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Abstract

We present a workflow for the design and production of biological networks from high-

level program specifications. The workflow is based on a sequence of intermediate models

that incrementally translate high-level specifications into DNA samples that implement them.

We identify algorithms for translating between adjacent models and implement them as a set

of software tools, organized into a four-stage toolchain: Specification, Compilation, Part As-

signment, and Assembly. The specification stage begins with a Boolean logic computation

specified in the Proto programming language. The compilation stage uses a library of net-

work motifs and cellular platforms—also specified in Proto—to transform the program into
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an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed

behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from

a database for the target cellular platform, to create a DNA sequence implementing the AGRN.

Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence

from available part samples, yielding a protocol for producing a sample of engineered plasmids

with robotics assistance.

Our workflow is the first to automate the production of biological networks from a high-

level program specification. Furthermore, the workflow’s modular design allows the same

program to be realized on different cellular platforms simply by swapping workflow configu-

rations. We validated our workflow by specifying a small-molecule sensor-reporter program

and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial

cells.

Keywords: Design Tools; Design Automation; High-Level Design; BioCAD; Compilation;

Part Assignment; DNA Assembly; Specification
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Introduction

Synthetic biology has tremendous potential for enabling the design and implementation of sophis-

ticated biochemical mechanisms for sensing, computing, control, production, and actuation. This

approach is anticipated to lead to many breakthrough applications in biotherapeutics, bioremedia-

tion, biomaterials, and in vivo sensing, actuation, and self assembly—many of which are already

being explored.1–4 As these applications become more complex, however, there is an increasingly

pressing need for tools to assign in design and in the production of organisms that implement those

designs.

In this paper, we propose a workflow called TASBE∗, the first complete method for the design

and production of physical biological networks from high-level specifications. This workflow is

developed around a sequence of models that we have identified, moving from high-level specifica-

tions to DNA samples in four stages: Specification, Compilation, Part Assignment, and Assembly.

Given a behavioral program and a target cellular platform, both specified in a high-level program-

ming language called Proto,5 TASBE compiles the specification into an optimized design repre-

sented as an abstract genetic regulatory network (AGRN), then assigns DNA parts to realize the

design, and finally produces an optimized sequence of protocols for assembling the design from

available DNA samples. The protocols are then executed, by a liquid-handling robot or manually,

to obtain a physical sample of cells satisfying the specification.

The motivation for the TASBE workflow comes from observing patterns and problems that

occur in current work on synthetic biology applications. Many of the envisioned applications of

synthetic biology are based on a synthetic genetic construct organized into three modules: sensing

of input signals, computation to make decisions based on the inputs, and actuation to turn deci-

sions into actions. For example, Rinaudo et al. constructed an RNA interference-based Boolean

function evaluator in mammalian cells for applications in sensing endogenous molecular inputs;6

Zhen et al. constructed a cellular state classifier for detecting a specific type of cancerous cell

using a mixture of threshold tests and Boolean logic, with the miRNA expression profile as in-

∗TASBE is an acronym for “Tool-chain to Accelerate Synthetic Biology Engineering.”
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put;3 Anderson et al. built an AND gate to detect a tumor cell;2 and Tamsir et al. constructed

networks implementing all possible two-input Boolean functions with a NOR gate circuit as a

basic building block by arranging colonies spatially, which may have applications to pattern for-

mation.7 Applications also often need computations with memory or time-varying functions to

carry out tasks such as counting, detection of events in sequences, and pattern formation. Notable

sense-compute-actuate systems using memory or time-varying functions include a transcriptional

toggle switch,8 a five-state recombinase-based sequential memory element,9 a recombinase-based

rewritable memory element,10 a single-cell transcriptional oscillator,11 and a multicellularly syn-

chronized genetic clock.12 There are, of course, many applications that do not currently use the

sense-compute-actuate pattern, such as synthesis of drugs,1 biofuels,13 and biomaterials.14,15 The

widespread sense-compute-actuate pattern represents an important opportunity, however: the sep-

aration of sensing and actuation from computation means that a good approach for producing func-

tioning biological computations from high-level design has the potential to impact a large number

of current and potential future applications. Moreover, because many of these prior systems share

patterns in their design and construction, it suggests that this class of synthetic biology systems

may be particularly susceptible to automation by identification and extraction of these patterns.

At the same time, the growing capabilities of synthetic biology pose an important problem, as

the field looks forward to more sophisticated applications that will require larger networks with

more complex control logic. Current practices in synthetic biology for specifying, designing,

building, debugging, characterizing, and iterating over this process cannot scale as required for

such applications. The constructs built thus far have been small, with relatively simple intended

behavior and only a small set of available computational parts—hence possible designs—to choose

from. The number of available parts is rapidly expanding, however, and as the number of parts and

the size and complexity of applications grow, there is an exponential increase the number of pos-

sible designs, and the number of possibilities for problems, such as unknown interactions between

parts or mismatched expression levels. These are not distant challenges: even a single actuation

that is a Boolean function of three sensors may require 20 to 30 basic functional sequences of DNA
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and a three to five stage cascade of transcriptional regulation. These difficulties can be addressed

by factoring the larger task into tractable subproblems and constructing a modular tool-chain in

which each tool addresses a subproblem. This way existing specification, design, and optimiza-

tion techniques can be used or adapted, and applications can be shifted easily from one cellular

platform to another. While new biological discoveries will alleviate some of the fundamental dif-

ficulties in building robust devices, future bio-engineers will still have to confront the problems of

specifying a desired function succinctly, of searching a massive space of potential designs for one

that satisfies the specification, and of realizing that design into physical DNA. A well-specified,

verifiable, and reproducible workflow will allow the bio-engineer to focus on and cope with the

key biological complexities of their design. This is consistent with and necessary to the goal of

transitioning synthetic biology from a niche experimental art requiring broad and deep training, to

a widely accessible engineering discipline.

Our implementation of the TASBE workflow addresses these challenges with a set of software

tools whose algorithms are based on the recurring design patterns of sense-compute-actuate syn-

thetic biology systems. Having conceived and implemented the TASBE workflow, we validated it

by applying it to the specification of a simple small-molecule sensor/actuator program. Starting

with a high level specification of its behavior, and using the TASBE flow, we obtained a physical

sample of cells satisfying the behavioral specification. TASBE’s modular design also allows the

same program to be realized on different cellular platforms by swapping workflow configurations,

which we demonstrate by executing the flow for two different target cellular platforms: HEK293

mammalian cells and E. coli bacterial cells. To our knowledge, the TASBE workflow is the first

complete method for translating an abstract program specification to a functioning biological net-

work.

