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11 ABSTRACT: A long-standing goal of synthetic biology is to rapidly engineer new regulatory circuits from simpler devices. As
12 circuit complexity grows, it becomes increasingly important to guide design with quantitative models, but previous efforts have
13 been hindered by lack of predictive accuracy. To address this, we developed Empirical Quantitative Incremental Prediction
14 (EQuIP), a new method for accurate prediction of genetic regulatory network behavior from detailed characterizations of their
15 components. In EQuIP, precisely calibrated time-series and dosage-response assays are used to construct hybrid phenotypic/
16 mechanistic models of regulatory processes. This hybrid method ensures that model parameters match observable phenomena,
17 using phenotypic formulation where current hypotheses about biological mechanisms do not agree closely with experimental
18 observations. We demonstrate EQuIP’s precision at predicting distributions of cell behaviors for six transcriptional cascades and
19 three feed-forward circuits in mammalian cells. Our cascade predictions have only 1.6-fold mean error over a 261-fold mean
20 range of fluorescence variation, owing primarily to calibrated measurements and piecewise-linear models. Predictions for three
21 feed-forward circuits had a 2.0-fold mean error on a 333-fold mean range, further demonstrating that EQuIP can scale to more
22 complex systems. Such accurate predictions will foster reliable forward engineering of complex biological circuits from libraries of
23 standardized devices.
24 KEYWORDS: synthetic biology, systems biology, genetic circuits

25One of the key challenges in synthetic biology is to
26 accurately predict the behavior of novel biological
27 systems, thereby enabling faster and more effective engineering
28 of such systems.1−3 This challenge is becoming a critical issue,
29 given the growing gap between the exponential increase in
30 length of DNA sequences that can be readily synthesized3−9

31 and the much slower increase in the complexity of genetic
32 circuits that have been demonstrated.9−14 Accurate predictions
33 of the behavior of genetic circuits are an important ingredient
34 for addressing this gap. As the number of genetic elements in a
35 circuit increases, the number of candidate designs increases
36 exponentially. Accurate predictions help cope with this
37 exponential explosion by dramatically reducing the number of
38 candidate designs that must be considered. Predicting circuit

39behavior, however, has been extremely difficult, and without
40reliable predictions, even relatively simple circuits have typically
41required extensive and costly tuning to achieve the desired
42results.9,10,12,15

43Recently, there have been major steps toward improving the
44accuracy of genetic circuit predictions. First, genetic elements
45are now being characterized using calibrated and standardized
46measurements.16−19 Second, several investigations have pro-
47vided means of combining families of primitive elements of a
48transcriptional unit, such as promoters and 5′UTRs, in order to
49more reliably and predictably control constitutive gene
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50 expression levels.20−23 For gene regulation, progress has been
51 made toward accurate predictions of single self-regulating
52 negative feedback transcriptional units,24 which may exhibit
53 decreased variability,25 increased variability,26 or oscillatory
54 behavior,27 depending on conditions. For multicomponent
55 regulatory circuits, however, there is a critical need for a
56 fundamentally new approach to prediction. Prior efforts have
57 either focused on characterizing a complex circuit and then
58 predicting the influence of modulating or replacing specific
59 elements11,27−29 or else have suffered from reduced precision
60 when parts were first characterized and then subsequently used
61 for predictions of a more complex circuit.
62 Prior methods for predicting multicomponent regulatory
63 circuits have typically relied on explicit biochemical models,10,28

64 such as Hill functions or chemical reaction networks, that
65 depend strongly on the completeness and correctness of
66 models of relevant cellular mechanisms. Such models are also
67 frequently under-constrained by experimental data and thus
68 require significant parameters to be set by heuristics or untested
69 assumptions, rather than through direct (or indirect)
70 experimental observations. This is a critical problem for
71 predictions: the inherent uncertainty of an under-constrained
72 model means that the same observation can be explained by a
73 number of different sets of parameter values.30 The predictive
74 accuracy of a model is therefore impaired, because even if the
75 model fits observations for one particular use, if the wrong
76 parameters are chosen it is likely to fail on future predictions. In
77 sum, although there has been much recent progress in
78 characterization and prediction of genetic parts and circuits,
79 even the behavior of a “simple” circuit such as a two-repressor
80 cascade cannot generally be predicted accurately and reliably.
81 We thus focus on the prediction of combinational genetic
82 circuits (i.e., circuits without feedback or state), as both an

