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Supplementary Figure 1: Hybrid promoter architecture (highlighted in blue is the TATA box)

1 Abbreviations

Throughout this supplemental information, the following abbreviations are used for fluorescent proteins:

• IFP: Input Fluorescent Protein. In this manuscript, IFP is always EBFP2.

• OFP: Output Fluorescent Protein. In this manuscript, OFP is always EYFP.

• CFP: Constitutive Fluorescent Protein. In this manuscript, CFP is always mKate.

2 Repressor-Promoter Design

We designed hybrid promoters for use in our circuits that take as an input both an activator protein and a
repressor protein (Supplementary Figure 1). There are five binding sites for VP16Gal4 activator to turn on
expression, followed by a minimal promoter surrounded by two repressor binding domains. The repressor
binding domains were placed to interfere maximally with transcriptional binding proteins associated with
the minimal promoter. We constitutively express VP16Gal4 in all circuits described in the manuscript, and
therefore we can treat this hybrid complex as a repressor, even though this regulatory relation is capable of
more complex behavior when both inputs are varied. Sequences are given in Supplementary Section 8.

3 Fluorescent Protein Conversion/Variation

Our approach requires high-precision quantitative data, and as a result, we need to carry out additional
experiments and perform special processing of the raw flow cytometry data. We require that the flow
cytometry readings are commensurate despite the fact that multiple fluorescent proteins are involved. Note
that data on protein excitation dynamics and emission spectrum is not sufficient for our purposes, as the goal
is to obtain equivalence between proteins as expressed under control of equivalent promoters in the cellular
context. Because expression of particular proteins may be affected by the context, conversion coefficients
must be determined empirically through controls.

Measurements obtained from flow cytometry are not immediately usable: they are incommensurate and
arbitrary, depending both on the instrument’s configuration and measurement settings and also on the be-
havior of each particular fluorescent protein under the characterization protocol. Unit calibration (Beal
et al., 2012) maps all measurements to the same standardized MEFL units (Molecules of Equivalent FLuo-
rescein) (SpheroTech, 2001) and compensates for systematic variation between data sets.

At low fluorescence levels, autofluorescence is a significant component of the observed signal. We therefore
begin by subtracting expected autofluorescence (computed as a normal distribution fit to flow cytometry data
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from HEK293 cells transfected for 72 hours with blank plasmid pExp EMPTY). We then compensate linearly
for spectral overlap, as determined for each fluorescent protein from flow cytometry data from HEK293
cells transfected for 72 hours with a single fluorescent plasmid, pExp CAG:mKate, pExp CAG:EBFP2, or
pExp CAG:EYFP per the protocol described in (Beal et al., 2012). Note that the spectral overlap between
our selected fluorescent proteins is small, but significant when trying to obtain accurate measurements of
fluorescent proteins with orders of magnitude difference between their expression levels.

Next, we convert compensated EBFP and mKate arbitrary units to equivalent EYFP arbitrary units. This
is a linear conversion with the scale computed from flow cytometry data from HEK293 cells transfected for 72
hours with parallel constitutive expression of plasmids for all three fluorescent proteins (pExp CAG:mKate,
pExp CAG:EBFP2, pExp CAG:EYFP), per the protocol described in (Beal et al., 2012). Finally, we con-
vert EYFP arbitrary units to MEFL using flow cytometry data of a sample of SpheroTech RCP-30-5A
beads (SpheroTech, 2001).

4 Estimation of Cell Division Rate

The expected number of cell divisions is estimated from time series data using a model in which cells begin
evenly distributed across a cell division cycle of length λ hours. Transfected plasmids enter the nucleus during
cell division and produce fluorescent protein at rate p. We also add an initial delay d, based on the observation
that there is an initial period before any cell begins to express distinguishable amounts of fluorescent protein,
which we conjecture is primarily due to the routing of DNA during lipofection (Lechardeur et al., 2005).
Finally, only f fraction of the cells are successfully transfected and will ever express fluorescence.

Under this model, the fraction of distinguishable fluorescently expressing cells at time t is:

a(t) =


0 if t ≤ d
f · t−dλ if d < t ≤ d+ λ

f if d+ λ < t

We model discrete evolution in steps of ∆t, letting the time τ = 0 be the point when a cell begins to
distinguishably fluoresce. We designate the expression level for a cell with respect to this relative starting
time as e0(τ). By definition, there is no expression initially, so e0(τ ≤ 0) = 0. From this initial state, we
then compute forward with the discrete production and decay/dilution model.

To simplify our equations, we name the discrete dilution rate for a given half-life as δ, which can be found
by solving:

1

2
= (1− δ)b λ∆t c

to produce the equation:

δ = 1− 1

2

d∆tλ e

Given these definitions, the expression level for any given cell at discrete time τ may be computed
recursively as production plus decay of the expression level at the previous time step:

e0(τ) = p ·∆t+ e0(τ −∆t) · (1− δ)

The expected expression model for the population may then be found by summing over the distribution
of starting times:

e(t) =
1

λ

λ∑
x=0

e0(t− x− d)

We fit this model to minimize squared error with respect to the collection of data points from the
constitutive expression dynamics data (main text Figure 2b and 2c) with ∆t equal to 1 hour. The result is a

3



division time λ of 19.8 hours and an initial delay d of 15.3 hours, for an expected 2.4 divisions per expressing
cell over the 72-hour experimental period ( 72−d

λ − 1
2 ). To find the appropriate length for simulation, we find

the expected beginning of fluorescent expression as T0 = d + λ
2 = 25.2 hours (the initial delay plus half

a division cycle, giving the time when half of the cells that will ultimately measurably express fluorescent
protein have begun their expression).

