
Implementing Valiant's Neuro-Logic

Jake Beal
December, 2005

How could neural circuits work?

● Many components (10^10 neurons)
● Large fan-in (24K-80K neighbors)
● Slow cycling (1-10 milliseconds)
● Low precision wiring
● Low synapse strength (0.3-20% of threshold)

Valiant's Approach

● Random network with sparse connections
● Symbols are sparse sets of nodes
● Implement circuits by discovering connections

A

JOIN(A,B)

● Activate first A, then B
● Nodes activated by both are a new symbol C
● Lower synapse strength so C = A*B

A

B
AB

C

JOIN(A,B)

● Activate first A, then B
● Nodes activated by both are a new symbol C
● Lower synapse strength so C = A*B

A

B
AB

C

JOIN(A,B)

● Activate first A, then B
● Nodes activated by both are a new symbol C
● Lower synapse strength so C = A*B

A

B
AB

C

JOIN(A,B)

● Activate first A, then B
● Nodes activated by both are a new symbol C
● Lower synapse strength so C = A*B

A

B C
AB

C

LINK(A,D)

● Activate A
● Raise synapse strength on D's active inputs
● A→[intermediates]→D

A
D

A

D

LINK(A,D)

● Activate A
● Raise synapse strength on D's active inputs
● A→[intermediates]→D

A
D

A

D

LINK(A,D)

● Activate A
● Raise synapse strength on D's active inputs
● A→[intermediates]→D

A
D

A

D

But does it work?

● Between theory and practice lies engineering
– Simulation feasiblity

– Time

– Device longevity

– Device characterization

– Coding Capacity

– Universality

Simulation Feasibility

● Even the smallest networks are very large
– 100,000 nodes, 256 links/node, 1981 nodes/symbol

● Bottleneck operations walk all links
● Some tricks I use:

– Links implicitly represented by a random seed
● Two bit-arrays store state
● Generated and cached when necessary
● An arbitrary set is permanently cached

– Fast-fail on link-walk segments with known answers

Time

● JOIN takes 1 cycle, LINK takes 2
● How can multi-layer logic be synchronized?

A
B
C X

Time

● JOIN takes 1 cycle, LINK takes 2
● How can multi-layer logic be synchronized?

– Buffer C with a JOIN?

A
B
C X

Time

● JOIN takes 1 cycle, LINK takes 2
● How can multi-layer logic be synchronized?

– Buffer C with a JOIN? JOIN(C,C) must fail!

A
B
C X

Time

● JOIN takes 1 cycle, LINK takes 2
● How can multi-layer logic be synchronized?

– Buffer C with a JOIN? JOIN(C,C) must fail!

– Redundant use of inputs in different joins!

A

B

C

X

Device Longevity

● JOIN lowers weights, LINK raises weights
– After x JOINs, only (1-r/n)x of a device is usable

● 1,000,000,000 nodes = 700 JOINs to destroy a device

– Solution: differentiate into Symbol and Relay nodes

JOIN raises
Sym→Sym

No Relay→Relay

Sym→Relay=1
LINK raises Relay→Sym

Device Characterization

● Are they really digital?

A

D

AB

C

Device Characterization: LINK

● Yes! (Static discipline V
ol
=0.1<V

il
=0.2<V

ih
=0.5<V

oh
=0.9)

Device Characterization: JOIN

● No! ... and changing the bias turns it into an OR

Compound AND device

● LINK's nice transfer cleans JOIN's messy output
– Should switch over around 0.85

● Side benefit: no symbol is derived from C

DA
B

C

Chain of ANDs

Chain of ANDs

● What's going on here?

Input 0.2

● Why is there a two-stage cycle?
● What are the individual runs doing?

1.0

0.0

0 5

An anomalous run of input 0.2

1.0

0.0

0 5

● But we're only seeing 2/3 of the time-steps...

An anomalous run of input 0.2

1.0

0.0

0 15

● But we're only seeing 2/3 of the time-steps...

4 8 12

An anomalous run of input 0.2

1.0

0.0

0 15

● Spikes at LINK outputs on even timesteps
– Activity from time 0 is rebounding on the links!

4 8 12

Sources of Crosstalk

● Uniformity of network
● Strong relay activation, sqrt(rn) for a single link

– 3% of 1,000,000,000 nodes

● Symbol node overlap
● Relay node overlap

Crosstalk is Cumulative

A B
C
D

Z
...

● Consider 200 independent links, 1% crosstalk

The net doesn't know about our symbol abstraction!

Crosstalk is Cumulative

● Consider 200 independent links, 1% crosstalk

The net doesn't know about our symbol abstraction!

A B
C
D

Z
...

1000 2000

10

10

10

Crosstalk is Cumulative + Feedback!

● Consider 200 independent links, 1% crosstalk

The net doesn't know about our symbol abstraction!

A B
C
D

Z
...

B
C
D

Z

...

1000 2000 4000

10

10

10

20

20

20

Proposed New LINK Algorithm

● Propagate A, marking used relay nodes
● Adjust relay strength as well as D input strength
● A→E→D

A
D

A

D

Proposed New LINK Algorithm

● Propagate A, marking used relay nodes
● Adjust relay strength as well as D input strength
● A→E→D

A
D

A

D

Proposed New LINK Algorithm

● Propagate A, marking used relay nodes
● Adjust relay strength as well as D input strength
● A→E→D

A
D

A

D

E

Remaining Problems

● Coding Capacity
– Better bounds analysis

– Will the proposed fix work?

● Universality
– Dual rail logic implementation

– Efficient inverter, NAND, etc.

● Feasibility
– Are there more efficient compound gates?