83important goal in its own right and as a step toward prediction
84of circuits with more complex dynamics such as oscillations and
85bistability.
86We address the current challenges of multicomponent circuit
87prediction with a new method, Empirical Quantitative
88Incremental Prediction (EQuIP), that models expression of
89each gene using a piecewise function of regulatory inputs,
90circuit copy number, and time, based strictly on high-precision
91experimental observations. EQuIP predicts the behavior of a
92biological circuit by mathematically composing, in accordance
93with circuit topology, these gene expression models along with
94models of exponential dilution and decay. As can be expected,
95accurate circuit predictions require accurate models. To this
96end, EQuIP ensures that significant observable phenomena are
97incorporated in each gene expression model whether or not
98they agree with current mechanism hypotheses and also ensures
99that every parameter of the model is directly grounded in
100experimental data. Given current limitations in the under-
101standing of biochemical mechanisms and in the ability to
102determine relevant parameter values through experiment, the
103flexibility of piecewise approximation is highly valuable. A
104piecewise function can directly approximate unmodeled or
105poorly modeled mechanisms and can substitute simple
106empirical functions for mechanisms whose parameters cannot
107be determined from observable data. EQuIP thus combines
108mechanistic models (i.e., derived from the underlying molecular
109processes) and phenotypic models (i.e., models aiming to
110capture observed behavior with minimal assumptions), using
111mechanistic models where the underlying parameters can be
112adequately determined and phenotypic approximation where
113they cannot. This combination greatly improves the accuracy
114with which the behavior of biological circuits can be predicted.

Figure 1. Stages of EQuIP from data gathering to predictions. (A) Experimental observation of the behavior of regulatory and constitutive elements
in cells, where these elements are combined with additional biological circuitry for calibrated measurement (top: stage 1). Behavior of constitutive
elements is measured over time. For regulatory elements, the relationship between input, circuit copy number (indicated by different colored lines),
and output is measured at a single time point. Data is used to build rate functions for time-dependent regulated production and for loss of protein
concentration, which can be mathematically integrated for computational simulation (bottom: stage 2). (B) The behavior of a biological circuit is
predicted by linking production functions for each regulatory relation and loss functions for each relevant protein, according to circuit topology, then
simulating concentrations over time according to the network of rate functions (stage 3).
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115 To provide circuit predictions, EQuIP operates in three main
f1 116 stages (Figure 1). In the first stage (Figure 1a top), we measure

117 gene expression of constitutive and regulated elements using
118 calibrated flow cytometry assays, with all measurements
119 converted to equivalent standardized units. These measure-
120 ments are taken at various combinations of time and regulatory
121 inputs sufficient to precisely characterize the expression
122 dynamics of all relevant circuit components. In the second
123 stage, these measurements are used to compute two sets of rate
124 functions (Figure 1a bottom). A regulated production function
125 is a mapping from regulatory input (e.g., concentration of a
126 transcriptional repressor), circuit copy number, and time, to the
127 gene production rate. A loss function specifies the rate at which
128 a molecule’s concentration decreases due to dilution or
129 degradation. We can combine these two functions to describe
130 the time evolution of a regulated gene product. In the third
131 stage of EQuIP, the rate functions for multiple elements are
132 combined to simulate the time evolution of more complex
133 regulatory circuits (Figure 1b). Time evolution simulations are
134 carried out by composing the rate functions according to the
135 circuit topology and computing the integral with respect to

136time for various combinations of input and circuit copy
137number. As currently formulated, EQuIP can be applied to
138combinational circuits with relatively strong expression and low
139cross-interference, in conditions similar to those under which
140the devices were characterized. In the remainder of the paper,
141we present details of EQuIP and then demonstrate that its
142circuit simulations accurately predict experimental observations.
143In particular, we characterize three regulatory relations
144(transcriptional repressors TAL14, TAL21, and LmrA, each
145acting on a corresponding promoter) in mammalian HEK293
146cells and use those characterizations to precisely predict the
147behavior of all six two-repressor cascades that can be made
148from these repressor/promoter pairs, as well as three feed-
149forward circuits constructed from the same elements. We
150conclude by evaluating the contribution of the various
151components of EQuIP to its precision in predicting composite
152circuit behavior.