The length of time for a simulation to run is determined by the initial delay and the division rate.
With the parameters calculated, the expected total protein expression time (the average amount of time a
cell expresses a heterologous protein over the course of the experiment accounting for transfection delay) is
T = 72− T0 = 46.7 hours over the course of a 72 hour transfection experiment.

This estimate of cell division rate (and thus the λ dilution parameter) is not tightly bound by the time
series data. However, perturbations in the value of λ have only a minor impact on the accuracy of our
predictions (Supplementary Table 1).
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Supplementary Table 1: Prediction error vs. expected number of cell divisions

To validate our calculated division rate, we also measured cell division rates in a separate experiment.
Cells were seeded in 24 well dishes and transfected with pExp CAG:mKate (see Section 8) at time t = 0. Cells
were then trypsinized as described previously over the next several days and counted using a hemocytometer.
Measurements for each well were taken in quadruplicate due to the high variance in measurement using a
hemocytometer. Each time point was taken in duplicate. We found the division rate to vary from 20-30
hours (Supplementary Figure 2), which is similar to the division rate that we found through analytical fit
of the constitutively expressed fluorescence protein.

5 Prediction Model Details

For each repressor/promoter pair we define a a production rate function P (I, t, C) and a loss rate δ, where I
is the input expression level, t is the current time, and C is constitutive fluorescence (an observable variable
used to approximate the relative number of circuit copies). The production rate function P (I, t, C) and
loss rate are computed from the dosage-response assay for the repressor/promoter pair, the estimated cell
division rate λ, and the duration T of expected active expression per cell. Our models take into account
three elements of incremental change in protein concentration:

• The concentration of any protein is subject to proportional loss from decay and from dilution due
to cell growth. The proteins we use here are believed to be highly stable on the time scale of our
experiments, so we incorporate only dilution rate, with a half-life of λ.1

• The plasmids we use do not replicate in HEK293 cells, so at each cell division the number of plasmids
(and hence production rate) is expected to halve.

1Note that if a protein is not stable, this would be reflected in an effective decrease in λ for that species. As noted above in
Section 4, a change in λ would have little effect on prediction quality.
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Supplementary Figure 2: Measured cell growth using hemocytometer

• The relationship between concentration of regulatory species and rate of production per plasmid is
assumed to be time-invariant.

Note that because the expression dynamics data shows no significant lag between constitutive and
activator-driven expression, we do not include any independent effect of changing rtTa or Gal4 activation in
our model.

The form of these functions will vary slightly depending on whether a continuous or discrete time model
is chosen. Because the functions we are dealing with are relatively smooth, there should be no significant
difference between the results produced by either approach. We have chosen to use a discrete model, with
constant size steps of ∆t such that our rate functions will produce difference equations rather than differential
equations. This simplifies the interpolation and extrapolation that will be used for the production model.

Given these assumptions, for the loss rate we use the discrete incremental rate δ computed in Supplemen-
tary Section 4. For the production rate, time independence means there should be a linear relation between
observed expression in the dosage-response assay and P (I, t, C) for any given time point. We thus encode
P (I, t, C) as a product of three factors:

P (I, t, C) = α · φ(t) ·X(I, C)

where X(I, C) is an expression level interpolated or extrapolated from the dosage-response assay, φ(t) is
the relative circuit copy number at time t, and α is a proportionality constant that matches the production
model with the observed values of the dosage-response assay at 72 hours for a discrete production model
over duration T with half-life λ and time-step ∆t. Figure 3 shows an example of such a production function
at different times.

The formula for φ(t) is a relative count which begins at 1 and halves at each expected division:

φ(t) =
1

2

bt/λc

Note that although φ(t) and C both relate to circuit copy numbers, they measure different quantities:
C the relative circuit copy, as indicated by its proportional relationship to constitutive fluorescence at a
snapshot in time, while φ(t) models how any value of C changes over time.

The value of X(I, C) varies depending on both the input I and the relative circuit copy number, as
indicated by CFP intensity C. The distribution of C should be uniform from sample to sample, while values
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(a) TAL21 Production at t=1 hour
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(b) TAL21 Production at t=20 hours
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(c) TAL21 Production at t=46 hours

Supplementary Figure 3: Examples of a production function, in this case for TAL21, at different times. Col-
ored lines indicate production function for different levels of C, colored as in main text Figure 2. Production
rates decrease over time as the set of plasmids becomes diluted by cell division.

for I are dependent on both C and inducer dosage. We thus chose to simplify the problem of approximating
X(I, C) by segmenting into quantized “strips” by level of C. We thus segment dose-response data into
logarithmic “bins” by CFP level at 10 bins per decade, as described in Supplementary Section 11. The value
of X(I, C) is then interpolated or extrapolated for each quantized level of C from the mean value of each
bin and induction level from a dosage-response assay. We begin by finding the bin that is closest to the
CFP value currently being predicted for, and selecting the set of IFP and OFP bin means for that CFP bin
at each induction level. These values may be viewed as forming a curve that relates IFP and OFP values.
When the value of I is between the minimum and maximum observed values, we determine X(I, C) by linear
interpolation between the closest adjacent IFP/OFP value pairs, using the ratio of distances from IFP values
to determine the contribution of each OFP value to the estimate provided for X(I, C). When I is below the
minimum or above the maximum observed IFP value, we instead determine X(I, C) by extrapolation. For
this, we use a second-order polynomial fit to the nine lowest inductions for low IFP extrapolation and the
nine highest inductions for high IFP extrapolation. A second order polynomial approximation was chosen
as a simple approximation of a curve with few degrees of freedom, to allow curvature while minimizing
the chance of overfitting. The number of inductions used for extrapolation was arrived at by incrementally
extending the number of data points used until the set of curves for each set of extrapolations was relatively
smooth.

