Near-Optimal Distributed Failure Circumscription

Jake Beal MIT CSAIL

Why is this cool?

* Powerful Network Primitive

"Quarantine" zone for interim atomic transactions Patch-repair for routing tables Improved bounds for self-stabilizing algorithms Abstraction barrier for integrating "error mode" and "normal mode"

Exception handling for networks?

Why is this different?

- * Self-organizing distributed algorithm
- * No infrastructure assumptions
- * Scalable to million/billion range
- General exception framework
- * Spatiall embedded network (less important)

Talk Outline

- Problem: Failure Circumscription
- * Context: Amorphous Computing
- Detecting Circumscription Locally
- * The Algorithm
- Further Directions

BostonNet Scenario

(Metropolitan Ad-Hoc Network)

- * ~10^7 Nodes
- * ~10^3 hops diameter
- * Peer-to-peer
- * No central control

Network Model

- * Embedded in Euclidean space
- * Spatially local links (e.g. wireless)
- Perfect communication (via threshold)
- Partial synchrony (drifting clocks)
- Stopping failures (crashes)
 No partitions

What is "Failure Circumscription"?

Connected set containing boundary of a connected or almost-connected failure.

Long-Distance Circumscription

"Near-Optimal Distributed"

Optimality

Minimum diameter circumscription

May be difficult to determine!

- * Minimum spanning tree problem
- * Big problems swamp small problemsGoal is actually smooth scaling

Distributed

Self-Organizing, Peer-to-Peer

Centralized = Vulnerable

Context: Amorphous Computing

Anatomy of a Persistent Node

PNHierarchy

.183

Level 3

Hierarchy Requirements

- * Uniform depth "levels"
- * O(lg diam) levels
- * Maximum cluster diameter $d_i = kb^i$

 $d_i \leq b * diam$ at root

* Neighbor relation within $3d_i$

"Tight" within d_i

Big Idea

* Neighbors \approx topology sketch

No Lost Neighbors

Lost Neighbors

"Provably Dead"

* A set of groups D is provably dead if:

D forms a tight clique

The tight neighbors of D can be connected

No tight neighbor is still a neighbor of a group in D

Provable Death → Circumscription

Theorem: Following a failure F, let i be a level of hierarchy in which, for every member of the border clusters C_{Bi} , all of its pre-failure tight neighbors are either still neighbors or else provably dead. Then the union of neighborhoods of border clusters, $C_{Bi} \cup N(C_{Bi})$, contains a connected component which circumscribes the failure F.

Provable Death → Circumscription

Corollary: Following a failure F, let i be a level where some member of the border clusters C_{Bi} is no longer related to a pre-failure tight neighbor which is not provably dead. Then every cluster in C_{Bi} is related by a chain of neighbor relations to a cluster missing a non-provably dead neighbor.

$d_i \geq diam \rightarrow Circumscription$

Theorem: Following a failure F, let $d(B_F)$ be the maximum distance between any two machines in the border B_F following the failure, and $d'(F \cup B_F)$ be the maximum distance between any two failing or border machines, before the failure. Then F is circumscribed by $C_{B_i} \cup N(C_{B_i})$ for every level i where $d_i \ge max(d(B_F), d'(F \cup B_F))$

$d_i \geq diam \rightarrow Circumscription$

Corollary: Under the above conditions, any cluster contained entirely within F is provably dead following the failure.

Corollary: Under the above conditions, for any member of C_{Bi} , every pre-failure tight neighbor is either still a neighbor or else provably dead.

k-Competitive for Convex Failures

Theorem: For a convex failure F, let i be the minimum level for which $d_i \ge d(B_F)$. The diameter of the circumscription component of $C_{Bi} \cup N(C_{Bi})$ is 11b-competitive with the diameter of an optimal circumscription (e.g. 22-competitive if d_i is powers of 2).

Non-Convex Failures

Don't care because it's a disaster!

The Algorithm

- * For each machine in the border:
 - * Wake up level *i* neighborhood
 - * Machines in level *i* neighborhood:
 - * Add self to circumscription
 - Discover neighbor liveness
 - Propagate neighbor info via gossip
 - * If some neighbor in B_i is not provably dead or alive
 - * Increment *i* and start again

Contributions

- Failure Circumscription Algorithm
 Competitive with optimal for convex failures
 Proportional to diameter for concave failures
- Powerful new tool for engineering failure response in distributed algorithms

Self-organizing, not centralized

Establish "Quarantine Zones" for failures

Further Directions

- Applications
 - Local Patch Repair for Routing Interim Atomic Data Storage
- Continuous Failure Analysis
- Partition Tolerance
- * Distributed "Try-Catch"

Acknowledgements

- * Thank you for lots of help from:
 - Seth Gilbert
 - Tim Shepard
 - Nancy Lynch
 - Gerry Sussman & Hal Abelson