153■ RESULTS AND DISCUSSION
154The goal of EQuIP is to predict the behavior of regulatory
155circuits, which we test in this paper through prediction of two-

Figure 2. EQuIP characterization via time-series and dosage-response assays. (A) Biological circuit architecture for calibrated measurements, using
fluorescent reporter proteins to quantify induced expression of repressor, regulated expression of output, and constitutive expression as an indicator
of relative circuit copy number. EBFP2, a blue fluorescent protein, is input (IFP); EYFP, a yellow fluorescent protein, is output (OFP); mKate, a red
fluorescent protein, is constitutive. (B) Time series characterization shows a linear increase in the fraction of cells constitutively expressing a
fluorescent reporter, beginning a short time after transfection, until reaching saturation at approximately 70% transfection efficiency. Dotted lines
show ±2 standard deviations. (C) Progression of mean fluorescence is similar for constitutive and activator-driven fluorescence, implying little
impact from transcriptional activation delays. Normalized expression is computed by dividing by mean MEFL for t = 48−72. (D) Relations between
input, copy number, and output for TAL14, TAL21, and LmrA: data from 12 different inducer dosages is segmented into subpopulations by
constitutive fluorescence (plus marks) and grouped by subpopulation across dosages (colored lines). Insets show histograms of constitutive
fluorescent protein expression used for segmenting the subpopulations; only colored bins have sufficient samples and separation from untransfected
cells and are therefore included in the input/output curves. Extrapolation beyond the range measured in each transfer curve experiment is shown
with dashed lines (see Supporting Information Section 6).
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156 repressor transcriptional cascades and feed-forward circuits. We
157 model a transcriptional circuit using two types of functions
158 (regulated production and loss), each taking current concen-
159 trations as input and yielding rates of concentration change as
160 output. A transcriptional circuit, such as a two-repressor
161 cascade, is then simulated by integrating a network of regulated
162 production and loss functions, as described above. To restrict
163 the scope of the problem, we consider only transient
164 transfections of combinational circuits comprising orthogonal
165 regulatory elements (see Supporting Information Section 2)
166 and use each repressor/promoter pair at most once in any
167 given circuit.
168 The first stage of EQuIP is to gather experimental data
169 characterizing the regulated production dynamics for each
170 repressor/promoter pair and the loss dynamics for each protein
171 (Figure 1A, top). We characterize these dynamics with two

f2 172 experiments (Figure 2): a time series assay, which provides the
173 mechanistic components of both production and loss models,
174 and a dosage-response assay measured at a single time point,
175 which provides the phenotypic components of the production
176 model. To obtain precise and commensurate units in our
177 models, we apply the TASBE protocol for calibrated flow
178 cytometry, which allows us to use Molecules of Equivalent
179 Fluorescein (MEFL)31 as a consistent proxy unit for protein
180 concentration (see Supporting Information Section 3).
181 All time-series and dosage-response characterization assays
182 use circuits built with the same template (Figure 2A). The
183 purpose of this circuit topology is to measure the behavior of a
184 repressor/promoter pair at various levels of repressor

185concentration. We chose to regulate concentration of repressor
186by doxycycline/rtTA induction32,33 as indicated by EBFP2. The
187concentration of the output gene product is indicated by EYFP,
188and constitutive mKate serves as a transfection marker and an
189indicator of relative circuit copy number.34 All promoters that
190we characterize in this paper are hybrid promoters that also
191require Gal4 activation (see Supporting Information Section 2
192for discussion of this modular approach to mammalian
193promoter design).
194For the time series experiment, we measured constitutive and
195transcriptional activator driven expression for 72 h post-
196transfection. We found that the fraction of cells with observable
197(i.e., above autofluorescence) constitutive expression of a
198fluorescent protein increases linearly over time, beginning
199some short time after transfection, and finally saturates at
200approximately 70% of cells (Figure 2b). This observation is
201consistent with typical lipofection protocols and a model
202whereby plasmids enter the nucleus during mitosis (per the
203standard lipofection hypothesis35) in an unsynchronized
204population of mammalian cells. Given the expected stability
205of our fluorescent and repressor proteins, this mechanism plus a
206constant rate of constitutive production can be used to create a
207quantitative model of transfection and fluorescent protein
208production. Fitting against both the percentage of expressing
209cells and mean constitutive mKate in expressing cells (Figure
2102C) gives a mean initial delay of 25 h and cell division on
211average every 20 h (which correlates well with independent
212hemocytometer measurements as well; for detailed discussion
213of growth rate measurements, see Supporting Information

