
Sharing Structure and Function in

Biological Design with SBOL 2.0

Nicholas Roehner,∗,† Jacob Beal,‡ Kevin Clancy,¶ Bryan Bartley,§

Goksel Misirli,‖ Raik Grünberg,⊥ Ernst Oberortner,# Matthew Pocock,@

Michael Bissell,4 Curtis Madsen,‖ Tramy Nguyen,∇ Michael Zhang,∇

Zhen Zhang,∇ Zach Zundel,†† Douglas Densmore,† John H. Gennari,‡‡ Anil

Wipat,‖ Herbert M. Sauro,§ and Chris J. Myers∇

Department of Electrical and Computer Engineering, Boston University, Boston, MA,

Raytheon BBN Technologies, Cambridge, MA, Thermo Fisher Scientific, Carlsbad, CA,

Department of Bioengineering, University of Washington, Seattle, WA, School of

Computing Science, Newcastle University, Newcastle upon Tyne, UK, Institute for

Research in Immunology and Cancer, University of Montreal, Montreal, Canada, U.S.

Department of Energy Joint Genome Institute, Walnut Creek, CA, Turing Ate My

Hamster Ltd, Newcastle upon Tyne, UK, Amyris, Inc., Emeryville, CA, Department of

Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, Department

of Bioengineering, University of Utah, Salt Lake City, UT, and Department of Biomedical

Informatics and Medical Education, University of Washington, Seattle, WA

E-mail: nicholasroehner@gmail.com

1



Abstract

The Synthetic Biology Open Language (SBOL) is a standard that enables collabo-

rative engineering of biological systems across different institutions and tools. SBOL

is developed through careful consideration of recent synthetic biology trends, real use

cases, and consensus among leading researchers in the field and members of commer-

cial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled

software tools can form an integrated, cross-organizational workflow to recapitulate the

design of one of the largest published genetic circuits to date, a 4-input AND sensor.

This design encompasses the structural components of the system, such as its DNA,

RNA, small molecules, and proteins, as well as the interactions between these compo-

nents that determine the system’s behavior/function. The demonstrated workflow and

resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange

of structural and functional specifications for genetic parts, devices, and the biological

systems in which they operate.

Introduction

Synthetic biology is a maturing scientific discipline that combines science and engineering in

order to design, build, and test novel biological systems aimed at a broad range of applica-

tions (1 –3 ). This includes the design and construction of entirely new synthetic biological

components and devices (4 –6 ), as well as the redesign of biological systems found in na-

∗To whom correspondence should be addressed
†Boston University
‡Raytheon BBN Technologies
¶Thermo Fisher Scientific
§University of Washington
‖Newcastle University
⊥University of Montreal
#DOE Joint Genome Institute
@Turing Ate My Hamster Ltd
4Amyris, Inc.
∇University of Utah
††University of Utah
‡‡University of Washington

2



ture (7 –9 ). Synthetic biology is often characterized in terms of the following key concepts:

predictable off-the-shelf components (such as parts and devices) with standard connections,

robust biological chassis (such as yeast, E. coli, and mammalian cells) that readily host these

components, standardized techniques for assembling components into increasingly sophisti-

cated functional systems (10 , 11 ), and standardized languages for specifying designs in order

to facilitate their exchange between investigators (12 –17 ).

A vital aspect of using standardized languages to specify designs is the ability to share

information on both the intended structure and function of a design (18 ). Sharing this

information facilitates useful collaboration between a wide variety of researchers and organi-

zations, satisfying the needs of both individual projects and related projects with common

data requirements. Examples of potential collaborators include experts on the design of

biological devices and systems, providers of genetic components, and experts on the process

of assembling genetic components into functioning devices and systems. Researchers who

share a design across different projects need information on both the structure and function

of the design’s constituent elements so that they can better predict experimental behavior,

understand experimental outcomes, and rectify any shortcomings of the design. Further-

more, as designs are communicated via publications or deposited into data repositories by

scientists and engineers (for example, see (19 –21 )), their long-term understanding and reuse

are dependent upon recording both their structural and functional details and the contextual

dependencies (22 ) of these details.

