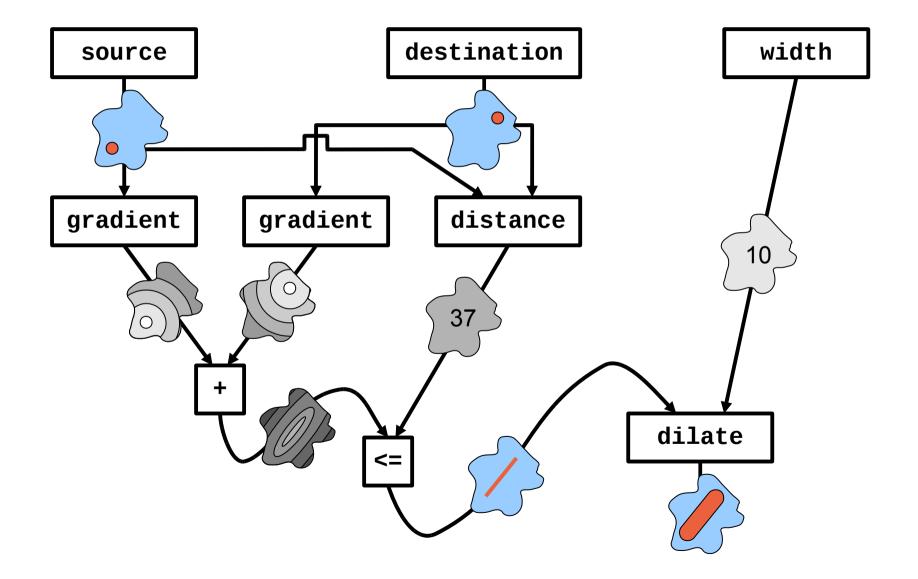
- Use n_{*} to sample past state, environment, g
- Use *P* to compute approximate value
- Increasing sampling resolution converges



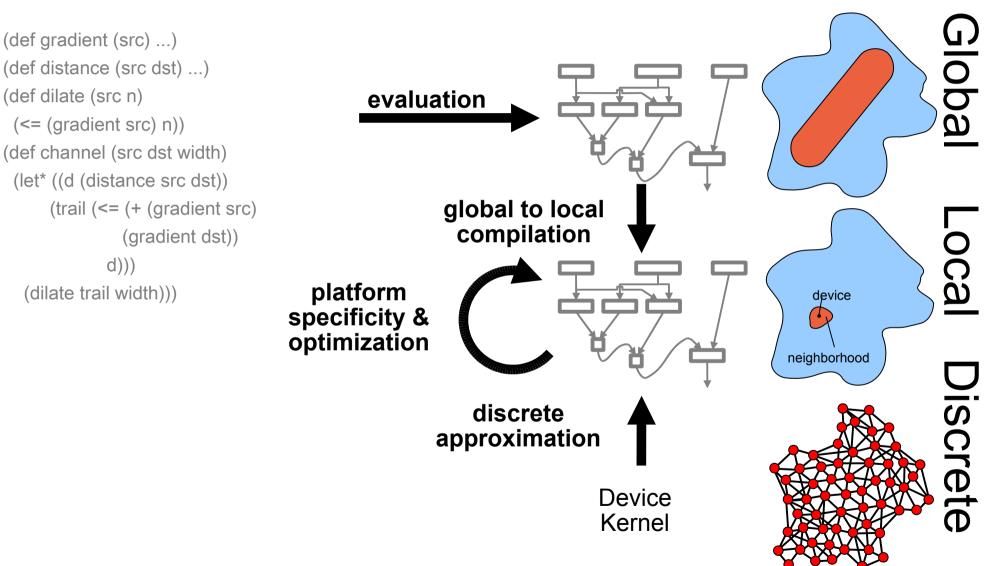
Talk Outline

- General definition of space-time computation
- Basis set of operators
- Is Proto universal?

Proto: Computing with fields



Proto: Continuous/Discrete Relation



Application to Proto

Most operators are directly implemented:

- *P* implemented by Proto's point-wise operators
- $n_d = nbr-vec$
- $n_v = nbr$
- $n_r = if$ applied to field types
- $n_m = \min{-hood}$

Missing: g ... but Proto has other metric ops, e.g. density, nbr-lag ... partial gap cover?

Open Problems

- What are appropriate computational cost models, and what finitely-approximable operators minimize cost?
- How can we do "Nyquist rate" approximation analysis?
- Can we establish function approximability bounds?
- What families of continuous proofs can be automatically translated to discrete proofs?
- Extension of theory to dynamic manifolds?
- How can Proto be extended to cover *g*?
- How powerful are other spatial computing models?

Contributions

- Direct-proof motivation for super-Turing models
- Operator-free definitions for space-time computation
- Basis operators for finitely-approximable causal computations: $\{g, n_d, n_v, n_r, n_m\} \cup P$
- Gap analysis for universality of Proto