Figure 3. EQuIP produces close agreement between computational predictions and experimental data for two-stage cascades. (A) Biological circuit
architecture for repressor cascades using TAL14, TAL21, and LmrA (repressor choice indicated as R1 and R2). Fluorescent reporters quantify input,
output, and relative circuit copy number as in Figure 2. (B, C) Plots compare input/output relations for predictions (circles) and experimental data
(pluses) for two of the cascades (others shown in Supporting Information Section 6). The predictions include all points that use extrapolation for
less than 10% of the simulation steps. Insets as in Figure 2D.
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214 Section 4). We also note that expression of a fluorescent
215 protein activated by constitutive rtTA3 and VP16Gal4 has no
216 significant time lag compared to expression of mKate from a
217 constitutive promoter, implying that, for this circuit, transcrip-
218 tional activation delays are not significant and may be omitted
219 from our production models. In contrast, even a short lag until
220 repressors accumulate to the levels required for them to have
221 significant impact on gene expression may result in strong
222 transient expression from their respective promoters, and
223 therefore, we model the time course of repressor accumulation.
224 From this experiment, we derive three mechanistic elements
225 of our models. First, the cell division time provides a good
226 approximation of the loss rate, since the proteins used are
227 expected to be relatively stable. Second, the cell division time is
228 also used to create an inverse function that takes an observed
229 output expression and calculates the production rate over time
230 that would produce that output expression (Supporting
231 Information Section 5). This inverse function will be used to
232 create the production rate function of a transcriptional unit
233 from dosage-response data. Finally, simulations of gene
234 expression take into account the mean initial delay in
235 determining the length of time to simulate (Supporting
236 Information Section 4).
237 We characterize each repressor device with a dosage-
238 response experiment using the same characterization circuit
239 (Figure 2A) as the time series experiment. For these
240 experiments, we measure output as a function of input at a
241 single point in time. We characterized the regulatory relation-
242 ship between three transcriptional repressors (TAL14, TAL21,
243 and LmrA; see Supporting Information Section 2) and a
244 corresponding promoter for each, 72 h after transfection
245 (Figure 2D). The observed relationships between input and
246 output fluorescence were strongly affected by the relative
247 number of circuit copies in the cells. Currently, there is not
248 sufficient understanding of the underlying biological processes
249 to create well-constrained models, based entirely on mecha-
250 nistic principles, that accurately match the experimentally
251 observed input/output relationships in Figure 2D. Instead, we
252 estimate output gene expression for a given input level and
253 relative copy number phenotypically by piecewise interpolation
254 or extrapolation of the observed outputs (lines in Figure 2D).
255 This is then transformed into a hybrid phenotypic/mechanistic
256 model of regulated gene production using the inverse function
257 derived from the time-series experiment (Supporting Informa-

