

Discrete Approximation & Self-Healing

Jacob Beal
Lecture 3 of 5 on Spatial Computing

ISC-PIF Summer School, 2009

2

or: scalability and robustness cheap!

150 devices2000 devices

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency

Global v. Local v. Discrete

Compiler

Kernel

Global

Local

Discrete

Program

Gradual Degradation

● Plane wave at different resolutions:

100

1,000

10,000

Automatic Scaling

● Target tracking on 20 to 10,000 nodes:

Discrete Model

● Dozens to billions of simple, unreliable agents
● Distributed through space, communicating by

local broadcast
● Agents may be added or removed
● No guaranteed global services (e.g. time,

naming, routing, coordinates)
● Relatively cheap power, memory, processing
● Partial synchrony

Kernel

● Responsibilities:
● Emulate amorphous medium
● Time evolution
● Interface with sensors, actuators
● Viral reprogramming

● Current platforms: simulator, Mica2 Mote,
McLurkin's SwarmBots, Topobo, iRobot
Create + Meraki

Discrete Space

● Each devices represent nearby space
● Best-effort space-time metrics from sensors
● Each summary has a discrete equivalent

Discretizable Neighborhood Ops

● Space-Time Metrics:
● nbr-range, nbr-angle, nbr-vec, is-self
● nbr-lag, nbr-delay
● density, infinitesimal, curvature
● nbr

● Summary functions:
● min-hood, max-hood, any-hood, all-hood
● Same four “+” hole at self: e.g. min-hood+
● int-hood

● Abstraction breakers: sum-hood, fold-hood

Neighborhood Abstraction

● Aggregate access to best-effort estimate of
neighbor state, space-time properties

● Neighbors decay without updates

neighbor values

exposed state

Program

UID Timer Area Range Lag Exposed State

ME N/A 0.32 5.6 1.1 ...

703 1 0.43 0.3 0.6 ...

398 3 0.21 8.7 1.4 ...

... receive

half-phase
send

decay

Sensors & Actuators

● Indirect access via space-time operators
● Direct access by extending kernel
● Virtual sensors/actuators can connect to other

programs running in parallel
● I/O must be interpretable as CT stream of values
● e.g. interface with a high-level planner with sensors

“plan-ready” and “best-plan-to-take”

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency

Distance-To (A.K.A. “gradient”)

Common SA/SO building block
● Pattern Formation

● Nagpal, Coore, Butera

● Distributed Robotics
● Stoy, Werfel, McLurkin

● Networking
● DV routing, Directed Diffusion

Need to adapt to changes

McLurkin, 2004

Nagpal, 2001

Intanagonwiwat, et al. 2002

Calculation By Relaxation

0

∞

∞

∞

∞

0

∞
3

4

4

4

4

4

7

8

gx={ 0 if x ∈S
min {gyd x ,y ∣ y ∈Nx} if x ∉S}

∞

5

1

5

Calculation By Relaxation

0

∞

3

7

4

0

4
3

4

4

4

4

4

7

8

gx={ 0 if x ∈S
min {gyd x ,y ∣ y ∈Nx} if x ∉S}

∞

5

1

5

Calculation By Relaxation

0

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

gx={ 0 if x ∈S
min {gyd x ,y ∣ y ∈Nx} if x ∉S}

9

5

1

Calculation By Relaxation

0

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

gx={ 0 if x ∈S
min {gyd x ,y ∣ y ∈Nx} if x ∉S}

8

5

1

Distance-To + Communication Lag

cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

0

∞

3

Falling Rising

0

3

3

0

3

3

6

3

3

Rising Value Problem

0

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

6

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

6

7

8

7

4

0

7
3

4

4

4

4

4

7

8

5

8

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

11

9

9

7

4

0

10
3

4

4

4

4

4

7

8

5

8

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

12

9

13

7

4

0

13
3

4

4

4

4

4

7

8

5

10

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

16

11

13

7

4

0

14
3

4

4

4

4

4

7

8

5

10

5

1
cx y ,t =gx t−x y ,t d x , y

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}

Rising Value Problem

B

A

distance

va
lu

e

Lag has a minimum, distance does not!

Previous Algorithms

● “Invalidate and Rebuild”
● GRAB: single source, rebuild on high error
● TTDD: static subgraph, rebuild on lost msg.

