Learning from Snapshot Examples

Jacob Beal
MIT CSAIL
April, 2005

Associating a Lemon

Associating a Lemon

Associating a Lemon

- Space is cluttered with objects

Associating a Lemon

- Space is cluttered with objects

Associating a Lemon

- Time may be skewed externally or internally

Associating a Lemon

- Time may be skewed externally or internally

Associating a Lemon

- Time may be skewed externally or internally

Associating a Lemon

- Time may be skewed externally or internally

Associating a Lemon

- Time may be skewed externally or internally

Snapshot Learning Framework

- Bootstrapping feedback cycle
- better model \rightarrow better examples \rightarrow better model

Snapshot Learning Framework

- What are the targets?
- How can it choose good examples?

Targets

"Lemon" would be best, settle for its components

- Each percept is a target
- Learn each target independently

This means we'll learn each association several times

Examples from Samples

Input is DT sampling of evolving perceptual state

- Incrementally select examples from samples
- Can only learn about things coextensive in time Solvable by buffering w. short term memory

Relevance of a Sample

- Create a relevance measure for each channel
- High-relevance should indicate useful content

Sparseness Assumptions

At the right level of abstraction, the world is sparse

- Percepts are sparse across time most of life doesn't involve lemons

- Percepts are sparse at each sample most of life doesn't appear when the lemon does

Sparseness \rightarrow Irrelevant periods

Lots of irrelevant periods \rightarrow lots of relevant periods

Be choosy!

Many chances \rightarrow take only the best

- a few good >> many iffy
- avoid overfitting from closely correlated examples
Relevance peaks?

Are peaks a good idea?

Consider the relevance measures as signals:

Sum

Projecting to a single measure loses a lot of info...

Top-Cliff Heuristic

- Generalizing "peak" to multiple dimensions
- Some channel's relevance is falling
- No channel's relevance is rising
- All relevant channels have risen since their last drop
(channels recently co-active with currently active channels)

Top-Cliff Examples

Experiment: Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order

Applying Snapshot Learning

- Target Model: \{possible associate, confidence\}
- Modified Hebbian Learning
- Relevance = \# of possible associates present
- Extra virtual channel for target percept
- Relevance 1 if present, 0 if absent
- Determines if example is positive or negative

Modified Hebbian Learning

- Initial set: percepts from first relevant period
- Late entry is possible but difficult
- Examples adjust confidence levels
- Positive Example: +1 if present, -1 if absent
- Negative Example: -1 if present, 0 if absent
- Confidence $<\mathrm{P} \rightarrow$ prune out associate!
- Same channel as target are harder to prune
- If no associates, restart

Experimental Parameters

- 50 features
- 2 channels
- 1 percept/feature/channel $=100$ targets
- Randomly generated examples, 2-6 features/exa
- Random transition between examples

Top-Cliff vs. Controls

- 10 trials of 1000 examples each

Predictable Variation w. Parameters

Resilient to Adverse Conditions

...much more than the controls...

Experiment: Learning w/o a Teacher

What if there's no teacher providing examples?

- A teacher guarantees there are associations...
- ... but world has lots of structure!
- Without a teacher, the system will still find targets and examples.

Will they teach it anything?

4-Way Intersection Model

- 5 locations (N,S,E,W,Center)
- 11 types of vehicle (Sedan, SUV, etc.)
- Cars arrive randomly, with random exit goals.
- Arrive moving, but queue up if blocked.
- Moving or starting moving takes 1 second.
- Left turns only when clear.
- 6 lights (NS-red, EW-green, etc.)
- 60 second cycle: 27 green, 3 yellow, 30 red
- Go on green, maybe yellow, right on red when clear.

Intersection Percepts

- 6 channels: N, S, E, W, Center, Light
- Cardinal directions: type of $1^{\text {st }}$ in queue, exiting cars
- Center: types of cars there
- Light: two active lights
- Distinguishable copy of previous percepts
- Random transitions, as before (L NS_GREEN EW_RED PREV_NS_GREEN PREV_EW_RED) (N) (S PREV_CONVERTIBLE) (C CONVERTIBLE)
(E SEDAN PREV_SEDAN) (W COMPACT PREV_COMPACT)

What does it learn?

- After 16 light cycles:
- Lights don't depend on cars
- Stoplight state transitions (97\% perfect)

```
EW_GREEN = PREV_NS_RED, PREV_EW_GREEN, PREV_NS_YELLOW, NS_RED
EW_YELLOW = PREV_EW_YELLOW, NS_RED, PREV_EW_GREEN, PREV_NS_RED
EW_RED = NS_YELLOW, PREV_EW_RED,PREV_NS_\overline{GREEN, NS_GREEN}
NS_GREEN = PREV_EW_RED, PREV_NS_GREEN, EW_RED, PREV_EW_YELLOW
NS_YELLOW = PREV_NS_YELLOW,EW_RED, PREV_NS_GREEN, PREV_EW_RED
NS_RED = PREV_NS_后ED,PREV_EW_GREEN, EW_GREEN, PREV_NS_YELLO
PREV_EW_GREEN = PREV_NS_RED,NS_RED,EW_GREEN
PREV_EW_YELLOW = PREV_NS_GREEN, PREV_NS_RED, NS_GREEN EW_RED
PREV_EW_RED = PREV_NS_YELLOOW, NS_YELLOW,EW_RED,NS_GREEN, PREV_NS_GREEN
PREV_NS_GREEN = PREV_NS_YELLOW, NS_YELLOW, PREV_EW_RED, EW_RED,NS_GREEN
PREV_NS_YELLOW = EW_GREEN, NS_RED,PREV_EW_RED, NS_YELLOW
PREV_NS_RED = PREV_EW_RED, EW_RED, PREV_EW_YELLOW, NS_GREEN
```


Reconstructed FSM

Summary

- Snapshot learning simplifies a hard problem
- Top-Cliff finds sparse examples incrementally
- Feedback improves quality of examples over time
- It's easier to find good examples for single targets
- Snapshot learning works for sequences of examples or a predictably evolving state
- Pretending there's a teacher helps learn!