258tion Section 5). Hence, this regulated production model retains
259every feature of the experimentally observed behavior.
260To validate EQuIP, we constructed all two-repressor
261cascades comprising TAL14, TAL21, and LmrA following the
262 f3architecture shown in Figure 3A. Figure 3B and C illustrates the
26372 h input/output predictions vs experimental data for the
264TAL14-TAL21 and TAL21-TAL14 cascades, respectively. The
265experimentally observed output levels for different combina-
266tions of input and copy number have a wide range: across the
267six cascades, there is a 261-fold geometric mean difference
268between the highest and lowest subpopulation output means
269(e.g., the ratio of highest and lowest plus symbols in Figure 3B
270and C). The mean error of predicted versus observed output
271across all input/copy-number combinations is only 1.6-fold for
272 f4all six transcriptional cascades (Figure 4A). Predicting the
273output across many subpopulations also provides a prediction
274of the distribution of output expression for the overall
275population. The accuracy with which EQuIP predicts
276population mean and variation is even better than for individual
277subpopulations: the mean error of predicted versus exper-
278imentally observed output across all cascades and inductions is
2791.4-fold for both population mean and population standard
280deviation (Supporting Information Section 6).
281With such accuracy, EQuIP may guide circuit design and
282debugging. For example, EQuIP correctly predicts which
283combinations of repressors are best matched to provide the
284greatest differential expression between fully induced and
285uninduced states in the cascades. Specifically, EQuIP predicts
286that TAL14-TAL21 and TAL21-TAL14 cascades will have
287significantly stronger gain than all cascades involving LmrA
288(due to TAL21 and TAL14 having a better match in their
289dynamic ranges) and that TAL21-TAL14 will have approx-
290imately twice the gain of TAL14-TAL21, and these predictions
291are borne out by our experiments (Supporting Information
292Section 6).
293We further evaluate the contribution to accurate prediction
294of different aspects of the EQuIP method. The first two stages
295of EQuIP (Figure 1A) consist of a sequence of data gathering
296and processing steps to produce the model for each device.
297Figure 4B evaluates the relative contribution of each step in this
298sequence to the final high prediction accuracy by comparing
299with a typical prior methodordinary differential equations
300using Hill equations fit to device characterization dataapplied
301to the data produced by each step in the data processing

Figure 4. Comparison of the precision of EQuIP predictions for two-stage cascades. (A) Ratio of highest and lowest output means for all induction/
copy-number subpopulations for given cascades (e.g., the highest and lowest plus symbols in Figure 3B and C) and respective mean prediction errors.
(B) Prediction errors for Hill function models fit to partial implementations of EQuIP vs the full EQuIP method, showing the improvement in both
accuracy (mean error) and precision (95% envelope).
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302 sequence. As described in Supporting Information Sections 3,
303 10, and 11, EQuIP first converts flow cytometry data to
304 calibrated MEFL, then uses the constitutive marker to separate
305 the subpopulation of successfully transfected cells, segments
306 into bins by constitutive fluorescence level, then finally builds a
307 piecewise model using the means of each bin. We thus created
308 models generated from (1) population means in arbitrary units
309 (our baseline model), (2) population means in calibrated
310 MEFL, (3) population mean MEFL for transfected cells only,
311 and (4) per-bin MEFL for transfected cells only. Each model is
312 an ODE using Hill equations parametrized by curve fit against
313 the observed data for each of the three repressors. We then
314 compare the accuracy of EQuIP and these four models in
315 predicting population means across the full range of
316 doxycycline inductions of the various cascades. The results in
317 Figure 4B indicate that the most important contributions to
318 EQuIP’s improved precision versus the baseline model come
319 from calibration of measurement units and modeling with
320 piecewise functions (full details in Supporting Information
321 Section 7). The intermediate steps are prerequisites for
322 piecewise models but do not appear to markedly improve
323 prediction quality on their own. In all cases, the inaccuracies in
324 prediction appear to derive primarily from the insufficient
325 constraints that the experimental data provides for fitting Hill
326 equations. Thus, although the fit often appears good (as shown
327 in Supporting Information Section 7), this may not accurately

328represent the true system and may not correlate well with the
329predictive accuracy. Indeed, all three intermediate models show
330no statistically significant differences in performance (Support-
331ing Information Section 7).
332Finally, to validate the generalizability of the EQuIP method,
333we tested its efficacy in predicting the behavior of a more
334 f5complex feed-forward circuit. This circuit, shown in Figure 5A,
335is similar to the cascade except that it adds a second path for
336repressing the output directly through Dox induction of the
337second repressor. We applied EQuIP to predict the behavior of
338all six possible feed-forward circuits 72 h post-transfection. We
339then constructed the three with the greatest variety of predicted
340behaviors and observed them experimentally. As before, we find
341that the predictions have a high mean accuracy, as illustrated by
342the example comparison of predicted and observed expression
343levels in Figure 5B. Across all three feed-forward circuits, there
344is an overall mean error of only 2.0-fold across a 333-fold
345geometric mean difference between the highest and lowest
346subpopulation output means (Figure 5C). Such a small
347degradation in accuracy in comparison to the cascades is
348expected for a more complicated circuit and is an indicator that
349EQuIP is likely to scale to even more complex circuits.
350For synthetic biology to become a full-fledged engineering
351discipline, it must be possible to accurately predict the behavior
352of novel biological circuits from that of their constituent parts.
353Our results with EQuIP on six transcriptional cascades and

