Learning by Learning to Communicate

Jacob Beal

Jake's Quest for Intelligence

Jake's Quest for Intelligence

Human intelligence comes from integrating specialists

- Infants = Rats (Spelke)
- Orienting from geometry + color

- "Left" and "Right," language vs. rhythm
- Counting numbers (Carey)
- Numerosity + tracking + sequence
- Four stages

Integration takes communication

Novel situations need combinatoric signals

Architectural Approaches

	Hard-Wired Communication	Learned Communication
Hard-Wired Integration	Cognitive Architectures SOAR, ACT-R, EPIC, ICARUS, ...	Synthetic Language Kirby, Steels, Batali, Yanco, ...
Learned Integration	Multi-Modal Learning Kohonen, Coen, Singh, Minsky, Roy,....	(this work)

Communication $=$ Integration

- Specialists agree on signals, but may disagree on their interpretation
- Differences can capture information
- Exchanging messages can be reasoning

Shared experiences \rightarrow agreement on signals

Communication Bootstrapping

Bootstrapping v1.0

Agreed Combinatoric Signals

Symbols \& Inflections
PERSON = LEFT
STAND = LEFT
NEAR $=$ FOCUS+LEFT
CAR = FOCUS
VEHICLE = FOCUS+ABOVE
BUS $=$ ABOVE
bIG = AbOVE

Can this work for different specialists?

How do we make the engineering tractable?

Example: Deciding on Coupled Proposals

Unsatisfiable Specifications

- Fast
- Follow evidence
- Firm
- Revisable

We must accept misbehavior!

Nonlinear analysis is hard

Choose the lesser evil

Dossier reveals major behaviors

$$
\operatorname{miss}=-2
$$

Failure Simplication:
choose easy cases, lengthen time scale ${ }_{19}$

Predictable Composition

Agent A
Does B agree on X ? (inventor of X)

Agent B
Does X make sense?

Agreement No Agreement Interference

Is a part within the envelope of plausibility?

Not from Zeus's Forehead

Plausibility

- Asymptotic cost vs. budget
- Hunger can be pricy, words must be cheap
- Synthetic biology gives upper bounds
- Variation during development means frequent hardware faults

Development Space		Imperfection	Time	Mature Space		
growth	encoding	variation	execution			

Can vocabulary capture world dynamics?

Environment for Easy Communication Bootstrapping

- Strong input correlations
- Sparse usage in examples
- Independent examples
- Sparse signal encodings

Key: Messages Signals Interpretation Self-Organization Development

Time	Space	Imperfection	Time	Space	Imperfection
$\mathbf{O (s)}$	$\mathbf{O (1)}$	unusable symbols/ inflections	$\mathbf{O (b)}$	$\mathbf{O (s}$ ^2)	lost/extra message elements

Random Bipartite Graph

	Development		Mature Sime Space		
Imperfection	Time	Space	Imperfection		
$\mathbf{O (A)}$	$O(1)$	more/less links	$O(1)$ am.	$O\left(k^{*} A\right)$	noise

Distributed Map

Set A
Rendezvous
Development
Time
$O(\min (A, B)$
O(1)
more/less elements

Mature
Space Imperfection
 $\sqrt{ } \min (A, B)) \quad \begin{gathered}\text { dropped } \\ \text { mappings }\end{gathered}$

Development			Mature		
Time	Space	Imperfection	Time	Space	Imperfection
$O(\min (A, B)$	O(1)	more/less elements	O(1) am.	$\begin{gathered} O\left((A+B)^{*}\right. \\ \sqrt{\min (A, B))} \end{gathered}$	noise, dropped mappings

Distributed Map

Effect of Expected Rendezvous Size on Distributed Map

- Connections fail, snap others
- A few spare parts = almost no misbehavior

Unidirectional Link

Time
$\mathbf{O (s)}$

Development
Time
O(s)
Space Imperfection
O(1) $\begin{gathered}\text { more/less } \\ \text { links, coders }\end{gathered}$

Mature
Space
O(ib+
$\mathbf{s}(\mathbf{i}+\sqrt{ } \mathbf{s})$)

Imperfection lost/extra message elements

Unidirectional Link

- Coders align very quickly (~ 10 rounds each)

Unidirectional Link

- Reallocation can cause thrashing
- A few spare parts = almost no misbehavior

Unidirectional Link

- Interference causes gradual degradation

Unidirectional Link

- Noise also causes gradual degradation

Bidirectional Link

Bidirectional Link

- Tradeoff: pairing speed vs. error
- A broad sweet spot exists

Relation Maps

Outgoing Symbols

Key: Messages Signals Interpretation Self-Organization

Development	Mature				
Time	Space	Imperfection	Time	Space	Imperfection
$\mathbf{O (s)}$	O(1)	unusable symbols/ inflections	O(b)	O(s^2)	Iost/extra message elements

Proof of Concept

Results: interpretations of symbols capture dynamics

- 156 relations from 83 min , including:
- DONTWALK sometimes leads to cuckoo, then disappears.
- cuckoo and walklite are the same thing.
- A moderately loud sound is always followed by the appearance of a CAR.
- walklite only happens when engines idle, which in turn happens only when there is a CAR.

Results: interpretations of symbols capture dynamics

- Robust to sampling rate, activity level

Contributions

- Developed a method for engineering robust, composable devices: dossiers characterize a device's behavior over a wide range of conditions and failure simplification can manage its misbehavior.
- Established a six-part measure of Developmental Cost that allows us to estimate the plausibility of individual devices contributing to a larger model of intelligence.
- Developed a mechanism that creates the four sendipity conditions for Communication Bootstrapping in a set of specialist parts.
- Used a simulated world observed by two senses, vision and hearing, to demonstrate that differing symbol interpretations can capture world dynamics,

Our Quest for Intelligence

END OF MAIN TALK

Observable Signature

(tests for the C.B. mechanism's presence)

Observable Signature?