Related Work

A large number of prior projects have addressed particular fragments of this challenge, but no prior

effort has actually made the end-to-end connection from specification to in vivo functionality.
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For example, there are a few high-level programming languages that begin with abstract spec-

ifications and map to genetic regulatory network designs at various levels of abstraction: Proto5,16

uses a dataflow model to produce network designs from a library of motifs, while GEC17 uses

logic programming to search for genetic networks based on chemical reaction models, and the tool

by Marchisio et al.18 uses Karnaugh maps to transform a truth table into a genetic network design

for a logic circuit.

Other tools begin at the level of DNA sequence features, allowing the designer to build a de-

sign by composing features such as promoters, open reading frames, and terminators. For example,

GenoCAD19 allows a user to specify part sequences constrained by a grammar aimed at ensuring

functionality, while Eugene20 allows textual specification of both parts and combinatorial assem-

blies of parts. TinkerCell21 provides similar capabilities in a graphical form, allowing visualization

and graphical editing of parts and reaction networks.

Yet others focus on the chemical properties that are needed to ensure correct operation of

circuits. A particularly well known example is the RBS Calculator,22 a bidirectional translator

between RBS sequence and strength. Other tools23,24 assume such tuning capabilities and focus

on searching for the combinations of reaction parameters that can implement particular classes of

networks, or use simulation to allow a human to explore the effect of reaction parameters, e.g.,

SynBioSS.25 Tools like GLAMM26 aid a designer in visualization and search for exploring novel

transgenic pathways in large databases. Chemical parameters selection can also be considered as

an optimization problem, as in the case of OptCircuit,27 which produces a genetic circuit design

given the desired temporal response and a parts library annotated with part parameters, and the

tool by Huynh et al.,28 which assigns parts to a given genetic network by solving a nonlinear

optimization problem.

Finally, tools have been created that focus on the low-level problems of sequence design, as-

sembly, and sample production. The j529 tool and the Device Editor30 are tools for specifying

combinatorial variations of designs and creating oligos to assemble them; Eugene20 also provides

some capabilities in this area. GeneDesign31 and GeneDesigner32 are DNA sequence design tools,
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whereas OptMAGE33 is a oligo design tool for genome engineering.

As a collection, these tools address a large number of problems in the design and construction

of synthetic biology systems. In general, however, each tool has been formulated to solve only its

specific problem, and no effort has previously integrated these tools in order to address the end-

to-end design problem; translating a high level behavioral description stated in a programming

language into a physical sample implementing the behavior in vivo.

Results and Discussion

Two key goals of synthetic biology are engineering of new behaviors in organisms, and discovering

the principles of such biological engineering.34–36 The TASBE workflow contributes to the first

goal by providing a generalizable solution for translating a desired behavior into a biologically

implementable design and assembling DNA implementing that design. Formulating algorithms for

this problem also contributes to the second goal, by capturing fundamental engineering principles

and practices, their interrelationships, and their strengths and limitations.

The TASBE workflow decomposes the problem of mapping from desired organism to DNA

samples into qualitative stages based loosely on the types of work that humans do when they

design biological systems: conceptualizing, sketching an initial design, filling in details, and lab

work. These stages are expected to apply across a broad range of synthetic biology applications.

These qualitative stages are further resolved into a sequence of intermediate models, chosen to be

tractable for automation. The models that we present in this paper are focused on sensor/actuator

programs that use combinatorial Boolean logic, and with minor extension should be applicable

to any sensing or control application, but likely not to complex metabolic engineering. Finally,

there is a sequence of transformations that map from each model to the next. Together, these

transformations incrementally translate from high-level design specifications to DNA samples. The

transformations are expected to be improved frequently in order to expand the classes of behaviors

and organisms that can be engineered, to improve algorithms, and to take advantage of new results
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Figure 1: The TASBE workflow has four general stages: specification, compilation, part assign-
ment, and assembly. These are further refined into seven models: 1) High-level program specifying
the desired behavior; 2) Dataflow graph representing a computation as a set of functional operators
that produce and consume data values; 3) Abstract genetic regulatory network (AGRN) consisting
of a set of partially specified functional units; 4) Genetic regulatory network (GRN), consisting
of the same elements as an AGRN, except that all of the elements must be fully specified; 5) Part
sequence(s), where each sequence is a concatenation of available DNA parts with corresponding
sample information; 6) Assembly plan including a sequence of protocols for creating each part
sequence from available DNA samples; 7) Physical samples comprising DNA that actually instan-
tiates a biological network. The tools transform each model in turn to its successor.
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in the scientific literature. Figure 1 shows the stages and models comprising the TASBE workflow,

and the current set of transformations used to implement it.

At the highest level, the TASBE workflow decomposes the problem of designing an organism

into four qualitative stages, based on the type of work being carried out:

1. Specification: The starting point for the workflow is a precise statement of the organism

behavior that is desired, and of the target cellular platform in which the behavior is to be

implemented.

2. Compilation: With the aid of a dictionary that maps between specification elements and

genetic motifs, the compilation stage transforms the specification into an abstract genetic

regulatory network (AGRN)—a “template” implementation that leaves as much flexibility

as possible for sequence selection.

3. Part Assignment: In the part assignment stage, the AGRN is realized fully as one or more

sequences of DNA parts (available assembly-compatible DNA fragments). The choice of

DNA parts is guided by a database of available parts and characterization data to determine

which parts have interactions that can correctly represent the data values of the AGRN.

4. Assembly: Finally, each DNA part sequence is assembled into a physical sample of DNA.

The protocols for doing so are determined by the sample library and automation equipment

available in the laboratory where assembly is carried out.

As shown in Figure 1, these stages are then resolved into a sequence of models that incremen-

tally progress from high-level program specification to DNA samples. We have selected interme-

diate models as junctures in the design process when new types of information must be introduced

in order to proceed. We begin with the program specification, which is obviously essential as it

captures the biological engineer’s intent. The dataflow graph model is then a digestion of that in-

tent into a discrete set of computational primitives that can implement it. The AGRN represents the

farthest progress that can be made without selecting particular DNA parts from an external parts
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library, while the GRN represents the stage at which decisions must be made about how to orga-

nize design elements into plasmids and about what protocols will be used to assemble the design.