In the case of the second repressor in the cascade, we multiply the IFP values used for calculation of
X(I, C) by three, because the plasmids for this repressor are transfected at one-third the DNA concentration
of the TRE-containing plasmids used to gather IFP data for the dosage response assay and the first repressor.
This means that production of the second repressor should be three times lower relative to activation of the
first repressor during the initial transient, when much of the repressor is produced for this system, and thus,
using a linear first approximation, three times the input is expected to be required to have the same effect.

Finally, the proportionality constant α is computed by normalizing against unit production over the
duration T . The following formula totals the production, assuming a production of 1 per unit time, adjusting
for the relative copy number, and incorporating the loss function to model the dilution that will occur until
the end time.

α−1 =

b T∆t c∑
i=1

1 · φ(i∆t) · (1− δ)(b T∆t c−i)

Simulation of circuit dynamics proceeds in discrete time steps. Specifically:
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1. All expression levels Ei are initialized to zero, i.e., Ei(0) = 0.

2. For each induced input Ei(t) at CFP level C, with a final value of Ii, we compute a constant rate of
expression: Ei(t+ ∆t) = α · φ(t) · Iib T∆tc+ (1− δ) · Ei(t)

3. For each device whose output Ei(t) is regulated by input Ej(t), we compute Ei(t) = P (Ej(t), t, C) +
(1− δ) · Ei(t−∆t)

Note that this current formulation supports only combinational or feed-forward circuits, because extrap-
olation of P (Ej(t), t, C) is not well defined if Ej(t) is zero. Thus, we ensure that Ej(t) is always defined by
computing from the same time, rather than the prior time. This incremental shift means the simulation uses
temporal ordering rather than absolute time, but should generally have minimal impact on the simulation
of combinational or feed-forward circuits with small time delays. A simulation that uses proper time, where
P (Ej(t), t, C) is used to compute Et(t + ∆t), would allow prediction of feedback circuits and circuits with
long delays, but requires the ability to determine a value for P (0, t, C).

5.1 Modeling Alternatives and Extensions

Although we have chosen to implement prediction with EQuIP rate models using difference equations, two
key alternative modeling frameworks deserve discussion, particularly with respect to extending EQuIP to
prediction of genetic circuits with complex dynamics.

First, for any discrete difference equation model there is an analogous continuous differential equation
model. For smooth and slowly changing functions, as in the devices considered in this manuscript, differential
and difference equations do not produce significantly different results. In systems exhibiting a high degree of
nonlinearity or where behavior is strongly determined by interactions within brief critical period, however,
differential equations are generally more accurate. In such circumstances, it would be preferable to make
predictions using EQuIP rate models implemented with differential equations.

Here, it is important to note that EQuIP’s representational commitment is to the set of production and
loss rate models, not to their instantiation as difference equations. Thus, it is just as possible to make EQuIP
predictions using differential equations, following standard mathematical tranforms. Examples of systems
where this would be desirable include “weak” oscillators with parameters that are near a phase transition
from the desired behavior to a qualitative loss of function, or other feedback circuits with a high degree of
sensitivity in their behavior.

At a finer level of detail, chemical reaction networks are not continuous, but inherently stochastic in
their execution, since their action transpires through individual molecular interactions. When each reaction
involves large numbers of molecules with slow loss rates, as is expected to be the case for the systems
considered in this manuscript, the law of large numbers ensures that stochastic and bulk models produce
closely similar results. In many biological systems, of course, these assumptions do not hold, and stochastic
effects can produce highly divergent populations. Examples include biological noise generators and circuits
designed to detect or produce very low concentrations of target chemicals.

EQuIP’s rate models cannot be directly mapped to stochastic chemical reaction networks, as these
typically require a number of rate constants that are difficult to observe experimentally, and certainly cannot
be determined from the time-series and dose-response experiments we have specified for EQuIP. Stochastic
effects can also, however, be modeled using probability distributions. Thus, it will likely be possible to extend
EQuIP to systems with significant stochastic effects by considering the observed distributions in addition to
observed mean values.

6 Details of Dose-Response Assays and Cascade Predictions

Supplementary Figure 4 shows a summary of prediction quality with a scatter graph of predicted vs. exper-
imental MEFL for all cascades, inductions, and CFP levels. The graph includes only low-extrapolation data
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Error for Population Mean Error for Population Std. Dev.
TAL14-TAL21 1.41x 1.09x
TAL14-LmrA 1.37x 1.62x
TAL21-TAL14 1.53x 1.24x
TAL21-LmrA 1.40x 1.33x
LmrA-TAL14 1.34x 1.60x
LmrA-TAL21 1.55x 1.40x
Total 1.43x 1.38x
Maximum 2.13x 1.99x

Supplementary Table 2: Prediction error for population statistics of cascades.

points—that is, those where no more than 10% of the production steps in the prediction simulation involved
extrapolations (high or low, either repressor).

Constitutive fluorescence histograms for dose-response assays (main text Figure 2) and cascade experi-
ments (Supplementary Figure 5 through 10) show the mean number of samples per bin across all samples.
Extrapolation in dose-response assays (main text Figure 2) is shown out to the minimum and maximum
levels used in any prediction for any data point in the entire range.

Prediction curves with full details for all six cascades are shown in Supplementary Figure 5 through 10.
In these graphs, any data point where more than 10% of the production steps in the prediction simulation
involved extrapolations (high or low, either repressor) is shown in grey and with a diamond for the prediction
rather than a circle. Importantly, note that although the extrapolation method is clearly suboptimal, the
impact on predictions is relatively minor.

Supplementary Figure 11 and 12 show the details of prediction error and number of extrapolations
required for the six cascades. In general, prediction is worse for high copy number and high levels of
induction. Note that the number of extrapolations is typically highest for high levels of induction: this is
driven primarily by extrapolation on the upper end, since the output range of each input/output curve goes
to higher MEFL than the input range. Typically, extrapolations at the low end come from the beginning of
the simulation, when only a small fraction of the ultimate expression has been produced, and have a smaller
effect on predicted output values.

