Learning by Learning to Communicate

Jacob Beal

Jake's Quest for Intelligence

Jake's Quest for Intelligence

Human intelligence comes from integrating specialists

Infants = Rats (Spelke)

- Orienting from geometry + color
- "Left" and "Right," language vs. rhythm
- Counting numbers (Carey)
 - Numerosity + tracking + sequence
 - Four stages

Integration takes communication

Novel situations need **combinatoric** signals

Architectural Approaches

	Hard-Wired Communication	Learned Communication	
Hard-Wired	Cognitive Architectures	Synthetic Language	
Integration	SOAR, ACT-R, EPIC, ICARUS,	Kirby, Steels, Batali, Yanco,	
Learned Integration	Multi-Modal Learning Kohonen, Coen, Singh, Minsky, Roy,	(this work)	

Communication = Integration

- Specialists agree on signals, but may disagree on their interpretation
- Differences can capture information
- Exchanging messages can be reasoning

Shared experiences \rightarrow agreement on signals

(cartoon by Booth)

Communication Bootstrapping

Bootstrapping v1.0

Agreed Combinatoric Signals

Symbols & Inflections PERSON = LEFT STAND = LEFT NEAR = FOCUS+LEFT CAR = FOCUS VEHICLE = FOCUS+ABOVE BUS = ABOVE BIG = ABOVE

Can this work for different specialists?

How do we make the engineering tractable?

Example: Deciding on Coupled Proposals

- Fast
- Follow evidence
- Firm
- Revisable

We must accept misbehavior!

Nonlinear analysis is hard

Choose the lesser evil

miss = -2

Dossier reveals major behaviors Failure Simplication: choose easy cases, lengthen time scale 19

Predictable Composition

Is a part within the envelope of plausibility?

Not from Zeus's Forehead

Special thanks to Dr S. J. DiMarzo and Prof. Kohei Shiota for allowing reproduction of their research images and material from the Kyoto Collection and Ms B. Hill for image preparation.

Plausibility

- Asymptotic cost vs. budget
 - Hunger can be pricy, words must be cheap
 - Synthetic biology gives upper bounds
- Variation during development means frequent hardware faults

Development			Mature		
Time	Space	Imperfection	Time	Space	Imperfection
growth	encoding	variation	execution	hardware	error

Can vocabulary capture world dynamics?

Environment for Easy Communication Bootstrapping

Strong input correlations

• Sparse usage in examples

Independent examples

Sparse signal encodings

Key: Messages Signals Interpretation Self-Organization

D	evelopme	ent		Mature	
Time	Space	Imperfection	Time	Space	Imperfection
O(s)	O(1)	unusable symbols/ inflections	O(b)	O(s^2)	lost/extra message elements

0	Developme	nt		Mature	
Time	Space	Imperfection	Time	Space	Imperfection
O(A)	O(1)	more/less links	O(1) am.	O(k*A)	noise

Distributed Map

Development **Mature** Imperfection Time Imperfection **Space** Time Space noise, more/less O((A+B)* O(min(A,B) 0(1) O(1) am. dropped elements $\sqrt{\min(A,B)}$ mappings

Distributed Map

- Connections fail, snap others
- A few spare parts = almost no misbehavior

Development				Mature	
Time	Space	Imperfection	Time	Space	Imperfection
O(s)	O(1)	more/less links, coders	O(b)	O(ib+ s(i+√s))	lost/extra message elements

 Coders align very quickly (~10 rounds each)

- Reallocation can cause thrashing
- A few spare parts = almost no misbehavior

 Interference causes gradual degradation

 Noise also causes gradual degradation

- Tradeoff: pairing speed vs. error
- A broad sweet spot exists

Relation Maps

Key: Messages Signals Interpretation Self-Organization

Development			Mature		
Time	Space	Imperfection	Time	Space	Imperfection
O(s)	0(1)	unusable symbols/ inflections	O(b)	O(s^2)	lost/extra message elements

Proof of Concept

Results: interpretations of symbols capture dynamics

- 156 relations from 83 min, including:
 - **DONTWALK** sometimes leads to **сискоо**, then disappears.
 - **CUCKOO** and **WALKLITE** are the same thing.
 - A moderately loud sound is always followed by the appearance of a **CAR**.
 - WALKLITE only happens when engines IDLE, which in turn happens only when there is a CAR.