The part sequences(s) are the outcome of those decisions, but cannot proceed to the final assembly

plan without integrating with laboratory information systems to determine available resources for

actually executing protocols. Thus, the TASBE workflow’s intermediate models each represent a

necessary lowering of the level of abstraction. Although this sequence might not be unique, it is

likely that any other end-to-end workflow would need to include equivalent stages.

Finally, we have implemented transformations with a set of tools for mapping between these

models. In their present form, these tools can be applied to any sensor/actuator program that uses

combinatorial Boolean logic. Specification is done in the Proto programming language.16 Compi-

lation is implemented using the MIT Proto compiler37 and the Proto BioCompiler,5 which produce

an AGRN optimized to reduce complexity. Part assignment is handled by a new tool, Match-

Maker,38 which is configured with a platform-specific database using the Clotho data model.39

Finally, assembly may be carried out using either of two new tools: Puppeteer40 or BioCAD, both

of which create an assembly plan minimizing the length and complexity of protocols, then use

a protocol library to translate it to elementary instructions for execution by a human or a liquid-

handling robot.

Validation

We validated the TASBE workflow by applying it to a simple sensor/actuator test program with the

following behavior:

• Measure the value of a Boolean test sensor.

• If the sensor value is true, turn on a fluorescent debugging reporter.

• If the sensor value is false, turn on a different fluorescent debugging reporter.

We validated the workflow by creating a formal high-level specification of this test program, then

applying each tool in sequence, thereby producing DNA samples that correctly implement the
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specification on two different cellular platforms: mammalian HEK293 cells and E. coli bacteria. To

our knowledge, this is the first demonstration of end-to-end translation of a program specification

to a functioning biological network, as well as the first automated realization of the same design

on two different cellular platforms.

Note that the simplicity of the test program we use for validation should not be taken to rep-

resent a limitation on the tools or the workflow approach. The contribution of this work is the

end-to-end workflow, and most particularly the intermediate models that break the design problem

into tractable subproblems. Having established such a workflow, its breadth of coverage can be

improved by improving individual tools. For example, Boolean feedback logic requires only the

addition of new motifs to the Proto BioCompiler, while analog signal processing would require

upgrades to Proto BioCompiler and MatchMaker.

We now describe the results produced by the test program as it progresses through each stage

in turn, from specification to ultimate experimental validation of the assembled DNA samples in

vivo. For details on internals of each transformation, see the Methods section and Supporting

Information.

Program and Platform Specification

(def simple-sensor-actuator ()
(let ((x (test-sensor)))

(debug x)
(debug-2 (not x))))

(a) simple-sensor-actuator.proto

(annotate not
:grn-motif ((P high R- arg0 value T)))

(b) Sample operator motif

(primitive Dox () boolean
:grn-motif ((P high rtTA|boolean T)

(RXN (Dox|boolean) activates rtTA)
(P low R+ rtTA value T)))

(primitive blue (boolean) boolean :side-effect
:type-constraints ((= value arg0))
:grn-motif ((P R+ arg0 EBFP2|arg0 value T)))

(macro test-sensor Dox)
(macro debug blue)

(c) Excerpt of mammalian-platform.proto

(primitive Ara () boolean
:grn-motif ((P high AraC|boolean T)

(RXN (Ara|boolean) represses AraC)
(P high R- AraC value T)))

(primitive green (boolean) boolean :side-effect
:type-constraints ((= value arg0))
:grn-motif ((P R+ arg0 GFP|arg0 value T)))

(macro test-sensor Ara)
(macro debug green)

(d) Exerpt of ecoli-platform.proto

Figure 2: In the TASBE workflow, Proto code is used to specify programs (a), genetic regulatory
network motifs for implementing computations (b), and cellular platforms (c,d).
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For our validation test, we began by specifying the sensor/actuator program, a set of network

motifs for implementing various program operators, and cellular platform files for HEK293 and

E. coli cells. High-level program specification, operator motifs, a cellular platform specification are

all written in the Proto spatial-computing language.16 Representative samples of each are shown

in Figure 2; the full files are included in the Supporting Information.

Figure 2(a) shows our Proto specification of the simple sensor/actuator test program: the def

statement names the program simple-sensor-actuator and declares that it requires no

other external inputs (the empty parentheses). The let statement in the next line creates a program

variable—in this case, placing the value of the Boolean test-sensor operator into a variable

named x. This value is then used to set one of two fluorescent debugging reporters: the first is

set when x is true, the second when x is false. Note that the variable x is implicitly of Boolean

type, due to the input and output types of the operators producing and consuming it; if these did

not match, it would be reported as a compiler error during the next stage.

Figure 2(b) shows the motif declaration for our not operator, taken from Beal et al.5 This

motif specifies a single functional unit comprised of a constitutively high promoter (P high),

which can be repressed by the transcription factor representing the operator’s input (R- arg0)

and which regulates the expression of the protein that represents the operator’s output (value).

Figure 2(c) and Figure 2(d) show sample excerpts from the cellular platform definition files

for HEK293 and E. coli cells. These declare the available sensors and actuators available on

each platform: for example, we had a doxycycline sensor (Dox) for HEK293 but not E. coli, and

an arabinose sensor (Ara) for E. coli, but not HEK293. Likewise, operators available on both

platforms may be implemented differently: for example, macros map the test-sensor and

debug actuator families to different implementations reflecting the available operators and the

preferences of the biological engineers for each platform.
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Figure 3: Stages of compilation and optimization for mammalian (a,c,e,g) and E. coli (b,d,f,h)
cellular platforms. For dataflow graphs (a,b,c,d), operators are shown as boxes, variables as arrows
connecting from output to inputs and annotated with their data type, and function definitions as
dotted boxes with the name of the function in the corner and a star on the function’s output vari-
able. For AGRNs (e,f,g,h), functional units are low horizontal lines connecting promoters (bent
arrows) and open reading frames (boxes) with terminators not shown on the diagram; activation
and repression are green arrows and red stub connectors respectively, and all are annotated with
the data types or values they represent.
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Compilation

For the next stage of our validation test, we applied Proto and the Proto BioCompiler to the specifi-

cations set out in the previous section by evaluating the expression “(simple-sensor-actuator),”

which invokes our sensor/actuator test program. We evaluated this expression once for each cellu-

lar platform, selecting between HEK293 and E. coli via the arguments provided to the compiler.

Figure 3(a) and Figure 3(b) show the initial dataflow graphs produced for mammalian and

E. coli platforms respectively. Note that the different definition files for the two cellular plat-

forms result in a graph with Dox, blue, and yellow for the mammalian platform and with

Ara, green, and red in the E. coli platform. Since the test program is already quite simple,

optimization of the dataflow graph only replaces the function call with its contents (Figure 3(c)

and Figure 3(d))—a simple transformation, but vital since we currently have no way to implement

function calls in cells.