Predicting expression for a range of different CFP bins also implicitly predicts the distribution of expres-
sion across the population of active cells. Supplementary Figure 13 compares the predicted and experimental
geometric mean and standard deviation of all cells in the predicted band of CFP levels. Given the accuracy
of prediction for individual CFP levels, and the fact that error tends to be highest where the number of cells
per CFP bin is lower, these prediction are quite accurate—in fact, more accurate than the predictions for
individual CFP levels. Table 2 gives the mean prediction error for population statistics for each cascade, as
well as overall accuracy. Even the maximum error on any population statistic for any cascade and condition
is only 2.1x.

Supplementary Figure 14 shows the predicted and observed differences in expression level for the 0 nM
Dox and 2000 nM Dox induction conditions, for each bin. Supplementary Figure 15 shows a summary of
prediction quality with a scatter graph of predicted vs. experimental MEFL for all feed-forward circuits,
inductions, and CFP levels.

Findally, prediction curves with full details for all three feed-forward circuits are shown in Supplementary
Figure 16 through 18. Graphs use the same display conventions as for the csacade prediction figures.
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(a) TAL14-TAL21 Prediction Scatter
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(b) TAL14-LmrA Prediction Scatter
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(c) TAL21-TAL14 Prediction Scatter
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(d) TAL21-LmrA Prediction Scatter
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(e) LmrA-TAL14 Prediction Scatter
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(f) LmrA-TAL21 Prediction Scatter

Supplementary Figure 4: Summary scatter graph of predicted mean vs. experimental mean for all cascades,
inductions, and CFP levels. For each observed input condition, a corresponding simulated output was
generated, and is compared to the observed experimental output corresponding to that input. Note that the
same predicted and/or observed outputs may be generated by multiple inputs, because of the variation in
circuit response due to relatively copy number, as indicated by CFP level. Experimental standard deviation
of means between replicates is indicated by vertical line on each point.
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(a) TAL14-TAL21 dosage-response curve
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(b) TAL14-TAL21 bin histogram

Supplementary Figure 5: TAL14-TAL21 cascade. Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.

104 105 106 107 108
104

105

106

107

108

IFP MEFL

O
FP

 M
EF

L

(a) TAL14-LmrA dosage-response curve
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(b) TAL14-LmrA bin histogram

Supplementary Figure 6: TAL14-LmrA cascade Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.
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(a) TAL21-TAL14 dosage-response curve
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(b) TAL21-TAL14 bin histogram

Supplementary Figure 7: TAL21-TAL14 cascade Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.
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(a) TAL21-LmrA dosage-response curve
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(b) TAL21-LmrA bin histogram

Supplementary Figure 8: TAL21-LmrA cascade Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.
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(a) LmrA-TAL14 dosage-response curve
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(b) LmrA-TAL14 bin histogram

Supplementary Figure 9: LmrA-TAL14 cascade Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.
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(a) LmrA-TAL21 dosage-response curve
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(b) LmrA-TAL21 bin histogram

Supplementary Figure 10: LmrA-TAL21 cascade Experimental observations shown as pluses, predictions
shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number, as indicated by
CFP level, is shown by color. Predictions are generated as described in Supplementary Figure 4.
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(a) TAL14-TAL21 Fold Error (b) TAL14-TAL21 Extrapolations

(c) TAL14-LmrA Fold Error (d) TAL14-LmrA Extrapolations

(e) TAL21-TAL14 Fold Error (f) TAL21-TAL14 Extrapolations

Supplementary Figure 11: Error and number of extrapolations vs. induction and constitutive fluorescence
for TAL14-TAL21, TAL14-LmrA, and TAL21-TAL14 cascades. “Zero error” regions are considered invalid
predictions due to containing excessive extrapolation. Color indicates fold-error and log10 number of extrap-
olations, respectively. Predictions are same as in Supplementary Figure 4.
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(a) TAL21-LmrA Fold Error (b) TAL21-LmrA Extrapolations

(c) LmrA-TAL14 Fold Error (d) LmrA-TAL14 Extrapolations

(e) LmrA-TAL21 Fold Error (f) LmrA-TAL21 Extrapolations

Supplementary Figure 12: Error and number of extrapolations vs. induction and constitutive fluorescence
for TAL14-TAL21, TAL14-LmrA, and TAL21-TAL14 cascades. “Zero error” regions are considered invalid
predictions due to containing excessive extrapolation. Color indicates fold-error and log10 number of extrap-
olations, respectively. Predictions are same as in Supplementary Figure 4.
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(b) TAL14-LmrA
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(c) TAL21-TAL14
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(d) TAL21-LmrA
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(e) LmrA-TAL14
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(f) LmrA-TAL21

Supplementary Figure 13: Population distribution of fluorescence, comparing predicted and experimental
geometric mean and standard deviation over all cells in active population. Population predictions were
generated by weighted statistics of CFP-subpopulation predictions, using weights from experimental obser-
vation of CFP distribution, and compared to population statistics of experimental observations falling into
the selected CFP range.
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Supplementary Figure 14: Ratio between uninduced and full induced expression for each cascade and relative
copy number, as indicated by CFP level. Predicted ratios (circles) are lower than experimental ratios (pluses),
but show a close and similar pattern.
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(a) TAL21-TAL14 Prediction Scatter
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(b) TAL21-LmrA Prediction Scatter
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(c) LmrA-TAL14 Prediction Scatter

Supplementary Figure 15: Summary scatter graph of predicted mean vs. experimental mean for all cascades,
inductions, and CFP levels. For each observed input condition, a corresponding simulated output was
generated, and is compared to the observed experimental output corresponding to that input. Note that the
same predicted and/or observed outputs may be generated by multiple inputs, because of the variation in
circuit response due to relatively copy number, as indicated by CFP level. Experimental standard deviation
of means between replicates is indicated by vertical line on each point.
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(b) TAL21-TAL14 FF bin histogram