● “Incremental Repair”
● Hopcount: Clement & Nagpal, Butera
● Distorted Measure: Beal & Bachrach

(naïve generalization of hopcount to continuous)

Can't exploit distance info in large nets

CRF-Distance-To: Local Deconstraint

● Self-stabilization in O(diameter)

10

14

1

10

11

1

Falling Rising

10

14

1

10

19

1

v
0
=5

10

11

1

CRF-Distance-To: Local Deconstraint

● Self-stabilization in O(diameter)

c 'x y ,t =cx y ,t x y ,t ∆t⋅vx t

cx y ,t =gx t−x y ,t d x , y

gxt={ 0 if x ∈St
min {cxy ,t∣ y ∈N'x t} if x ∉St ,N'x t≠∅

gx tv0⋅∆t if x ∉St ,N'x t=∅}
N'x t={y∈Nx t∣c'x y ,t≤gx t−∆t}

vx t ={0 if x ∈St
0 if x ∉St , N 'x t ≠∅
v0 if x ∉St , N 'x t =∅}

CRF Rising Values

0

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

5

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

10

7

8

7

4

0

9
3

4

4

4

4

4

7

8

5

8

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

15

12

13

7

4

0

14
3

4

4

4

4

4

7

8

5

13

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

20

17

18

7

4

0

19
3

4

4

4

4

4

7

8

5

18

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

25

22

23

7

4

0

15
3

4

4

4

4

4

7

8

5

23

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

CRF Rising Values

19

20

19

7

4

0

15
3

4

4

4

4

4

7

8

5

20

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5

Simulated CRF-Distance-To

Experimental Setup

One close pair

Experimental Results: Falling

Experimental Results: Rising

Generalized CRF

Feed-Forward Self-Stabilization

A composition of self-stabilizing components with
no feedback is itself self-stabilizing in the sum of
the times along the longest path

Desti-
nation

Source

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency

Self-Stabilization vs. Self-Healing

An algorithm is self-stabilizing iff, given an
arbitrary starting state, it converges to a correct
state in finite time.

An algorithm is self-healing if it always
incrementally adjusts its state towards a more
correct state.

Proofing Self-Stablization for CRF

Let's work this proof out together...

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency

Perfection is expensive and “twitchy”

But most applications don't need perfection...

proto -n 1000 -r 10 "(all (mov (* 0.1 (disperse))) (green (distance-to (sense 1))))" -l -s 1 -m -w

Making distance-to tolerate error

● Hysteresis?
● Past a threshold, unbounded communication

● Low-pass filtering?
● Worse! Value change != msg cost

● “Elastic” connections!
● Absorb error incrementally

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption

Managing error through slope

● Goal: ε-acceptable values

● Add local constraint via slope:

→ “flexible” distance-to

(allow small distortion for rising value problem)

g x t ⋅1−g x t g x t ⋅1

s x t=max { g x t−t −g y t x , y
d x , y , t x , y

∣y∈N x t }

Getting the kinks out

● Flexed regions cannot absorb error
● Want eventual correctness

Getting the kinks out

● Flexed regions cannot absorb error
● Want eventual correctness

Solution: occasional ε=0 steps

Flex-Distance-To Algorithm (simplified)

● Sources take g
x
(t)=0

● Else measure maximum slope and minimum
distance through neighbors (w. r/δ distortion):
● If value is more than 2x lowest value through

neighbor, snap to slope=1
● Else if slope is not ε-acceptable, make ε-acceptable

– Once every g
x
(t) updates, use ε=0

Flex-Distance-To vs. CRF-Distance-To

proto -n 1000 -r 10 -led-stacking 2 "(flex-distance-to-demo 0.3 10 0.2 1 1)" -l -s 1 -w -m

Perturbations affect limited range

Even infrequent repair helps

A little tolerance goes a long way

Summary

● Appropriately choosen amorphous medium
operations discretize naturally.

● Self-healing algorithms adapt gracefully to
changes in environment or program state.

● Feed-forward compositions of self-stabilizing
algotihms are self-stabilizing.

● Healing rate and consistency can be traded off.

66

Tomorrow: Moving Devices

found a
victim!

rescue
on the
way!

Robot motion = vector fields

Further Questions

● What is the optimal replacement policy when
there are more neighbors than table memory?

● What is the optimal decay rate?
● How much energy can be saved by throttling

update and decay rates?
● What are good ways to expose the

cost/responsiveness tradeoff to the
programmer?

68

Further Questions

● Are the neighborhood summary functions a
cover of all useful approximable functions?

● Are there other basic space-time metrics
needed for neighborhood computations?

● What is the best way to represent random
number generation in continuous space-time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Discrete Model
	Slide 8
	Slide 9
	Slide 10
	Neighborhood
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