Figure 5. EQuIP produces close agreement between computational predictions and experimental data for feed-forward circuits. (A) Biological circuit
architecture for feed-forward circuits using TAL14, TAL21, and LmrA (repressor choice indicated as R1 and R2). Fluorescent reporters quantify
input, output, and relative circuit copy number as in Figure 2. (B) Plot compares input/output relations for predictions (circles) and experimental
data (pluses) for one of the circuits (others shown in Supporting Information Section 6). The predictions include all points that use extrapolation for
less than 10% of the simulation steps. Insets as in Figure 2D. (C) Ratio of highest and lowest output means for all induction/copy-number
subpopulations for given feed-forward circuits (e.g., the highest and lowest plus symbols in B) and respective mean prediction errors.
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354 three feed-forward circuits are the first demonstration that
355 highly accurate prediction of circuit behavior is possible and
356 provide a quantitative benchmark for future efforts to be
357 compared against. One of the most remarkable features of our
358 results is that they are accomplished entirely through readily
359 accessible observations of fluorescence, without any detailed
360 biochemical analysis or modeling. This does not argue against
361 the value of detailed biochemical modeling: indeed, we were
362 able to use mechanistic biochemical models for the temporal
363 components of our production and loss functions. Rather, our
364 results demonstrate the power of using precise measurements
365 to inform a composable model that describes precisely those
366 phenomena that can be experimentally observed, no more and
367 no less.
368 Our results show a number of opportunities where improved
369 modeling or observation could further increase the quality of
370 predictions. For example, Figure 3B and C and Supporting
371 Information Figures 11 and 12 demonstrate that EQuIP
372 generally provides its best predictions when neither circuit copy
373 number nor induction are particularly high. One improvement
374 would be to obtain additional input/output data at higher input
375 levels or to genetically engineer regulatory devices with
376 stronger responses at lower input levels, thus decreasing the
377 amount of extrapolation required (Supporting Information
378 Section 5). Another issue is that extreme fluorescence intensity
379 values can be affected at the low end by cell autofluorescence
380 and at the high end by PMT saturation (though this affects only
381 the <5% of our predictions that are in these ranges); this can be
382 addressed by assays that vary plasmid dosages and instrument
383 settings for different levels of induction. Other possible areas
384 for improvement are understanding the effect of large circuit
385 copy numbers (which may influence cell behavior or create
386 metabolic load), and accounting for retroactivity effects (e.g.,
387 from one TALER regulating multiple downstream promoters)
388 and cellular resource sharing (e.g., VP16Gal4 as a driver for
389 multiple hybrid promoters). With appropriate characterization
390 experiments, such effects should be able to be incorporated as
391 new empirical rate terms, similar to the production and loss
392 models already in the EQuIP framework.
393 More generally, the specific EQuIP implementation
394 presented here can be applied only to circuits that are
395 combinational (meaning there is no feedback) and in which
396 cells do not exhibit strongly divergent behaviors under the same
397 conditions (e.g., noise-induced bistability). Our results,
398 however, provide a basis for extending EQuIP to larger and
399 more complex circuits, and to circuits that include feedback (via
400 initial state assumptions) and divergent populations (using
401 distributions rather than means), as discussed in Supporting
402 Information Section 5.1. The ability to predict circuit behavior
403 is highly valuable for engineering biological systems, as it allows
404 efficient selection of circuit elements and offers guidelines for
405 optimization of devices to obtain a desired function.
406 Accordingly, EQuIP supports the synthetic biology goal of
407 creating libraries of modular, standard, and well-characterized
408 components for rapid development of complex systems. Our
409 framework may also be used for studying natural systems,
410 although accurate predictions may initially be more difficult due
411 to the complexity of many natural regulatory interactions.
412 EQuIP thus forms a basis both for advances in design tools and
413 for new investigations in systems biology. Combining these
414 advances with emerging libraries of biological devices will usher
415 in a new era of exponential growth in our ability to engineer
416 biological systems.