Subsequent transformation by the Proto BioCompiler produces first the initial AGRNs shown

in Figure 3(e) and Figure 3(f). For example, the not operator is mapped to the repression of

a functional unit producing an unspecified protein “B,” while the Dox and Ara operators map

to more complex subnetworks comprising two functional units and a small-molecule reaction.

The pattern-based optimizations then simplify these networks. For example, copy propagation and

dead code elimination combine to remove protein “B” and the functional unit that produced it. The

final complexity-optimized AGRNs are shown in Figure 3(g) and Figure 3(h). In more complex

networks, the optimizations can reduce network size by up to 83%.5

Part Assignment

The part assignment stage of the TASBE workflow fills in the underspecified elements of the

AGRN to produce first a fully specified genetic regulatory network, in which each element is as-

sociated with an available DNA part, then a linearization of those parts into one or more complete

DNA sequences to be assembled. Our implementation of this stage is a new tool called Match-

Maker (presented in detail in Yaman et al.38) that solves this problem using a database of available
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features, parts, and signal levels. MatchMaker comprises three algorithms: the feature assignment

and signal matching algorithms transform an AGRN into a GRN; the part assignment algorithm

then transforms the GRN into part sequences.

We executed MatchMaker on the two AGRNs produced by the compilation stage in our sen-

sor/actuator test example—one targeted for mammalian cells, one for E. coli. Each AGRN was

run against feature, signal, and part databases created for that cellular platform. Figure 4 illustrates

the input AGRNs and the feature databases used for feature matching, as well as the implementing

feature set selected by MatchMaker to realize the sensor-reporter program on each cellular plat-

form. The signal database was populated with synthetic threshold data in the form of two pairs of

induction-expression points for each promoter-inducer or promoter-repressor part, e.g., the TetR-

pTet-RFP-aTc characterization construct was associated with simulated low and high threshold

points (0.4,0.5) and (3.0,1.8)—such threshold values can be extracted from experimentally ob-

tained data.41,42 The final part sequences produced by MatchMaker are shown as the roots of the

assembly trees in Figure 5 and Figure 7.
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Figure 4: For each cellular platform, MatchMaker uses a feature database and signal level infor-
mation (not shown) to select parts for instantiating the AGRN of the sensor/actuator test program.
Parts selected by MatchMaker are marked in yellow.
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Assembly

The final stage of the TASBE workflow takes one or more part sequences and constructs physi-

cal samples comprising that DNA. For this stage, we used two different implementations: Pup-

peteer40and BioCAD.

pC araC

pBad TetR GFP

araC TetR GFP RFPpTetpBad

Ara

pC

pTet

RFP

Figure 5: Plan generated by Puppeteer for BioBrick assembly of E. coli sensor/actuator test pro-
gram (root at bottom) from available part samples (leaves at top). Edges represent restriction
digests; dots represent ligations. The red dot ligation was executed robotically, while black dot
ligations were executed by hand.

We applied Puppeteer to assemble the part sequence produced for E. coli as an output of Match-

Maker. Figure 5 shows the optimized assembly tree planned by Puppeteer, leading to a single root,

which is the sensor/actuator test program part sequence output by MatchMaker for E. coli.

We first verified by hand that the protocol instructions generated by Puppeteer were a correct

implementation of the assembly tree. To validate the robotic instructions, we executed a part

of the assembly plan using a Tecan Freedom Evo 150 liquid handling robot. Using Puppeteer,

we translated the instructions for assembling the pTet-rbs-RFP-terminator partial sequence from

the pTet and rbs-RFP-terminator parts (indicated by the red dot in Figure 5), into robot-specific

instructions. This resulted in three sets of instructions corresponding to the two digestion steps and

one ligation step (see Supporting Information for details). For each step, we performed two robotic
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Figure 6: Agarose gel showing successful robotic ligation of pTet and the rbs-RFP-Term parts
by Puppeteer. Lane M shows a 10-kb molecular weight marker. Lanes 1, 4, and 7 show uncut
plasmid. Lanes 2, 5, and 8 show single cut plasmid where the plasmid was digested with SpeI and
the correct band size is seen at 3016 bp. Lanes 3, 6, and 9 show double cut plasmid where the
plasmid was digested with XbaI and SpeI and the correct band sizes are seen at 937 bp and 2079
bp. Lanes 1-3 and 4-6 represent two separate clones screened from the robot ligation while lanes
7-9 show a clone screened from the manual ligation done simultaneously as a positive control for
the automated ligation.

trials and one manual control.

All of the digestion and ligation steps were successful in each of the two trials and were verified

by manual gel electrophoresis and by transformation into cells. Figure 6 shows the results of gel

electrophoresis of the restriction mapped ligation samples (see Methods section and Supporting

Information for details).

Figure 7: Plan generated by BioCAD for Gibson/Gateway assembly of mammalian sensor/actuator
test program (root at bottom) from available part samples (leaves at top).

We applied BioCAD to assemble the part sequence produced for HEK293 cells as an output
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(a) Automated Gel Image (b) BioRAD Gel Image (c) Additional Controls (Bio-
RAD Gel Image)

Figure 8: Agarose gel showing successful robotic Gibson assembly by BioCAD: (a) six samples
from automated Gibson reaction and six samples from a manual control are all in agreement after
digestion with enzymes AgeI and NheI (NEB) and compared to Hyperladder I (BioLine). (Note the
artifact in manual lane 2 is a plastic post in the prototype clear gel box). (b) Same image acquired
with a BioRAD Imager using a blue filter for SybrSafe. (c) DNA fragment sizes match previous
un-automated controls in a separate experiment (A-I are manual Gibson assembles imaged on
BioRAD imager).

of MatchMaker, after first adding a constitutive reporter to be used as a transfection indicator.

Figure 7 shows the assembly tree planned by BioCAD, leading to a single root, which is the

sensor/actuator test program part sequence output by MatchMaker for HEK293 cells, plus the

additional red fluorescent reporter mKate.

The first level of the assembly tree was executed by hand, creating Gateway entry vectors

verified by manual screening and then digested with I-SceI and purified. The second level of the

assembly tree was translated into a robotic script and automated using Gibson assembly using a

Tecan Freedom Evo 150 liquid handling robot. Figure 8 shows the restriction digest (digested

manually, with gel run on the robot, see Methods section and Supporting Information for details).