Results: interpretations of symbols capture dynamics

• Robust to sampling rate, activity level

Contributions

- Developed a method for engineering robust, composable devices: dossiers characterize a device's behavior over a wide range of conditions and **failure simplification** can manage its misbehavior.
- Established a six-part measure of **Developmental Cost** that allows us to estimate the plausibility of individual devices contributing to a larger model of intelligence.
- Developed a mechanism that creates the four sendipity conditions for Communication Bootstrapping in a set of specialist parts.
- Used a simulated world observed by two senses, vision and hearing, to demonstrate that differing symbol interpretations can capture world dynamics,

Our Quest for Intelligence

END OF MAIN TALK

Observable Signature

(tests for the C.B. mechanism's presence)

Observable Signature?

- Structure: high graph expansion
- Activity: three distinct phases
 - Unidirectional organization
 - Bidirectional organization
 - Normal use

Predicting a Pendulum

(proof of concept for future work)

Device Details

(competition, shared focus, relation maps)

Competition

Mat. Time	Mat. Space	Dev. Time	Dev.Space
O(1) am.	O(n)	O(1)	O(1)

Shared Focus

outgoing symbols

Message Ambiguity

(ambiguity in related objects)

LIGHT=FOCUS1,FOCUS2, BELOW1,ABOVE2 RED=FOCUS1 GREEN=FOCUS2 Od=FOCUS1,FOCUS2, BELOW1,ABOVE2 YELLOW=BELOW1,ABOVE2

Incremental Interval Example Segmentation

(learning from streams of messages)

70db=FOCUS1 DRIVE=FOCUS1 LF=FOCUS1 F=FOCUS1

70db=FOCUS1 70db=FOCUS1 DRIVE=FOCUS1 DRIVE=FOCUS1 LF=FOCUS1 LF=FOCUS1

70db=FOCUS1 DRIVE=FOCUS1 LF=FOCUS1

> CAR=FOCUS1 PICKUP=FOCUS1 R=FOCUS1 24d=FOCUS1 YELLOW=FOCUS1 BRIGHT=FOCUS1

CAR=FOCUS1 PICKUP=FOCUS1 R=FOCUS1 24d=FOCUS1 YELLOW=FOCUS1

CAR=FOCUS1 PICKUP=FOCUS1 R=FOCUS1 16d=FOCUS1 24d=FOCUS1 YELLOW=FOCUS1

Allen's Time Interval Relations

Predictive Relations

Name	Predictions	Allen Relations BMOSDFEfdsomb
EQUAL	A,A	0-11111111-0
SUBCLASS	A,a	0
SEQUENCE	A,D	011000
CAUSE	A,-	0111-000-
ENABLE	a,-	-11111100100-
DISABLE	-,D	-0000-11-

Focus of Attention

(bootstrapping precondition)

Low-Level

Vision

Low-Level

n = **50**, **random**

Developmental Primitives

(details of developmental cost)

Popular Constraints

- Anatomy
 - Brodmann areas, fMRI, injury studies, ...
- Cellular Biology
 - Neurons, synapses, transmitters, glia, ...
- Behavior
 - Reflexes, infant cognition, illusions, ...

Popular Constraints

- Anatomy How do parts cooperate?
 - Brodmann areas, fMRI, injury studies, ...
- Cellular Biology 1K+ neurons do anything
 - Neurons, synapses, transmitters, glia, ...
- Behavior How do we debug?
 - Reflexes, infant cognition, illusions, ...

These do not constrain our models much!
Calculating Cost

- Three building blocks:
 - Simple program
 - Set of communication paths
 - Set of parts
- Building block costs are abstractions of neuroscience & synthetic biology

Problems with building block assumptions are likely to change cost constants only

Primitive: Simple Program

(defun add-example (state example) (if example

(incf (strength state))

(decf (strength state) miss)))

	Time	Space	Imperfection
Mature	O(ops+bits)	O(ops*bits)	abort
Development	O(ops+bits)	O(ops+bits)	DOA

Loops, function calls handled by expansion Simple programs are cheap ⁷⁴

Primitive: Communication Paths

	Time	Space	Imperfection
Mature	O(1) O(length)	O(bits*paths)	noise
Development	O(length)	O(bits/reuse)	extra or absent paths

Precision connections are expensive ⁷⁵

Primitive: Set of Parts

	Time	Space	Imperfection
Mature	O(part)	O(size*part)	part
Development	O(part)	O(part)	set size & part

Can add mesh network for O(1) added cost Making copies is cheap⁷⁶

Other Random Slides

(example dossier, "Hilbert questions")

Compiling a Dossier

"When in doubt, use brute force" -Ken Thompson

What makes human intelligence unique? How are concepts grounded in experience? How are perception and reasoning related? What makes natural intelligence so robust? How is an integrated mind formed from a collection of many different parts? What makes human intelligence unique?

How are concepts grounded in experience?

How are perception and reasoning related?

What makes natural intelligence so robust?

How is an integrated mind formed from a collection of many different parts?