Supplementary Figure 16: TAL21-TAL14 feed-forward circuit. Experimental observations shown as pluses,
predictions shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number,
as indicated by CFP level, is shown by color. Predictions are generated as described in Supplementary
Figure 15.
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(a) TAL21-LmrA FF dosage-response curve
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(b) TAL21-LmrA FF bin histogram

Supplementary Figure 17: TAL21-LmrA feed-forward circuit. Experimental observations shown as pluses,
predictions shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number,
as indicated by CFP level, is shown by color. Predictions are generated as described in Supplementary
Figure 15.
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(b) LmrA-TAL14 FF bin histogram

Supplementary Figure 18: LmrA-TAL14 feed-forward circuits. Experimental observations shown as pluses,
predictions shown as circles for ≤ 10% extrapolation and diamonds for > 10%. Relative copy number,
as indicated by CFP level, is shown by color. Predictions are generated as described in Supplementary
Figure 15.

7 Comparison with Hill Function Models

To compare the the full EQuIP method with partial implementations, we fit a Hill function model against
dosage-response curves produced for each device by partial implementation of EQuIP data processing. Hill
functions are chosen as they are a widely used and well-grounded model for transcriptional regulation. In
particular, we consider the following four models:

1. Population a.u.: This model uses arithmetic means of the raw arbitrary unit data from the flow
cytometer, equivalent to population data captured wth a fluorimeter.

2. Population MEFL: This model uses the arithmetic means of the flow cytometer data after it has
been converted from arbitrary units to calibrated MEFL, equivalent to fluorimeter data calibrated to
absolute measurements.

3. Active Population MEFL: This model exploits the per-cell measurements provided by flow cytom-
etry: constitutive fluorescence is used to identify the population of successfully transfected cells, and
geometric means are used rather than population means (better fitting the log-normal variation of
expression).

4. Binned: This model uses exact same binned-distribution data as EQuIP, but continues to fit it a Hill
function model rather than using the piecewise model in EQuIP.

We implement the population Hill function models using the following differential equation for regulated
production:

δEi
δt

= αi · φ(t) ·
1 + k−1

i · (
Ei
di

)hi

1 + (Eidi )hi
− λEi

The binned ODE model adds an additional gi term that controls how closely the outputs from adjacent
bins are packed:

δEi
δt

= αi · φ(t) · P gi ·
1 + k−1

i · (
Ei
di

)hi

1 + (Eidi )hi
− λEi
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Supplementary Figure 19: Mean squared error for best fit of Hill function models, showing good fits in all
cases.

Input production is modeled with a differential equation equivalent to the difference equation given in
Section 5:

δEi
δt

= αi · φ(t)− λEi

and cascade models compose device rates functions equivalently as well.
The parameters αi, gi, ki, di, and hi (plus gi for binned ODEs) are determined for each device and

each model by a non-linear parameter fit using the MATLAB implementation of the Nelder-Mead simplex
algorithm (Lagarias et al., 1998). To ensure a good fit, we ran fitting five times per model with different
initial values and used only the model with the best overall fit. Fit error and values for the individual fits
varied significantly, likely due to the fact that Hill function models are under-constrained with respect to the
observed data. In all cases, however, at least one fit found a low mean-squared-error, as shown in Figure 19,
providing qualitatively good fits to the curves, as shown in Figure 20. The actual parameters of the Hill
function for these best fits vary highly from model to model, as shown in Figure 21, again likely due to
under-constraint. This emphasizes the point that, just because a model fits well does not mean that the
model is necessarily correct.

In evaluating the quality of prediction methods, we are concerned not only with accuracy but also
precision. We thus measure both the mean prediction error across the six cascades for each method, but
also the 95% confidence envelope. Mean error is computed as geometric mean of the mean-fold errors for all
induction levels for each cascades. The 95% confidence intervals are estimated as the geometric mean error
and two geometric standard deviations of error (i.e., µg · σ2

g).
Figure 22 gives the mean error in predicting the population means of each of the six cascades for each of

the evaluated methods. Note that EQuIP is the only method that provides consistently good predictions for
all cascades. Significantly, for the baseline model of population data in arbitrary units (which is equivalent
to typical methods used in prior work), the 95% confidence envelope is nearly 30-fold error, meaning that
although some individual systems might happen to yield a reasonable match between predicted and observed
results, the range between the highest and lowest likely observation for any given prediction approaches 1000-
fold, meaning the baseline model provides virtually no reliable information.

8 Plasmid Sequences

All plasmids used in this paper have been deposited with Addgene. Supplementary Table 3 shows the
identifiers of all plasmids.
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Supplementary Figure 20: Comparison between data and model for Hill function fits of characterization
data.
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Model h d k α g
TAL14
Pop. a.u. 5.01e+1 3.97e-1 2.74e+4 1.95e+2 2.51e+1
Pop. MEFL 6.46e-1 3.30e+3 1.10e+4 1.07e+4 1.25e+1
Active MEFL 5.15e+1 3.57e+6 2.51e+1 2.56e+2 1.03e+1
Binned Hill 2.17e+0 3.10e+0 1.54e+6 7.36e+5 1.40e+0
TAL21
Pop. a.u. 1.01e+0 5.49e+2 1.27e+4 2.45e-1 2.46e+0
Pop. MEFL 8.89e-1 7.52e+6 3.88e+7 5.98e+2 2.23e-1
Active MEFL 5.34e-1 6.85e+4 3.37e+3 1.31e+3 1.47e+1
Binned Hill 6.68e-1 5.49e+4 1.08e+7 2.72e+1 1.28e+0
LmrA
Pop. a.u. 1.01e+0 2.30e+2 1.41e+5 3.67e-1 1.66e+0
Pop. MEFL 5.87e-1 1.05e+5 4.70e+3 5.48e+2 1.98e+1
Active MEFL 4.12e-1 2.42e+4 1.27e+4 2.47e+2 1.81e+1
Binned Hill 8.53e-1 9.88e-1 5.33e-1 1.52e+0 1.33e+0

Supplementary Figure 21: Hill function best-fit values.

