Moving Devices

Jacob Beal
Lecture 4 of 5 on Spatial Computing ISC-PIF Summer School, 2009

or: search \& rescue in ~ 50 lines...

Robot motion $=$ vector fields

Agenda

- Amorphous Medium for Mobile Devices
- Motion from Vector Fields
- Deployment Pragmatics

From one robot, to many

From one robot, to many

From one robot, to many

Robotic density is currently very low, but...

Space/Network Duality

Mass \& Density

Mass \& Density

$$
\rho=\frac{1 / 4 \pi r^{2}}{V}
$$

Device motion $=$ mass flow

States of Robotic Matter

Gas: motion is largely unconstrained

States of Robotic Matter

Liquid: motion is locally constrained Robots move around one another

States of Robotic Matter

Solid: packed so tightly that only a few can move

How might robots move in solids?

Hole Motion

Robots move like positive semiconductor charge [De Rosa et al, '06]

Hole Motion

Robots move like positive semiconductor charge [De Rosa et al, '06]

Hole Motion

Robots move like positive semiconductor charge [De Rosa et al, '06]

Hole Motion

Robots move like positive semiconductor charge [De Rosa et al, '06]

Hole Motion

Robots move like positive semiconductor charge [De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Forming a Hole

Surface blisters outward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Popping a hole

Surface blisters inward
[De Rosa et al, '06]

Surface/hole interaction \rightarrow shape

Agenda

- Amorphous Medium for Mobile Devices
- Motion from Vector Fields
- Deployment Pragmatics

Example: Search \& Rescue

Robot Motion = Vector Fields

contour-field

Programming Swarm Motion

Let's go work with some vector fields...

In simulation...

Agenda

- Amorphous Medium for Mobile Devices
- Motion from Vector Fields
- Deployment Pragmatics

Deployment Challenges

Large numbers rule out human maintenance

- Programming or rebooting
- Viral distribution, e.g. Deluge [Hui \& Culler, 04], Trickle [Levis et al, '04]
- Energy
- Power saving techniques
- Harvesting, autonomous refuel/recharge
- Visbility of state (e.g. for debugging)

On McLurkin's SwarmBots

- Swarm of 40 robots
[Bachrach et al, '08]

On McLurkin's SwarmBots

- Smoke test: distance-to

On McLurkin's SwarmBots

- Adaptivity to motion: dilate

Source Robot Path

-dilate(ideal) —dilate(measured)

On McLurkin's SwarmBots

- Vector control of motion: cluster-to

Summary

- Density of amorphous medium abstracts device motion as continuous mass flow.
- Device behave like a solid, a liquid, or a gas, depending on how tightly they are packed.
- In the gaseous state, complex, heterogeneous robot motion can be computed as vector fields.
- Spatial computers are only practical when the devices can be maintained almost entirely without human intervention.

Tomorrow: Current Frontiers

Further Questions

- What is the best mapping between mass-flow and device motion?
- How literally can we take the solid/liquid/gas metaphor for mobile devices?
- How can a swarm stay safely connected while reconfiguring rapidly?