The difficulty of representing both the structural and the functional aspects of a design

is particularly acute in the biological sciences, where designs are transformed into living

systems and then proceed to interact in often poorly-understood ways with naturally oc-

curring cellular systems. The nature of biological systems is such that a design may have

to account for many different types of molecules and their functional interactions, including

DNA, RNA, proteins, and small molecules, among others. Previously, biologists have had

access to standards for effectively sharing sequence information (“structure”) (23 , 24 ) or

3



systems information (“function”) (25 , 26 ). These standards, however, lack the ability to

represent both types of information together in a manner that is well-suited to synthetic

biology.

The most basic and widely used standard sequence formats, such as FASTA (23 ), de-

scribe only raw nucleotide sequences. Another familiar data standard for many biologists

is GenBank (24 ), which represents sequences as linearly ordered sequence annotations that

describe local sequence features, such as coding sequences (CDS) or promoters. However,

GenBank cannot represent the higher-order organization of a design, nor partially complete

designs in which the length and arrangement of sub-sequences have not yet been fully deter-

mined.

Previous representations of the function of genetic constructs have come primarily from

systems biology and have focused on mathematically modeling the interactions between the

gene products of constructs and other molecules in the host cell or environment, such as

interactions between proteins and metabolites. However, current standards for systems biol-

ogy, such as the Systems Biology Markup Language (SBML) (25 ) and the Biological Pathway

Exchange (BioPAX) (26 ), do not explicitly represent the interaction of genetic structures

with other cellular species very well. For example, they typically cannot readily represent

the genetic architecture and sequence design involved in the interaction of a transcription

factor and RNA polymerase with a promoter to initiate transcription.

To better communicate designs and realize the vision of predictable engineering of bio-

logical systems (27 ), an open consortium of members of the synthetic biology community

is developing the Synthetic Biology Open Language (SBOL). SBOL version 1.1 (14 ) stan-

dardized the exchange of structural specifications of synthetic genetic designs, improving

over formats such as GenBank by capturing the hierarchical and heterarchical organization

of these designs. This includes the organization of DNA components into composite DNA

components that represent transcriptional units, operons, and plasmids, as well as partially

complete designs with sequences that are not yet fully determined.

4



The recently released SBOL 2.0 (13 ) extends the structural representation of SBOL to

non-DNA components and combines this structural, sequence feature-based representation

with the core aspects of functional, systems biology-based representations, in particular

molecular interactions and biological modules with inputs and outputs. This joint structural-

functional representation enables synthetic biologists to share the lower- and higher-order

structure and function of any biological system and identify key relevant features or potential

problems in its design.

SBOL 2.0 was accepted by the synthetic biology community after several proposals span-

ning a period of four years since the release of SBOL 1.0. Some of these proposals (28 , 29 )

were documented and published, eventually contributing to the official SBOL 2.0 specifica-

tion (13 ). SBOL 2.0 is already used in several software tools and it is expected that the

number of tools adopting the standard will continue to grow. Software libraries that facil-

itate the use of SBOL by these tools are already freely available in different programming

languages and are listed on the SBOL website1.

This paper examines how SBOL 2.0 can enable an integrated workflow involving a va-

riety of tools and organizations. Following a brief review of the key classes of information

represented in SBOL 2.0, this paper analyzes two use cases. The first use case is a microRNA

detector inspired by RNA logic circuits that were recently used to detect cells with a cancer-

ous phenotype (30 ). The detector circuit described here is a simplified version of the original,

consisting of a microRNA detector that turns off a reporter gene in the presence of a cognate

microRNA. Although relatively straightforward, no prior standard format could be used to

specify this design, highlighting the importance of the SBOL data model and its ability to

connect biological structure and function, as well as its versatility in representing data from

synthetic biology, systems biology, and biotechnology. The second use case recapitulates

the design of a 4-input AND sensor (31 ), one of the largest synthetic systems constructed

to date. This example illustrates how the SBOL data model can support emerging trends

1http://www.sbolstandard.org

5



towards increasingly sophisticated and complex biological engineering, demonstrating how

multiple organizations using separate software tools can execute an integrated workflow that

includes both sequence design (CAD) and functional simulation (CAE).