Pop. a
.u. H

ill 
Fn

Pop. M
EFL H

ill 
Fn

Acti
ve

 M
EFL H

ill 
Fn

Binned
 H

ill 
Fn

EQuIP
1

10

M
ea

n 
Er

ro
r

TAL14-TAL21
TAL14-LmrA
TAL21-TAL14
TAL21-LmrA
LmrA-TAL14
LmrA-TAL21

Supplementary Figure 22: Comparison of mean prediction error for each cascade for Hill function models
and EQuIP.

21



Nickname Purpose Addgene plasmid #
pExp EMPTY Blank control plasmid 51812
pExp CAG:mKate constitutive fluorescence 51789
pExp CAG:EBFP2 constitutive fluorescence 51790
pExp CAG:EYFP constitutive fluorescence 51791
pExp CAG:rtTa3-T2A-VP16Gal4; Dox induction and Gal4 activation 51792
pExp TRE:EBFP2 Input fluorescence 51793
pExp TRE:TAL14 Input repressor 51794
pExp TRE:TAL21 Input repressor 51795
pExp TRE:LmrA Input repressor 51796
pExp UAS-TAL14:EYFP Output fluorescence 51797
pExp UAS-TAL21:EYFP Output fluorescence 51798
pExp UAS-LmrA:EYFP Output fluorescence 51799
pExp UAS-TAL14:TAL21 Second stage of cascade 51800
pExp UAS-TAL14:LmrA Second stage of cascade 51802
pExp UAS-TAL21:TAL14 Second stage of cascade 51801
pExp UAS-TAL21:LmrA Second stage of cascade 51803
pExp UAS-LmrA:TAL14 Second stage of cascade 51805
pExp UAS-LmrA:TAL21 Second stage of cascade 51804

Supplementary Table 3: Addgene plasmid identifiers for all plasmids used

9 Additional Experimental Methods

9.1 Feed-Forward Circuit Transfections

Feed-forward circuits were assayed in a separate experiment with slightly different methods, reproduced here
in full. Cells were seeded in 24 well plates at 300,000/well concentration a day before transfection so that
they reach 80-90% confluency for the transfections. On the day of transfection, the media was changed and
500 ml of fresh media containing doxycycline (logarithmic concentration from 0 to 2000 ng/ml) was added
to each well. A 96 well plate was used to prepare the mixture of transfection reagents. DNA comprising the
transcription units of the circuits (seven plasmid DNAs: total 650 ng) were diluted to 50 ng/ul (except for
those carrying TRE promoter that were diluted to 150 ng/ul). 63 ul of DMEM media (without serum and
supplements) was added to each well of a 96 well plate. Subsequently, 1 ul of each diluted plasmid DNA was
added to DMEM (7 ul DNA total, corresponding to 7 transfected plasmid DNAs and 650 ng total) and the
DNA/media mix pipetted immediately once, using a multi-channel pipettor. 2 ul metafectone pro reagent
was added to the DNA/DMEM mixture in each well of a 96 well plate and pipetted once immediately. The
reagent mixture was incubated for 25 minutes to allow the formation of reagent/DNA complex assembly. The
mixtures were then added drop-wise to cells in 24 well plates. Media was changed one day post-transfection
and fresh media containing doxycycline was added to the cells.

9.2 Vector Details

The transfections carried out for characterization of the repressors were six plasmid co-transfections with
one plasmid being a blank empty vector. The vectors used were: pExp CAG:rtTa3-T2A-VP16Gal4; pExp -
TRE:EBFP2; pExp TRE:rep; pExp UAS-rep:EYFP; pExp CAG:mKate; pExp EMPTY. The two TRE-
containing vectors had 3x the amount of DNA as the other vectors during the transfection. In other words, for
one well of a 24 well dish the DNA for the constructs above were used in the amounts shown in Supplementary
Table 4.

Similarly for the cascades, the transfection vectors used were: pExp CAG:rtTa3-T2A-VP16Gal4; pExp -
TRE:EBFP2; pExp TRE:rep1; pExp UAS-rep1:rep2; pExp UAS-rep2:EYFP; pExp CAG:mKate. Here there
is not a need for an empty vector, as there are six plasmids in the circuit. The DNA ratios remain the same
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Plasmid Name DNA amount (ng)
pExp CAG:rtTa3-T2A-VP16Gal4 50
pExp TRE:EBFP2 150
pExp TRE:rep 150
pExp UAS-rep:EYFP 50
pExp CAG:mKate 50
pExp EMPTY 50
Total DNA per well 500

Supplementary Table 4: Plasmid DNA amounts for characterization transfections

Plasmid Name DNA amount (ng)
pExp CAG:rtTa3-T2A-VP16Gal4 50
pExp TRE:EBFP2 150
pExp TRE:rep1 150
pExp UAS-rep1:rep2 50
pExp UAS-rep2:EYFP 50
pExp CAG:mKate 50
Total DNA per well 500

Supplementary Table 5: Plasmid DNA amounts for cascade transfections

Plasmid Name DNA amount (ng)
pExp CAG:rtTa3-T2A-VP16Gal4 50
pExp TRE:EBFP2 150
pExp TRE:rep1 150
pExp TRE:rep2 150
pExp UAS-rep1:rep2 50
pExp UAS-rep2:EYFP 50
pExp CAG:mKate 50
Total DNA per well 650

Supplementary Table 6: Plasmid DNA amounts for feed-forward circuit transfections

as above, with the TRE-containing vectors having 3x the DNA of the other constructs (amounts shown in
Supplementary Table 5). This is because the concentration of the first repressor is limited by the degree
to which the TRE promoters are activated; using a higher concentration raises the range of expression and
allows stronger repression to be observed and better signal matching. Feed-forward circuit transfections were
the same, with addition of another TRE vector (amounts shown in Supplementary Table 6).