Six samples assembled by the robot produced the same restriction map as six samples assembled

manually, with all non-automated steps being performed in parallel. In addition, the results match

previous manual results performed under similar conditions (note that there are some differences

between the restriction maps and expected bands as predicted from our sequence data; we are

currently sequencing the carrier vector to identify the discrepancies). One robot sample was then

chosen for transfection and in vivo verification and characterization of the network functionality.
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Validation of TASBE Products in vivo

The final test of an engineered biological construct is, of course, its behavior when incorporated

into the intended cellular platform. This is the final product of the TASBE workflow—the “model”

that is simply the actual engineered cells themselves. Validation of constructs in vivo at this stage

is thus a validation of the entire end-to-end process used to produce those constructs: if the desired

behaviors are observed, then the workflow has been successful.

For end-to-end validation of our sensor/actuator test program, we took the plasmid samples pro-

duced by the assembly stage and introduced them to their intended target cells—transfecting the

mammalian network into HEK293 cells and transforming the E. coli network into E. coli bacteria—

then cultured the cells in triplicate both with and without induction by the test-sensor chem-

ical for each platform. After the platform-appropriate period of culturing, we measured cellular

behavior via microscopy and FACS. For full details, see Methods section and Supporting Informa-

tion.

Validation of Mammalian Construct Figure 9 shows the behavior of the sensor/actuator test

program in HEK293 mammalian cells. On this platform the Boolean test-sensor is mapped

to doxycycline concentration; we test the false state with a concentration of 0 nM Dox and the

true state with a concentration of 2 µM Dox. The debug test actuator, which is mapped to the

EBFP2 fluorescent protein, should be low in the false condition and high in the true condition,

while the debug-2 actuator, mapped to EYFP, should be high in the false condition and low

in the true condition.

Figure 9(a) shows the expression mean and per-cell standard deviation for both actuators in all

three conditions. Figure 9(b), Figure 9(c) and Figure 9(d) show the FACS scatter plots of EBFP2

vs. EYFP for negative control cells and for test program cells in the false condition and true

condition respectively. The observed behavior follows the specification: mean EBFP2 expression

for the true condition is 5.9x higher than for false and the low expression is nearly identical

to the negative control, while mean EYFP expression for the false condition is 8.3x higher
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than for true, though expression is not entirely repressed in the true condition (likely due to

the slow dilution of stable EYFP produced before LacI concentration is high enough to repress

effectively). Microscopy results are in agreement with FACS: in cells with significant transfection

(as indicated by mKate expression on the red channel), induction by Dox markedly raises EBFP2

expression and lowers EYFP expression. Thus, in mammalian cells the test program’s behavior

in vivo complies with its original high-level specification in Proto (though there is much room for

quantitative improvement of signal levels and network robustness).

Validation of E. coli Construct Figure 10 shows the behavior of the sensor/actuator test pro-

gram in E. coli cells. On this platform the Boolean test-sensor is mapped to arabinose con-

centration; we test the false state with a concentration of 0 mM Ara and the true state with a

concentration of 50 mM Ara. The logical specification is the same as in mammalian cells, with

different fluorescent reporters. The debug test actuator, which is mapped to the GFP fluores-

cent protein, should be low in the false condition and high in the true condition, while the

debug-2 actuator, mapped to RFP, should be high in the false condition and low in the true

condition.

Figure 10(a) shows the expression mean and per-cell standard deviation for both actuators in all

three conditions. Figure 10(b), Figure 10(c) and Figure 10(d) show the FACS scatter plots of GFP

vs. RFP for negative control cells and for test program cells in the false condition and true

condition respectively. In the true condition a minority subpopulation of cells appear to have

discarded or disabled the plasmid; when these are excluded the observed behavior closely follows

the specification: mean GFP expression for the true condition is 2.6x higher than for false

(though there appears to be a high degree of leaky expression) and mean RFP expression for the

false condition is 13.5x higher than for true. Microscopy shows the same results: induction

by arabinose markedly raises GFP expression and lowers RFP expression. Thus, in E. coli cells

as well the test program’s behavior in vivo complies with its original high-level specification in

Proto (though again there is much room for quantitative improvement of signal levels and network
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(a) Expression Summary (b) Neg. Control FACS (c) -Dox FACS (d) +Dox FACS
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Figure 9: Validation of mammalian platform sensor/actuator test program plasmid transfected into
HEK293 cells: the chart in (a) shows mean and per-cell variation of FACS data for a negative
control (b), the true condition (c), and the false condition (d). Relative expression levels
conform to the original high-level program specification, and microscopy (e-p) shows agreement
with FACS results.
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robustness).

Discussion and Conclusions

We have developed the TASBE workflow for the design and production of physical biological

networks from high-level specifications. Our workflow is developed around a sequence of models

that bridge from high-level specifications to DNA samples. The choice of appropriate intermediate

models decomposes the overall problem into tractable subproblems, allowing the construction of

software that realizes the workflow, creating a tool-chain for synthetic biology engineering.

We have validated the TASBE workflow by applying it to design and to construct a correctly

functioning sensor/actuator network. As we have shown above, each stage of the tool-chain solves

a well-defined subproblem, incrementally moving the design to the final assembled DNA samples,

which then behave in vivo in accordance with their specification. The TASBE workflow thus pro-

vides the first complete method for translating an abstract program specification into a functioning

biological network.

Because the TASBE workflow decomposes the overall problem into well-defined subprob-

lems, the tool-chain is modular and therefore extensible. Any algorithm in the tool-chain can thus

be modified without affecting other elements of the tool-chain. We have demonstrated this in two

different ways: 1) realization of the same program on two different cellular chassis—HEK293

mammalian cells and E. coli bacterial cells—with sensors, actuators, and optimizations appropri-

ate to each platform, and 2) swapping the assembly stage to instances customized for different

protocols and different laboratory systems. Similarly, the programming language used for speci-

fication might easily be swapped for other languages customized to better suit particular problem

domains or communities of users.

The modularity of the TASBE workflow also allows for extension with tools that provide new

types of capabilities. Tools for verification,43 debugging, and simulation21,44 could be connected

to the workflow relatively easily. Likewise, the Clotho applications framework allows AGRN and

GRN designs to be stored into a Clotho database, where they are accessible to a variety of other
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Figure 10: Validation of E. coli platform sensor/actuator test program plasmid transformed into
E. coli cells: the chart in (a) shows mean and per-cell variation of FACS data for a negative control
(b), the true condition (c), and the false condition (d). Relative expression levels conform to
the original high-level program specification, and microscopy (e-m) shows agreement with FACS
results.
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applications. The designs can also be exported to SBOL45 for use with applications outside of

Clotho or the TASBE workflow.