Overview of SBOL 2.0

Here, we briefly introduce the core concepts of SBOL 2.0 in order to better explain the use

cases that follow. In general, SBOL 2.0 not only enables the representation of structural

features of genetic designs and their composition, but also makes it possible to document

the functional roles of designs and the interactions between their constituent DNA, RNA,

protein, and small molecule components, among others. The primary classes of information

captured by version 2.0 of the SBOL data model and their relationships to each other are

outlined in Figure 1.

Figure 1: Primary classes of information represented by version 2.0 of the SBOL standard and
their relationships. Solid lines represent direct relationships between these classes, whereas
dashed lines indicate indirect relationships with the help of intermediate classes that are
not shown here. The ComponentDefinition and ModuleDefinition classes are the basic
units for the hierarchical composition of genetic structure and function, respectively. Primary
structures, such as nucleotide sequences, are represented using the Sequence class. The
Model class links a ModuleDefinition with quantitative or qualitative models in other
standard formats, such as SBML. These primary classes can be grouped using the Collection
class. Application-specific data that are outside the scope of the SBOL data model can be
captured using the GenericTopLevel class.

SBOL 2.0 includes two main classes that match the structural/functional distinction

6



above:

• The ComponentDefinition class describes the structural aspects of a genetic design,

such as its nucleic acid sequences, proteins, and metabolites. Each ComponentDefi-

nition can be associated with a Sequence in order to specify its primary structure. In

addition, ComponentDefinitions use terms from ontologies (controlled vocabularies)

to document their type (for example, DNA, RNA, or protein) and biological role(s)

(for example, promoter, mRNA, or transcription factor). Lastly, as the structure of

a design scales in complexity, ComponentDefinitions can be reused and organized

into a hierarchy of subcomponents. The exact locations of subcomponents or regions

of interest can be specified using sequence annotations, while partial orderings of sub-

components can be specified using sequence constraints.

• The ModuleDefinition class effectively groups components that work together to

perform an intended function and describes the component Interactions required to

implement this function, such as binding reactions or repression and activation rela-

tionships. Each ModuleDefinition can also use the Model class to document and

link to external models written in standards other than SBOL, such as SBML (25 ) and

CellML (32 ). Finally, as the function of a design scales in complexity, ModuleDefi-

nitions can be reused and organized into a hierarchy of submodules that documents

the connections between the input and output components of each submodule.

A microRNA (miRNA) detector is an example of a device with a diversity of biological

structures and functions that can be specified using SBOL 2.0. Figure 2 is a combination of

a genetic circuit diagram and a pathway/network diagram that illustrates how SBOL can be

used in this way, integrating knowledge from both synthetic biology and systems biology. In

particular, Figure 2 shows how the miRNA detector can be specified abstractly as a Module

Definition with a miRNA input and an X-gal output, and in greater detail as a set of DNA,

RNA, and protein components and their Interactions, including transcription, translation,

7



catalysis, and degradation.

Figure 2: Visualization of using the SBOL 2.0 data model to capture the design of a miRNA
detector. In this design, a miRNA input shuts off a lacZ reporter by activating the degra-
dation of its mRNA. ComponentDefinitions are represented using colored glyphs labeled
with SO and BioPAX terms and associated with structural data (primary sequences). Each
DNA ComponentDefinition is represented using a glyph from the SBOL Visual standard
(33 , 34 ). The degradation of the lacZ transcript is an Interaction activated by a miRNA
participant and is represented by a gray box labeled with SBO terms. This Interaction
is activated by a miRNA input. Other Interactions are represented by arrows, including
transcription, translation, and enzyme catalysis (which converts the substrate X-gal into a
blue product). The bounding black box represents the overall ModuleDefinition, with
inputs and outputs indicated by dashed lines.