A set of control transfections was carried out with every experiment, where each fluorescent reporter
was transfected individually as well as all together. The set consisted of five transfections: one individually
for the vectors pExp CAG:mKate, pExp CAG:EBFP2, pExp CAG:EYFP, a co-transfection of all three
(mKate, EBFP2, and EYFP) and a transfection of pExp EMPTY used to determine auto-fluorescence.
These transfections included 100ng of active construct plus enough empty vector to keep the total DNA
amount the same between these controls and the circuit transfections. e.g., 100ng of pExp CAG:mKate and
400ng of pExp EMPTY or 100ng pExp CAG:mKate, 100ng pExp CAG:EBFP2, 100ng pExp CAG:EYFP,
200ng pExp EMPTY.

Dosage-response and cascade samples were induced with 12 different concentrations of doxycycline: 0
nM, 1 nM, 2 nM, 5 nM, 10 nM, 20 nM, 50 nM, 100 nM, 200 nM, 500 nM, 1000 nM, and 2000 nM. For all
dosage-response and cascade experiments, data was collected in triplicate.

Time series experiments were carried out similarly to dosage-response experiments. A complete char-
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Supplementary Figure 23: Relative expression variance between constitutive fluorescent proteins decreases
as intensity of any given protein increases.

acterization circuit was transfected with plasmid ratios as described above. Multiple transfections were
performed over the course of three days, allowing data acquisition for multiple time points in the experiment
to take place at the same physical time. There were a total of four distinct batches of data collection:

• 58 hours

• 16, 18, 20, 22, and 60 hours

• 12, 24, 42, and 63 hours

• 26, 28, 30, 48, 69,and 72 hours

Expression dynamics data for constitutive fluorescent protein expression was averaged over sixteen repli-
cates: two replicates each of three single constitutive controls, three colors from the triple constitutive control,
plus the constitutive mKate from the rtTa and Gal4 series. For the rtTa activation series, two replicates were
collected from a TAL21 characterization circuit induced with 2000 nM Dox; for the Gal4 activation series,
two replicates were collected from a TAL21 characterization circuit induced with 0 nM Dox. One exception
was the absence of constitutive controls for 12 hours. Constitutive data for this time point comes only from
the circuit transfections for the rtTa and Gal4 series.

10 Plasmid Copy Variance in Co-transfection

An important component that determines the accuracy of our approach is the degree to which there is
variation in the relative copy number of cotransfected plasmids, where relative copy number is indicated by
constitutive fluorescence as described in Supplementary Section 11 We chose multi-plasmid co-transfection
over transfection of a single large plasmid because it is easier to model relative copy number variance than
to understand DNA sequence adjacency interactions such as promoter interference. To the extent that the
process of lipofection is understood, this variation appears to be typically small for the number of plasmids
and the size of those plasmids used in our system.
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We examine this issue by analyzing the relative variation of expression between cotransfected fluorescent
proteins in a three constitutive fluorescent protein control. Supplementary Figure 23 shows the geometric
standard deviation of expression levels of a second protein when binned logarithmically against the first,
e.g. “mKate from EBFP2” shows the geometric standard deviations of mKate expression of flow cytometry
events falling into the same logarithmic bin of EBFP2 expression levels. As expected, the level of variation
decreases rapidly as constitutive expression rises (indicating higher numbers of plasmids and therefore greater
applicability of the law of large numbers). This strong monotonic decrease and its consistency across color
pairings indicate that any variation in relative plasmid copy number is likely to be unbiased and to not
significantly affect the bin geometric means.

11 Computation of Sample Statistics

Within a sample, only some cells are successfully transfected, as indicated by their expression of a constitutive
fluorescent protein (CFP), in this case mKate, above baseline levels. If transfection quality is poor or the
event count in a sample is unexpectedly low, it is likely indicative of a protocol failure (e.g. contamination)
that will degrade the quality of the data.

To evaluate sample quality, we fit the observed distribution of constitutive fluorescent protein levels in
flow cytometry events from the sample to a bimodal Gaussian distribution on a logarithmic scale. Note that
a bimodal Gaussian fit does not assign events to one component or another, but attributes a probability
that each event was generated by one of the two components of the distribution.

A sample is then included only if:

• the distribution fits well as a bimodal Gaussian,

• the majority of data in the sample is expected to come from cells in the active Gaussian component
(i.e., the component with the higher mean), and

• there are at least 100,000 events in the sample.

Applying this decision criteria, for dosage-response curves we discarded: TAL14: one replicate of 50 nM;
TAL21: one full replicate, plus one replicate of 0 nM, 2 nM, 1000 nM, and 2000 nM. For the cascades we
discarded: TAL14-TAL21: one replicate of 0 nM, 50 nM, 100 nM; LmrA-TAL21: one replicate of 10 nM,
200 nM, 500 nM. For expression dynamics, we discarded: one replicate of 0 nM at 58 hours.

Figure 24 shows an example of a bimodal Gaussian fit against the distribution of constitutive fluorescent
protein for each sample in the LmrA dosage-response experiment. Note that the samples are highly consistent
in their distribution. Note also that the breadth of the distribution is much higher than the expression
variance shown in Figure 23, indicating a high range of variation in the number of circuit copies per cell.

When computing statistics over fluorescence data, note that it is important to use geometric statistics
rather than the more conventional arithmetic statistics. This is because the variation of values in these
systems is typically Gaussian on a logarithmic scale, rather than on a linear scale. Arithmetic statistics will
thus tend to produce a poor estimate of the true distribution.