- Structure: high graph expansion
- Activity: three distinct phases
- Unidirectional organization
- Bidirectional organization
- Normal use

Predicting a Pendulum

(proof of concept for future work)

```
x=-3
x=-2
x=-1
x=0
    va
```


Device Details

(competition, shared focus, relation maps)

Competition

Mat. Time Mat. Space Dev. Time Dev.Space $O(1) a m . \quad O(n) \quad O(1) \quad O(1)$

Shared Focus

Message Ambiguity

(ambiguity in related objects)

Incremental Interval Example Segmentation

(learning from streams of messages)

$70 \mathrm{db}=\mathrm{FOCUS} 1$	$70 \mathrm{db}=\mathrm{FOCUS} 1$	$70 \mathrm{db}=\mathrm{FOCUS} 1$	$70 \mathrm{db}=\mathrm{FOCUS} 1$
DRIVE=FOCUS 1	DRIVE=FOCUS 1	DRIVE=FOCUS 1	DRIVE=FOCUS 1
LF=FOCUS 1	LF=FOCUS 1	LF=FOCUS 1	LF=FOCUS 1

DRIVE=FOCUS1 DRIVE=FOCUS1 DRIVE=FOCUS1
LF=FOCUS1 LF=FOCUS1

LF=FOCUS 1
F=FOCUS 1

CAR=FOCUS 1	CAR=FOCUS 1	CAR=FOCUS1
PICKUP=FOCUS 1	PICKUP=FOCUS1	PICKUP=FOCUS1
R=FOCUS 1	R=FOCUS1	R=FOCUS1
$16 d=F O C U S 1 ~$	$24 d=F O C U S 1$	$24 d=F O C U S 1$
$24 d=F O C U S 1$	YELLOW=FOCUS1	YELLOW=FOCUS1
YELLOW=FOCUS 1		BRIGHT=FOCUS1

Allen's Time Interval Relations

Time		
(Before A B)	$\xrightarrow{\text { A }}$	(Before ${ }^{-1} \mathrm{~B} \mathrm{~A}$)
(Meets A B)		(Meets $^{-1} \mathrm{~B} \mathrm{~A}$)
(Overlaps A B)	$\longleftrightarrow \stackrel{A}{\longleftrightarrow} \longleftrightarrow$	(Overlaps ${ }^{-1} \mathrm{~B} \mathrm{~A}$)
(Starts A B)	$\xrightarrow{\mathrm{A}} \longrightarrow$	(Starts ${ }^{-1} \mathrm{~B} \mathrm{~A}$)
(During A B)	$\xrightarrow[\mathrm{B}]{\mathrm{A}} \longmapsto$	(During ${ }^{-1} \mathrm{~B} \mathrm{~A}$)
(Finishes A B)		(Finishes ${ }^{-1} \mathrm{~B} \mathrm{~A}$)
(Equal A B)		

Predictive Relations

Name	Predictions	Allen Relations BMOSDFEfdsomb
EQUAL	A,A	$\mathbf{0 - 1 1 1 1 1 1 1 1 1 - 0}$
SUBCLASS	A,a	$---\mathbf{- 1 1 1 - - 1 - - 0}$
SEQUENCE	A,D	$\mathbf{0 1 1 - - - - - - 0 0 0 ~}$
CAUSE	A,-	$\mathbf{0 1 1 - - 1 - 0 - 0 0 - 0 0 -}$
ENABLE	a,-	$-11111100100-$
DISABLE	-,D	$-000---0-11-$

Focus of Attention

(bootstrapping precondition)

8
Request Throttle

Developmental Primitives

(details of developmental cost)

Popular Constraints

- Anatomy
- Brodmann areas, fMRI, injury studies, ...
- Cellular Biology
- Neurons, synapses, transmitters, glia, ...
- Behavior
- Reflexes, infant cognition, illusions, ...

Popular Constraints

- Anatomy How do parts cooperate?
- Brodmann areas, fMRI, injury studies, ...
- Cellular Biology 1K+ neurons do anything
- Neurons, synapses, transmitters, glia, ...
- Behavior How do we debug?
- Reflexes, infant cognition, illusions, ...

These do not constrain our models much!

Calculating Cost

- Three building blocks:
- Simple program
- Set of communication paths
- Set of parts
- Building block costs are abstractions of neuroscience \& synthetic biology

Problems with building block assumptions are likely to change cost constants only

Primitive: Simple Program

(defun add-example (state example) (if example (incf (strength state)) (decf (strength state) miss)))

Time	Space	Imperfection	
	O(ops+bits)	O(ops*bits)	abort
Ovelopment	O(ops+bits)	O(ops+bits)	DOA

Loops, function calls handled by expansion Simple programs are cheap

Primitive: Communication Paths

Time
Space
Imperfection
Mature
Development
O(1)
O(length)
O(bits*paths) noise
\mathbf{O} (length) $\mathbf{O}($ bits/reuse) absent paths

Precision connections are expensive

Primitive: Set of Parts

Can add mesh network for O(1) added cost Making copies is cheap

Other Random Slides

(example dossier, "Hilbert questions")

Compiling a Dossier

"When in doubt, use brute force" -Ken Thompson

What makes human intelligence unique? How are concepts grounded in experience? How are perception and reasoning related? What makes natural intelligence so robust? How is an integrated mind formed from a collection of many different parts?

What makes human intelligence unique? How are concepts grounded in experience? How are perception and reasoning related? What makes natural intelligence so robust? How is an integrated mind formed from a collection of many different parts?