Also included in Figure 2 are the ontology terms that decorate each SBOL entity and

describe their types and roles. Specifically, terms taken from the BioPAX ontology and

Sequence Ontology (SO) (35 ) indicate the type and role of each ComponentDefinition,

respectively, while terms taken from the System Biology Ontology (SBO) (36 ) document the

different types of Interactions and the roles that components play in them. The SBOL

2.0 standard unifies many different ontologies into a coherent model for biological design,

combining perspectives from synthetic and systems biology and demonstrating interoperabil-

8



ity between many different standards. Interoperability is crucial to a strong and versatile

standard that fulfills many different use cases from related fields. This spirit empowers the

SBOL standard to serve as a platform for CAD, automation, and closer collaboration in the

synthetic biology community. A more detailed description of the SBOL 2.0 data model can

be found in the Supporting Information and the official SBOL 2.0 specification (13 ).

Results

A standard can enable and aid in the automated orchestration of multiple software tools

at collaborating organizations. In addition, the ability of a standard to associate struc-

tural, manufacturing specifications with a parameterized design space has proven extremely

valuable to many other engineering disciplines. Such advances in automated design have

revolutionized printed circuit board design, for example. The SBOL 2.0 standard enables

similar advances in bioengineering.

In Figure 3 we illustrate the workflow capabilities of SBOL 2.0 with respect to state-of-

the-art synthetic biology design. The workflow follows a formalized engineering approach

that couples computer-aided engineering (CAE) (the dynamic simulation of systems) with

computer-aided design (CAD) (the physical specification of a design for manufacturing).

This extends our previous work using SBOL 1.1 to couple CAD with computer-aided manu-

facturing (CAM) (the assembly and synthesis of DNA), which is an integral task in synthetic

biology.

In particular, Figure 3 shows one iteration in which a team of synthetic biologists cooper-

ates to design the structure and function of a genetic circuit from the bottom up. Given an

abstract functional specification for a genetic logic circuit, the team obtains the sequences of

the requisite DNA components from public repositories and then composes the DNA compo-

nents into genetic constructs. These intermediate constructs are then passed to circuit CAE

tools to compose a genetic circuit design and link it to a mathematical model describing the

9



system’s behavior. Ultimately, the team stores the circuit designs and its associated system

models in appropriate repositories in order to support the reuse of the designs in similar

experiments and more complex designs.

Sequence CAD

Parts Repositories

SBOL

SBOL Designer, DNAplotlib

Circuit CAE
Cello, iBioSim

Figure 3: An SBOL-enabled workflow for computer-aided design (CAD) and engineering
(CAE) of genetic circuits. Examples of relevant SBOL-compliant tools, repositories, and
organizations that develop the tools are shown next to each step in the workflow. The
individual tools are described in greater detail later when discussing the application of the
workflow to the design of a 4-input AND sensor.

Design of a 4-input AND Sensor

As an example of what can be accomplished using the SBOL-enabled workflow described

in the previous section, we now consider applying this workflow to the design of a 4-input

AND sensor that was originally designed and tested by Moon et al. (31 ). This example

demonstrates:

1. Storage and distribution of SBOL data and linked data from other standards via public

or shareable repositories.

10



2. The ability of SBOL 2.0 to connect structural design tools (for example, sequence

editors and construct design tools) and functional design tools (for example, circuit

design tools and simulators).

3. The backwards compatibility of SBOL 2.0, which allows for continued integration of

SBOL 1.1 tools and files.

4. The interchange of SBOL 2.0 with more quantitative function-centric standards, such

as SBML (25 ) and CellML (32 ), as well as with structure-centric standards, such as

FASTA (23 ) and GenBank (24 ) (via their conversion to SBOL 1.1).

