Learning from Snapshot Examples

Jacob Beal MIT CSAIL April, 2005

• Space is cluttered with objects

• Space is cluttered with objects

Snapshot Learning Framework

- Bootstrapping feedback cycle
 - better model \rightarrow better examples \rightarrow better model

Snapshot Learning Framework

- What are the targets?
- How can it choose good examples?

Targets

"Lemon" would be best, settle for its components

- Each percept is a target
- Learn each target independently

This means we'll learn each association several times

Examples from Samples

Input is DT sampling of evolving perceptual state

- Incrementally select examples from samples
- Can only learn about things coextensive in time *Solvable by buffering w. short term memory*

Relevance of a Sample

- Create a relevance measure for each channel
 - High-relevance should indicate useful content

Sparseness Assumptions

At the right level of abstraction, the world is sparse

• Percepts are sparse across time *most of life doesn't involve lemons*

• Percepts are sparse at each sample *most of life doesn't appear when the lemon does*

Sparseness→ Irrelevant periods

Lots of irrelevant periods \rightarrow lots of relevant periods

Be choosy!

Time

- Many chances \rightarrow take only the best
 - a few good >> many iffy
 - avoid overfitting from closely correlated examples

Relevance peaks?

Are peaks a good idea?

Consider the relevance measures as signals:

Projecting to a single measure loses a lot of info...

Top-Cliff Heuristic

- Generalizing "peak" to multiple dimensions
 - Some channel's relevance is falling
 - No channel's relevance is rising
 - All *relevant channels* have risen since their last drop

Top-Cliff Examples

Experiment: Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

- Sequence of randomly generated examples
- Transition between examples in random order

- Sequence of randomly generated examples
- Transition between examples in random order

- Sequence of randomly generated examples
- Transition between examples in random order

- Sequence of randomly generated examples
- Transition between examples in random order

- Sequence of randomly generated examples
- Transition between examples in random order

Applying Snapshot Learning

- Target Model: {possible associate, confidence}
- Modified Hebbian Learning
- Relevance = # of possible associates present
- Extra virtual channel for target percept
 - Relevance 1 if present, 0 if absent
 - Determines if example is positive or negative

Modified Hebbian Learning

- Initial set: percepts from first relevant period
 Late entry is possible but difficult
- Examples adjust confidence levels
 - Positive Example: +1 if present, -1 if absent
 - Negative Example: -1 if present, 0 if absent
 - Confidence $\langle P \rightarrow prune \text{ out associate}$!
 - Same channel as target are harder to prune
 - If no associates, restart

Experimental Parameters

- 50 features
- 2 channels
- 1 percept/feature/channel = 100 targets
- Randomly generated examples, 2-6 features/exa
- Random transition between examples

Top-Cliff vs. Controls

• 10 trials of 1000 examples each

Predictable Variation w. Parameters

Resilient to Adverse Conditions

...much more than the controls...

Experiment: Learning w/o a Teacher

What if there's no teacher providing examples?

- A teacher guarantees there are associations...
- ... but *world* has lots of structure!
- Without a teacher, the system will still find targets and examples.

Will they teach it anything?

4-Way Intersection Model

- 5 locations (*N*,*S*,*E*,*W*,*Center*)
- 11 types of vehicle (Sedan, SUV, etc.)
 - Cars arrive randomly, with random exit goals.
 - Arrive moving, but queue up if blocked.
 - Moving or starting moving takes 1 second.
 - Left turns only when clear.
- 6 lights (NS-red, EW-green, etc.)
 - 60 second cycle: 27 green, 3 yellow, 30 red
 - Go on green, maybe yellow, right on red when clear.

Intersection Percepts

- 6 channels: N, S, E, W, Center, Light
 - Cardinal directions: type of 1st in queue, exiting cars
 - Center: types of cars there
 - Light: two active lights
- Distinguishable copy of previous percepts
- Random transitions, as before

(L NS_GREEN EW_RED PREV_NS_GREEN PREV_EW_RED)
(N) (S PREV_CONVERTIBLE) (C CONVERTIBLE)
(E SEDAN PREV_SEDAN) (W COMPACT PREV_COMPACT)

What does it learn?

- After 16 light cycles:
 - Lights don't depend on cars
 - Stoplight state transitions (97% perfect)

EW_GREEN = PREV_NS_RED, PREV_EW_GREEN, PREV_NS_YELLOW, NS_RED **EW_YELLOW** = PREV_EW_YELLOW, NS_RED, PREV_EW_GREEN, PREV_NS_RED **EW_RED** = NS_YELLOW, PREV_EW_RED, PREV_NS_GREEN, NS_GREEN **NS_GREEN** = PREV_EW_RED, PREV_NS_GREEN, EW_RED, PREV_EW_YELLOW **NS_YELLOW** = PREV_NS_YELLOW, EW_RED, PREV_NS_GREEN, PREV_EW_RED **NS_RED** = PREV_NS_RED, PREV_EW_GREEN, EW_GREEN, PREV_NS_YELLOW

PREV_EW_GREEN = PREV_NS_RED, NS_RED, EW_GREEN
PREV_EW_YELLOW = PREV_NS_GREEN, PREV_NS_RED, NS_GREEN EW_RED
PREV_EW_RED = PREV_NS_YELLOW, NS_YELLOW, EW_RED, NS_GREEN, PREV_NS_GREEN
PREV_NS_GREEN = PREV_NS_YELLOW, NS_YELLOW, PREV_EW_RED, EW_RED, NS_GREEN
PREV_NS_YELLOW = EW_GREEN, NS_RED, PREV_EW_RED, NS_YELLOW
PREV_NS_RED = PREV_EW_RED, EW_RED, PREV_EW_YELLOW, NS_GREEN

Reconstructed FSM

Summary

- Snapshot learning simplifies a hard problem
 - Top-Cliff finds sparse examples incrementally
 - Feedback improves quality of examples over time
 - It's easier to find good examples for single targets
- Snapshot learning works for sequences of examples or a predictably evolving state
- Pretending there's a teacher helps learn!