Finally, the identification of subproblems exposes a number of new areas for investigation, both

regarding the natural behavior of cells and the design and optimization of engineered biological

systems. The algorithms deployed at each stage of our workflow are by no means optimal or

complete, but serve as a foundation for future research. The challenges exposed are not wholly

new questions, but rather refinements of general open problems to specific actionable research

questions. For example, “characterization of biological parts” is one of the foundational challenges

of synthetic biology—see41,42,46–50 for some of the key prior approaches to the problem. One of the

challenges for progress in this area, however, has been the lack of a clear definition of what a “part”

is or what “characterization” experiments can provide necessary and sufficient data. In the TASBE

workflow, the feature and signal matching problems provide a model of part that implies a minimal

set of information necessary for the solution of these problems. Moreover, this information is

within reach of current experimental techniques.51 Similar well-defined challenges exist at every

stage of the tool-chain: how motifs can be constructed for additional types of computation, sensing,

and actuation; how motif equivalencies can best be used to explore the space of optimizations; what

throughput yield can be achieved on various protocols with automation assistance; etc. Breaking

the research space into such subproblems not only provides a focus for research but guarantees that

extensions and improvements in any stage are compatible with research extending or improving

other stages as well.

TASBE formalizes the automated design scenario from high-level specification to DNA assem-

bly and addresses the needs of transcriptional networks composed from fully characterized parts.52

It lays the foundation upon which future extensions can be built. As diverse synthetic biological

applications mature,53 a broader picture of the needs will become available. More complex and

less modular design scenarios will require extensions and modifications to the TASBE workflow.

The work presented here will serve as a foundation upon which more complex design flows can be

built.
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It is undeniable that the principles of design of genetic networks are not as well formulated or

understood as the principles of software engineering or electronic circuit engineering. However,

we hope that these principles will emerge from attempts such as TASBE, formalizing the design

process into rigorously defined models and algorithms, and that this approach will enable synthetic

biologists and engineers to build large and complex genetic networks.

Methods

This section provides details of the TASBE workflow stages: program and platform specification,

compilation, part assignment, and assembly. Additional implementation details, as well as specifi-

cations of the protocols executed, can be found in the Supporting Information.

Program and Platform Specification

For a high-level program specification language, we selected the Proto16 spatial computing lan-

guage. Proto is a purely functional language that represents programs as a functional dataflow

computation evolving over continuous space and time. This unusual model of computation makes

Proto particularly well suited for the specification of genetic regulatory networks,5,54 and is also

anticipated to be useful for specifying differentiated behavior in colonies, tissues, and biofilms.

In the TASBE workflow, Proto is used for three different classes of specification: the program to

be implemented, the collection of biological network motifs for implementing elementary program

operators, and the cellular platform on which the computation will be realized, including the set of

available sensors and actuators.

Specification of Programs Proto is used to specify the desired behavior that will eventually

be realized as a genetic regulatory network. Because Proto uses a functional dataflow model of

computation, any operator with a biological network implementation can be composed with any

other such operator, and these composites abstracted and composed together further into an arbi-
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trarily complex program. The composite program is guaranteed to still have a biological network

implementation (though it may be very complex) so long as there is no recursion.

Specification of Network Motifs The biological network implementation for each Proto oper-

ator is also specified in Proto, using the methods developed in Beal et al.5 Basic program opera-

tors (called “primitives”) are either defined or annotated with a :grn-motif annotation. This

associates the operator with a motif specifying an abstract genetic regulatory network (AGRN)

fragment, with variables that will be filled in when the motif is instantiated and used.

Specification of Cellular Platforms We also extend the prior work5 to allow representation

of cellular platforms in Proto. This is implemented by modifying the Proto BioCompiler to al-

low specification of a cellular platform definition file, which is read in and evaluated before the

program. The definition file for a cellular platform contains motif definitions of the sensors and

actuators available on that platform, as well as macro aliases mapping some of these particular

operators to platform-generic operators (e.g., for debugging).

Thus, simply by switching which platform definition file is being used, the design of a program

can be customized for different types of organism. Platform files can also be used to represent

relations between strains or lab-specific customizations: platform definitions can reference one

another using the Proto include command, allowing arbitrary hierarchical families of cellular

platforms to be defined, inheriting and overriding definitions from one another.

Compilation

The compilation stage comprises two transformations between models. First, the Proto program

is interpreted to produce a dataflow graph model of the computation. Second, the dataflow graph

is compiled to an AGRN. During each transformation, pattern-based optimizations are applied to

reduce the complexity of the model.
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Interpreting Proto into a Dataflow Graph We use the standard MIT Proto compiler37 to in-

terpret the Proto program into a dataflow graph. A dataflow graph is a model of an abstract com-

putation in terms of variables and operators. Each variable holds a data value of some type (e.g.,

Boolean), which can change over time as the computation evolves. Each operator takes a set of

variables as input and produces a new variable calculated from the value of its inputs. Some opera-

tors, such as sensors, constants, and pattern generators, have no inputs and report either a function

of the environmental conditions or a value generated by some internal function. There are also

operators, such as actuators and communication, that have side-effects on environmental condi-

tions. The dataflow graph representation has the advantage of being both abstract and universal:

any program in any language can be represented as a dataflow graph with appropriate semantics.

Technically, Proto programs actually describe the flow of information over continuous regions

of space-time (e.g., the behavior of an entire colony of cells over time), and part of the interpre-

tation process is a global-to-local transformation from this aggregate view to the dataflow graph

describing the computation that should happen in single cells at any given instant of time.16,55 We

will not discuss this global-to-local transformation here, as it is trivial for any program that does

not include cell-to-cell communication.

For purposes of this paper, then, interpretation of Proto to produce a dataflow graph occurs in

two stages. First, each block of code is evaluated into its corresponding dataflow graph structure,

and these are connected together based on the relation of the code blocks. Macros act as operators

on code blocks: for example, the statement (macro debug blue) causes each debug to

be replaced with blue. Next, we infer the types of the variables in the dataflow graph and use

standard compiler techniques for pattern-based heuristic optimization to produce produce a more

compact equivalent computation.