As shown in Figure 4, the first step in the applied workflow for designing the 4-input AND

sensor is to obtain the necessary DNA components from publicly accessible repositories. All

named promoters and CDSs were obtained from the JBEI-ICE repository (19 ) as SBOL 1.1

files. Unfortunately, the original publication did not provide identifiers for the constitutive

promoter, ribosome binding sites (RBSs), and terminators in this circuit, and its authors

were unable to locate the sequences for these components when contacted. This experience

motivates the importance of using standards such as SBOL to capture design information

at the time of publication. As a workaround, we obtained DNA sequences for a constitutive

promoter, ribosome binding site, and terminator from the iGEM registry2 (37 ).

During the second step of the applied workflow, these DNA components are composed

into the constructs making up the 4-input AND sensor using the University of Washington’s

SBOL Designer tool3 and a version of MIT’s DNAplotlib4 (modified by the University of

Washington). In particular, the modified DNAplotlib was used to compose the constructs

for the araC and ipgC genes, while SBOL Designer was used to compose all other constructs.

The resulting composite DNA components are then exported as SBOL 1.1 files and sent to

the University of Utah for the third step of the applied workflow, circuit design.

2http://parts.igem.org/
3http://clarkparsia.github.io/sbol
4https://github.com/SynBioDex/dnaplotlib

11



tetR exsD exsA
pTet

luxR exsC
pLux

aTc Sensor

araC ipgC
pBAD

AHL Sensor

lacI mxiE
pTac

IPTG Sensor

L-Arabinose Sensor

sicA

rfp

invF

pipaH

pexsC

psicA

in

in

in

in in

in

in

in

out

out

out

out

IpgC AND MxiE

SicA AND InvF
out

out

in

in
in out

ExsC AND ExsDA

in

in

in

in

out

out

L-Arabinose AND IPTG AND AHL AND aTc Sensor

tetR

exsD

exsA

pTet

luxR

exsC

pLux

araC

ipgC

pBAD

lacI

mxiE

pTac

sicA

rfp

invF

pipaH

pexsC

psicA

luxR

exsC
pLux

araC

ipgC
pBAD

lacI

mxiE
pTac

sicA

rfp

invFpipaH pexsC

psicA

DNAplotlib SBOL Designer

iBioSim Cello

tetR exsD exsA
pTet

aTc Sensor

in

outout

1. Import DNA Components

2. Design Constructs

3. Design Circuits

4. Store Circuit Designs

Figure 4: SBOL-enabled workflow for genetic circuit design applied to a 4-input AND sensor.

12



During the circuit design step, all constructs designed in previous steps are imported

into the University of Utah’s iBioSim tool (38 ). Note that during import, all SBOL 1.1

files are converted to SBOL 2.0 using native functionality available in the Java library for

SBOL 2.0, libSBOLj (39 ). This conversion is necessary to enable the addition of new classes

of data only found in SBOL 2.0, including non-DNA components, modules with designated

inputs and outputs, and interactions between components. The entire 4-input sensor genetic

circuit design was composed using iBioSim, with the exception of the aTc sensor, which was

designed using MIT/Boston University’s Cello software5 (40 , 41 ) and exported to iBioSim

as SBOL 2.0. Simultaneously, iBioSim is used to construct a quantitative model of the 4-

input AND sensor’s behavior written in SBML (25 ). This SBML model is then simulated

to check its functional correctness for different parameter sets. In order to link the SBOL

circuit design to its SBML model, an instance of the SBOL Model class is included in the

SBOL circuit design. To link in the opposite direction, the SBML model is annotated with

SBOL using the scheme described in (42 ).

During the final step of the applied workflow, the SBOL files encoding the 4-input AND

sensor circuit design are deposited into Newcastle University’s SBOL Stack repository (21 ).

Consequently, the qualitative structure and function of the genetic circuit design are doc-

umented in a publicly accessible resource, where they can be reused in other designs and

linked by referring publications. Both the SBOL and SBML files for the 4-input AND sensor

are available in the Supporting Information of this manuscript.