In our data analysis, when it is necessary to compute the mean of the active population (e.g., for expression
dynamics or cross-batch compensation), the geometric mean from the active component of the bimodal
Gaussian is used. When computing statistics with respect to circuit copy number, the set of events is
segmented into logarithmic bins by CFP value at 10 bins per decade. We then compute geometric mean and
standard deviation for each bin for the IFP and OFP events whose CFP value falls into that bin. The only
bins that are used are those likely to contain high quality data (i.e., at least 100 events and low percentage
attribution of events to the inactive component of the bimodal Gaussian): we select a consistent global
threshold and use data from the bins encompassing CFP values from 105.8 to 107.9 MEFL.

The expected number of circuit copies per cell is not linear with respect to the CFP value, because other
sources of expression variation interact with the transfection process to create a bias in the sources for cells
in each bin, as shown in (Beal et al., 2012). The relationship is monotonic and consistent, however, so we
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Supplementary Figure 24: Constitutive fluorescence exhibits a consistent wide bimodal gaussian distribution.
A representative example is shown in (a): distribution of constitutive fluorescence for LmrA in the dosage-
response assay, showing number of samples vs. logarithmic bin center (solid lines), and fit against a bimodal
gaussian model (dashed lines). One line per sample; colors correspond to induction levels, ranging from
to red (lowest) purple (highest). (b) The model can be used to estimate the fraction of cells with a given
constitutive fluorescence belonging to the successfully transfected population. Colors are the same as in (a).

can use CFP bins as a proxy for circuit copy number when making predictions without knowing the actual
expected number of copies.

12 Cross-Batch Compensation

Certain variations between sample batches that may often be tolerated in experiments are not be acceptable
for our stringent requirements. Such variations may come from many different sources, such as the state of
source cells, variation in reagents, and imperfections in the culturing environment. Although such variations
are generally small, they may be significant at the level of precision that we require. Fortunately, such
variations are often systematic across entire batches of experimental samples or replicates, so it is possible to
perform a first-order linear compensation to a chosen reference experiment. For the purposes of EQuIP, it is
critical to have extremely high precision for dosage-response curves. Hence, for each fluorescent protein, we
select a Dox induction level at which, given our circuit architecture and under ideal circumstances, behavior
should be identical across all experiments: for CFP, Dox = 2000 nM; for IFP, Dox = 2000 nM; for OFP,
Dox = 0 nM (since our TRE typically shows minimal leakage, at Dox = 0 nM, OFP should be constitutively
activated by Gal4). The equivalence might, of course, be rendered invalid by some unexpected interaction,
but is effectively cross-validated through the other 14 induction levels.

To perform the compensation for dosage-response curves, for each replicate of each experiment we com-
pute the geometric mean of all events with at least 50% probability of generation by cells in the active
component of the sample at the chosen induction level. The relative expression levels for the experiment are
then taken as the geometric mean across replicates. Selecting reference points based on tightness of data,
the relative scaling for CFP, IFP, and OFP for the three dosage-response assays is: a log10 shift of: TAL14:
0.05, -0.54, -0.03; TAL21: -0.05, -0.70, 0.00; LmrA: 0.00, 0.00, -0.38.

For the cascades we compensate for CFP only, since IFP is taken as a given for purposes of generating
the prediction and since there is no constitutive expression of OFP to calibrate from. For the cascades, the
scaling values for CFP are: log10 shifts of: TAL14-TAL21: 0.18, TAL14-LmrA: 0.03, TAL21-TAL14: -0.17,
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TAL21-LmrA: -0.11, LmrA-TAL14: -0.15, LmrA-TAL21: -0.10.

13 Internal Cross-Validation

Given the myriad ways in which biological experimental protocols can go wrong, it is important to have
means of distinguishing between experimental error and meaningful deviation from expected behavior. For
this purpose. the large and continuous distribution of circuit copy numbers within a single sample resulting
from transfection is in fact useful. Each sample provides a collection of highly variable but strongly correlated
data points, whose behavior should vary systematically with circuit copy number. Our experiments are thus
afforded a number of different means of internal cross-validation (both within a single sample and across
samples), by considering each sample as a function of statistics over the bins into which the data has been
segmented. We use this cross-validation to improve the precision of characterization by rejecting samples
whose behavior is not internally consistent.

From our controls, above and beyond the qualitative validation which is typically provided, we apply the
following quantitative tests:

• Peaks in the fluorescent bead control should fit to the linear peak model provided by the supplier to
within 10%.

• Data sets taken at different times with the same flow cytometry settings must match every peak in
their respective fluorescent bead controls with one another to within 10%.

• Autofluorescence data from cells transfected with blank plasmids should fit well to a Gaussian model
on a linear scale.

• In the single color controls used to build spectral overlap compensation models, cells more than two
standard deviations above autofluorescence should fit to within 10% of a linear function following
subtraction of autofluorescence.

• In the multicolor control used to compute color conversion, the strongly expressing cells should have a
linear relationship between colors. This is tested by validating that a round-trip translation between
each pair of colors deviates in value by less than 10%.

Failure of any of these tests is rare, and indicates a problem in the execution of the specified experimental
protocols.

Another internal cross-validation is the distribution of CFP values, which is expected to fall on a bimodal
Gaussian and filtered accordingly as described above in Section 11. Finally, the incremental variation of time
or induction affords another opportunity for cross-validation, since any phenomenon appearing in one sample
should be expected to appear in incrementally varied samples, shifted both incrementally across circuit copy
bins and in quantitative value. We expect a smooth and relatively regular variation across bins (such as seen
in all of our experimental data presented in this paper), and any significant deviation from this indicates
possible problems with experimental protocol.
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