Compilation of Dataflow Graph to AGRN The abstract genetic regulatory network (AGRN)

model represents a biological design as a collection of DNA functional units, chemical species,

and regulatory relations. Each functional unit is a sequence of DNA features—promoters, open
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reading frames, regulatory regions, and terminators—annotated with data type, regulation, and

product information, as appropriate. Each chemical species is annotated with the data type that

its concentration represents and the regulatory relations that it participates in, where a regulatory

relation is a chemical species that activates or represses some promoter or other chemical species.

Conversion from dataflow graph to AGRN is carried out by the Proto BioCompiler,5 which

uses a method based on design motifs to first produce an AGRN, and then to reduce its complexity.

Motifs, such as those shown in Figure 2(b), Figure 2(c), and Figure 2(d), are typed patterns that are

used to translate each Proto operator in the dataflow graph into an equivalent biological network

construct (i.e., fragment of an AGRN). Motifs can specify particular chemical species (e.g., rtTA

and Dox in the definition of the mammalian doxycycline sensor) or leave them undefined (e.g., the

unidentified repressor in not), to be filled in during the next stage, part mapping. Because they are

network fragment specifications, motifs are composable and can easily be extended to represent

more types of biological construct. We have enhanced the prior BioCompiler work5 by allowing

type information to be attached to motifs (e.g., the boolean labels in the primitive definitions).

This enables better optimization and is required for part mapping. We also now include qualitative

reactions (RXN statements) between chemical species (e.g., the activation of rtTA by Dox).

To transform a dataflow graph to an AGRN, the Proto BioCompiler first maps each dataflow

operator to its associated motif and each dataflow variable to an unknown regulatory protein with

an arbitrary unique identifier. These fragments are then stitched together, replacing the motif input

and output variables with the proteins for the corresponding dataflow variables.

The design complexity of this initial AGRN is then reduced by applying a set of pattern-based

optimizations, thereby increasing the probability of successful execution in vivo by reducing the

complexity of the regulatory network as well as the size of the constructs that must be assembled.

These pattern-based optimizations are based on standard software compiler optimizations such as

dead code elimination, constant elimination, algebraic simplification, and copy propagation. Each

transforms the AGRN to an equivalent but simpler network, resulting in a reduced-complexity

AGRN. For example, copy propagation tests whether an activator is used only to transfer a data
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value from one functional unit to another; if so, the original input may be used directly instead.

This likely leaves the activator regulating nothing, which allows it to be removed by dead code

elimination. The optimizations we use improve on the prior BioCompiler work5 by the inclusion

of additional optimizations and optimizations capable of further reducing the network size based

on type information in the motifs.

The BioCompiler tests and applies this set of optimizations, trying to apply each optimization

at each location in the AGRN until none of the optimizations can further reduce the AGRN. The

reduction in the size of the AGRN varies by program, but it has been observed to reduce network

size by up to 83% and the optimized AGRN is often homologous to designs produced by human

experts.5

The Proto BioCompiler thus translates the behavioral specification of the genetic program into

a structural description as an AGRN, which factors the desired behavior into a collection of abstract

biological parts that together should produce the desired functionality.

Part Assignment

The part assignment stage of the TASBE workflow fills in the underspecified elements of the

AGRN to produce first a fully specified genetic regulatory network, in which each element is as-

sociated with an available DNA part, then a linearization of those parts into one or more complete

DNA sequences to be assembled. Our implementation of this stage is a new tool called Match-

Maker (presented in detail in Yaman et al.38) that solves this problem using a database of available

features, parts, and signal levels. MatchMaker comprises three algorithms: the feature assignment

and signal matching algorithms transform an AGRN into a GRN; the part assignment algorithm

then transforms the GRN into part sequences.

From AGRN to GRN: Feature Assignment and Signal Matching The AGRN specifies the

regulatory relationships required among parts to produce the desired behavior. We need to match

these requirements with the behaviors of available genetic parts, whether those parts are designed
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de novo or curated from natural organisms. We call the specific DNA sequence associated with a

particular behavior a feature. A feature may be related to other features—e.g., the TetR-repressible

promoter feature is related to the TetR coding feature due to their natural chemical repression

relationship. Given a database of such features and feature relationships and a target AGRN to be

instantiated, the feature assignment algorithm maps the elements of the AGRN to a set of features

that match the desired regulatory relationships to features and feature relationships. This is done by

interpreting both AGRN and feature database as directed graphs and searching the feature database

graph for subgraphs that precisely match the structure of the AGRN. Any such subgraph is a fully

specified genetic regulatory network that has the qualitative regulatory relationships specified by

the AGRN.

Whether a design will function correctly cannot be determined by only using the pairwise

relationships between features in isolation. The quantitative nature of these relations (which must

be characterized) may not match the context of other relations that they link with, causing the

network to fail due to a mismatch of signal levels between relations.

The signal matching algorithm addresses this problem, testing each GRN to ensure a quanti-

tative match between the input and output expression ranges of each pair of regulatory arcs with

an input/output relation. The signal matching algorithm relies on input/output characterization of

per-cell expression level mean and variance, obtained using a characterization protocol such as the

one presented in Beal et al.51 To signal match Boolean data values, thresholds for interpreting an

expression level as “true” or “false” are identified for the inputs and outputs of each regulatory

relation. The algorithm then uses these thresholds and their variances to ensure that the output

signal of each regulatory element of a GRN is at a level matched to the input threshold of the parts

of the GRN driven by it. Furthermore, the algorithm uses the per-cell expression variation to select

the GRNs with the maximal expected noise margin—that is, the amount of variation that can be

tolerated without misbehavior.

Together, feature matching and signal matching thus map an AGRN to one or more fully spec-

ified GRNs, optimized to maximize the amount of variation that can be tolerated and still correctly
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implement the AGRN.

From GRN to Part Sequence The functional units of a GRN, which have no particular ordering,

now need to be converted into one or more DNA sequences and an associated set of available DNA

samples, which when assembled, produce the DNA sequence of the GRN. Given a database of

available DNA samples, each sample associated with its constituent genetic parts, and a fully

specified GRN, the part selection algorithm chooses a sequence of samples from the database that

form an exact cover of the set of parts assigned to the GRN—that is, the ordering relations of the

GRN are preserved, every part is a member of precisely one sample, and no sample contains a part

other than the ones in the GRN. MatchMaker’s part selection algorithm finds a single sequence

of covering samples using a greedy heuristic that attempts to minimize the number of samples

required.