Discussion

Through collaborative recapitulation of the design of a 4-input AND sensor, one of the largest

genetic circuits to date (31 ), we have demonstrated how SBOL 2.0 can enable workflows for

rapidly creating and sharing more diverse, complete descriptions of structure and function in

biological design. Notably, once the necessary interfaces between people and software were

5https://github.com/CIDARLAB/cello

13



established to support the workflow described in this manuscript, the actual design process

was able to be executed quickly, taking less than a day.

The ability to establish efficient workflows such as this represents significant progress

toward one of the core goals of synthetic biology software development: to give users the

ability to design a system, demonstrate its functionality through simulation, and associate

this functional design with the structural elements needed to assemble it. As in other areas

of engineering, it is expected that flexible workflows comprising many tools are likely to be

much more effective and sustainable than monolithic tools. As such, a key need to meet this

goal has been the development of a suitable data exchange format that would permit the

community to exchange both functional and structural information in a defined, extensible,

and shareable format. The SBOL 2.0 standard is extremely versatile, permitting synthetic

biologists to create, share, and publish functional and structural descriptions of designs

ranging from simple DNA components to genes, networks, pathways, and whole cells. The

standard also enables scientists to link these descriptions to quantitative behavioral models

written in other standards, such as CellML (43 ), SBML (44 ), and BNGL (45 ).

Even a versatile standard like SBOL 2.0, however, does not completely solve the problem

of information exchange. As previously discussed, a key strength of SBOL 2.0 is that it

permits users to represent biological designs in nearly any hierarchical, modular form that

they might require, provided that the appropriate ontology terms for specifying the biological

structures and functions that make up the design are available. Thus, groups of users can

easily reuse and extend their designs as their projects progress. This freedom, however,

can also interfere with the ability to exchange information. For example, if two groups

choose different ontologies to represent information about the function of components in

their system, then it may not be clear how to translate between those representations. To

mitigate this concern, we have incorporated recommendations into the standard on which

ontology terms to use and how to use them, recommendations which were instrumental for

realizing and executing the workflow reported in this paper.

14



As workflows continue to be developed and integrated across more use cases and domains,

such recommendations and best practices will need to be further elaborated. We anticipate

that decisions of this type will best be informed by the actual experiences of various working

groups as the standard becomes more widely used. The lessons learned will inform the future

development of the SBOL standard, especially in codifying different patterns of SBOL usage

for different subfields of synthetic biology, such as the engineering of biosynthetic pathways,

genetic circuits, and protein-protein interaction networks. The continued development of

new tools that use SBOL and their adoption by the wider scientific community will thus also

be critical to improving the standard.

During the development of the demonstrated workflow, we have found that many soft-

ware tools and repositories still support the export of data conforming to the SBOL 1.1

specification. The primary reason for this is that the SBOL 2.0 specification is fairly new.

Therefore, many of the DNA sequences exchanged in the workflow are captured in SBOL

1.1 files that are later automatically converted to SBOL 2.0 files using libSBOLj (39 ), for

example. The support of automated conversion between different versions of SBOL ensures

backward compatibility of tools and files and eases the process of upgrading to the most

current version of the standard.

By encouraging the adoption and use of version 2.0 of the SBOL standard, we seek to

improve the reproducibility of results in the field by supporting the development of tools

that aid in the engineering of biological systems. We encourage biologists, developers, and

managers interested in using our tools to visit the SBOL website, sbolstandard.org. Prac-

titioners who wish to actively participate in the development of this standard should contact

the SBOL editors at editors@sbolstandard.org.

Finally, the SBOL Developers Group will continue its open community process of devel-

oping extensions to the SBOL standard beyond version 2.0. For example, there is a growing

consensus within the community concerning the need to specify the context-dependence of

biological designs. That is, there is a clear need to express the fact that designs will often

15



work in one host organism, but work differently, or not at all, in a second host. To address

this issue, a working group has been formed to discuss how to express this information within

SBOL 2.0 and what modifications are necessary to support the specification of host context.