417■ METHODS
418Culture Conditions. HEK 293 FT cells (Invitrogen) were
419cultured in DMEM medium (CellGro), supplemented with
42010% FBS (PAA Laboratories), 2 mM L-glutamine (CellGro),
4211% Strep/pen (CellGro), 1% non-essential amino acids
422(NEAA) (HyClone), and 10 000× Fungin (Invivogen) at 37
423°C and 5% CO2. Cells were passaged in a 100 mm dish by
424removing culture media, adding 2 mL 0.05% trypsin, waiting at
425room temperature for 2 min and then resuspending the cells in
4265 mL of cell culture media and diluting to desired concentration
427with additional cell culture media.
428Transfection. Transfections were carried out with Meta-
429fectene Pro (Biontex Laboratories). Cells were seeded 1 day
430prior at 2 × 105 cells per well in a 24 well plate. 500 ng of DNA
431was mixed into 60 μL of DMEM (without supplements). 1.5
432μL of Metafectene was then added and the tube was gently
433mixed and kept at room temperature for 15 min to form the
434DNA−liposome complex. Fresh media was added to the cells
435directly prior to transfection (500 μL of DMEM with
436supplements). The DNA−Metafectene solution was then
437added dropwise to the well. Induction of the circuit was
438performed at this time as well by the addition of a small
439molecule (i.e., doxycycline). The media was subsequently
440changed daily with the appropriate amount of inducer. Each
441circuit was realized with each transcriptional unit encoded on a
442separate plasmid, for a total of 6 plasmids (5 plasmid circuits
443add a blank plasmid), and cotransfected: see Supporting
444Information Section 2 for details of promoter design and
445Supporting Information Section 8 for plasmid sequences. The
446DNA for the circuits transfected were in the ratio 1:3:3:1:1:1;
447where the transcriptional units that contained the “TRE”
448promoter were the ones that were transfected at 3× the amount
449of the others for signal matching purposes. For the time series
450experiment, we measured EBFP2 with 2000 nM Dox for rtTA
451activation. EYFP was measured for Gal4 activation with 0 nM
452Dox, and we used TAL21 for R1. We also assumed that the
453time dynamics are not significantly affected by choice of
454repressor. Dose−response data was taken with a logarithmic
455series of Dox dosages. Feed-forward circuits data was taken in a
456separate experiment with a slight variation on the protocol. See
457Supporting Information Section 9 for more details. The cell-to-
458cell variation due to intracellular variation in copy number was
459typically small in our experiments (Supporting Information
460Section 10).
461Flow Cytometry. Flow cytometry data was taken at 72 h
462post transfection. Cells were again trypsinized as previously
463described. The cells were then centrifuged at 150g for 10 min at
4644 °C. The supernatant was removed and the cells were
465resuspended in 1× PBS that did not contain calcium or
466magnesium. A BD LSR Fortessa was used to take flow
467cytometry measurements with the following settings: EBFP2,
468measured with a 405 nm laser and a 450/50 filter, EYFP,
469measured with a 488 nm laser and a 530/30 filter, and mKate,
470measured with a 561 nm laser and a 610/20 filter. Flow
471cytometry data was analyzed as described in Supporting
472Information Sections 3, 11, and 12. EQuIP also included
473internal cross validation and checks to determine the quality of
474the data collected and identify potential experimental problems
475(Supporting Information Section 13).
476Cloning. Creation of the plasmids used for this project was
477carried out using the Gateway system from Invitrogen. We used
478a multisite cloning strategy with two entry vectors. One entry
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479 vector contained the promoter and the other contained the
480 transcription factor or gene. The destination vector was
481 modified from its original sequence to contain an insulator 5′
482 to L4 and a polyadenylation signal 3′ to the R1 site.

483 ■ ASSOCIATED CONTENT
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485 Details of repressor/promoter design, sequences of all
486 constructed used, details on calibration of flow cytometry
487 data, measurement and estimation of cell division rates, details
488 of modeling and prediction, details of experimental results, and
489 additional experimental and analytical method details. This
490 material is available free of charge via the Internet at http://
491 pubs.acs.org.
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