Assembly

Assembly, the final stage of the TASBE workflow, takes one or more part sequences and constructs

physical samples comprising that DNA. For this stage, we used two different implementations:

Puppeteer40 is a generalized protocol automation system, while the prototype BioCAD tool has

been specialized for rapid assembly of large networks—often important for mammalian systems

where the size of the DNA features is typically much larger than E. coli. For our end-to-end

validation, we thus use the more general Puppeteer system to assemble DNA samples for E. coli,

and use BioCAD to assemble DNA samples for HEK293 mammalian cells. Note, however, that

there is no tie between implementation and platform: given appropriate configuration data and

libraries of samples, Puppeteer and BioCAD are both capable of assembling the same constructs.

Assembly with Puppeteer

In Figure 6, which shows the results of gel electrophoresis of the restriction mapped ligation sam-

ples, lanes 1-3 and 4-6 contained samples from the robotic ligation and lanes 7-9 contained samples
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from identical manual ligations. In each set, the first lane is the uncut plasmid, and the other two

lanes contain a single cut and double cut plasmid, respectively. The identical bands indicate that

the robotic ligation step, and therefore, the robotic digestion step, were both successful. Compared

to the manual control, we did, however, see a larger than expected variation in the reaction volume

in all three steps, and in the subsequent colony count after the ligation step. For example, the liga-

tion reaction volume in the manual control was 20 µL, whereas the volume in the two robotic trials

was measured to be 14.8 µL and 16.8 µL. The plates from the manually ligated transformation had

more than 300 colonies, whereas the transformations from the two trials of robotic ligations yielded

five and 37 colonies, respectively. We picked the same number of colonies from both robotic trials

and the manual trial and the restriction map (done manually) verified that they were all correct. We

conducted further tests and confirmed that variation in robotics was the cause of the variation in the

reaction volume. Since our particular execution of the BioBricks protocol involved the pipetting of

liquid volumes as small as 1 µL, it is possible that the robotic pipetting volume variation may have

led to the exclusion of a significant amount of a key ingredient of the ligation reaction—e.g., the

sample containing the backbone, or the ligase buffer. This would explain the lower colony count.

As per robot vendor documents, the robotic pipetting is expected to have a coefficient of variation

within 10%, when the pipetting parameters for each liquid type being pipetted are tuned to match

the physical properties of the liquid. In our validation experiment, we used the default set of pa-

rameters as a template for all liquids, and only minimally tuned the parameters. We believe this

is likely to explain the high variation we observed, and therefore should be correctable by tuning

pipetting parameters.

The Puppeteer system40 is a software system for the specification and automation of biologi-

cal protocols. Puppeteer accepts as input one or more composite parts, a collection of associated

samples, and a supported assembly method. These are input to an assembly planner for the given

assembly method, which produces an optimized assembly plan—a sequence of DNA concatena-

tion steps that minimize the total assembly cost by assembling intermediates that may be used

repeatedly in the set of parts to be assembled. This plan is converted to a protocol plan by expand-

33

Page 33 of 42

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ing each assembly step into a sequence of protocol steps for the given assembly method. Using a

protocol library, each protocol step is then expanded into a sequence of low-level protocol instruc-

tions such as aspirate, dispense, shake, and incubate. These instructions can be executed either

manually or robotically; where robotic execution is specified, Puppeteer translates these instruc-

tions to robot-specific commands and executes them on the robot.

For the work described in this paper, we configured Puppeteer to use the BioBricks assembly

method,56 selecting that method for its frequent use and for the large number of BioBrick parts

available for free from the MIT Registry of Standard Biological Parts, as well as for the closure

property that implies that any composition of BioBricks is also a BioBrick. However, Puppeteer

can also be applied to other assembly methods such as Gibson assembly,57 and Modular Cloning

assembly.58

Assembling two BioBrick parts into a composite part involves isolating their plasmids from

cell stocks, digesting the parts, extracting the digested parts using gel electrophoresis, ligating

the digested parts, and transforming them into cells. Each of these steps can be expressed as a

protocol in the Puppeteer language and saved in its protocol library. Except for the extraction of

a digested part from a gel and the isolation of plasmids from cells, all steps can be executed on a

liquid handling robot with a basic grasping arm and a pipetting arm. Complete automation of gel

extraction and plasmid isolation steps requires that the robot have access to a robot-compatible gel

imaging and cutting station and a centrifuge. Our configuration of Puppeteer executed Puppeteer-

generated restriction digestion and ligation protocol steps on the robot and all other protocol steps

manually.

For BioBrick assembly, Puppeteer generates optimal plans using the dynamic programming

algorithm from Densmore et al.,59 annotating them with the necessary protocol steps from the

BioBricks protocol library. This plan is represented as a multitree data structure, where the leaves

are the initial parts, each edge is translated into a restriction digestion protocol with the appro-

priate front or back insert or vector cuts,56 and every branch node is translated into a ligation

protocol step. This annotated assembly graph is then translated by the Puppeteer compiler40 into
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an intermediate-level program with specific pipetting instructions for executing the complete as-

sembly plan (see Supporting Information for details). These instructions can be used to execute the

assembly plan manually, or further translated for robotic execution by the same process of protocol

expansion.

Assembly with BioCAD

BioCAD is a new prototype tool that has been specialized to a two-level multiway assembly

method for rapid assembly of large networks. This is often important for mammalian systems,

where the sizes of DNA features are typically much larger than in E. coli. The first level uses

three-way Gateway Assembly60 of promoter and gene entry vectors with positional destination

vectors. The second level uses multiway Gibson Assembly57 to compose the Gateway expression

vectors into large composite parts. This composite protocol is based on work in Li,61 in which

similar mammalian network assembly of up to 60Kb has been demonstrated. BioCAD includes

an additional optimization that permutes Gibson positions to minimize the number of Gateway re-

actions required—useful in cases where positional effects on network functionality are negligible.

BioCAD also supports the Golden Gate and BioBrick assembly protocols.

As with Puppeteer, BioCAD is configured using lab-specific information—in this case a li-

brary file that designates lab-specific well locations for input parts (Gateway entries) and vectors

(for both Gateway and Gibson steps). It then uses this information and an interface to labora-

tory robotics to control laboratory robotics for automation assistance: Gibson steps and gel elec-

trophoresis for validation are carried out robotically, while at present the remainder of the protocols

are carried out manually.

Gibson assembly is performed by mixing plasmids contain transcriptional units with Gibson

master mix and a vector (referred to as the carrier, since the resulting plasmid will be used for

mammalian transfection). Challenges in implementing Gibson assembly correctly include pipet-

ting small volumes, keeping the reaction cool (near 0oC) during setup, and incubation at 50oC

while minimizing evaporative loss.
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