Similar working groups are likely to be formed in other areas, such as the specification of

assembly protocols, sequencing results, and combinatorial library design. These working

groups will be driven by the evolving priorities and needs of the community, either to de-

velop extensions to the SBOL standard or to develop best practices for interfacing SBOL

with other standards that represent and communicate data relevant to biological design.

Methods

DNAplotlib

The genetic constructs for the arabinose sensor module were composed programmatically

using Python scripts and DNAplotlib, an open-source Python package under development

at MIT. DNAplotlib makes it easy to create custom figures for data visualization and pub-

lication and was used to generate the SBOL Visual (33 , 34 ) glyphs in the figures of this

manuscript. DNAplotlib has undergone further extension at the University of Washington

to support reading and writing of SBOL version 1.1 and rendering of SBOL data.

The promoters and coding sequences of the sensor were imported into DNAplotlib from

the JBEI-ICE repository as SBOL files. The ribosome binding sites and terminators were

imported separately as SBOL files from the iGEM parts registry. These components were

then composed into a single construct and exported as an SBOL version 1.1 file.

SBOL Designer

SBOL Designer is a user-friendly tool for creating and modifying genetic constructs that

make up genetic circuits and other biological systems. Individual DNA components are

displayed as SBOL Visual (33 , 34 ) glyphs in a straightforward graphical user interface. DNA

16



components can be imported from repositories or created directly within SBOL Designer

before being composed hierarchically with or without complete sequences. After a design is

finished, SBOL Designer can export it as an SBOL file.

To design many of the genetic constructs for the 4-input AND sensor, sequences for

individual promoters, RBSs, etc., were obtained from the iGEM registry and used to create

elementary DNA components in SBOL Designer. Other DNA components were imported

as SBOL files from the JBEI-ICE repository. These components were then composed using

SBOL Designer’s point-and-click interface to form composite DNA components for each gene

and exported as SBOL documents to iBioSim. Note that SBOL Designer is only capable of

creating and exporting data adhering to version 1.1 of the SBOL data model. In order to

add information on higher-order function, this data must be converted to SBOL 2.0 using

libSBOLj (39 ), as done in this workflow with iBioSim. A newer version of SBOL Designer6

is currently being developed at the University of Utah to support SBOL 2.0 and integrate

with the SBOL Stack, a repository in this workflow.

Cello

Cello (40 , 41 ) is a tool developed at Boston University and MIT for automatically convert-

ing combinational logic specifications written in Verilog (46 ) to complete DNA sequences

encoding transcriptional logic circuits. Cello takes as input a Verilog file and a User Con-

straint File (UCF) containing data on the structure and performance of a library of genetic

NOT and NOR gates, input promoters, and output CDSs. Cello can export data in a variety

of formats, including Eugene (15 ) and SBOL 2.0.

As part of the workflow described in this manuscript, Cello was used to design the

aTc sensor module from a Verilog file describing an inverter and a custom UCF extending

the default Cello UCF with a constitutive input promoter and the exsDA output CDSs

(see Figure 4). Typically, Cello is used to design transcriptional logic circuits that use

6https://github.com/SynBioDex/SBOLDesigner

17



inducible promoters as inputs, leaving out the portions of the circuit that express the small

molecule-sensitive transcription factors that regulate these promoters. For the purposes of

this manuscript, a constitutive input promoter was added to the UCF in order to recapitulate

the design of the 4-input AND sensor as presented in (31 ). Also note that Cello can be used

to design larger circuits than the aTc sensor module shown here.

iBioSim

The last tool in the workflow is iBioSim (38 ). iBioSim is a Genetic Design Automation

(GDA) tool developed at the University of Utah that is capable of modeling, visualizing,

and simulating genetic circuits. Genetic circuits are primarily represented in iBioSim using

SBML (25 ). While SBOL is used to represent the qualitative structure and function of

these circuits, SBML is used to mathematically define their quantitative behavior. Since

both representations are useful for different purposes, converters between the two standards

have been developed and implemented in iBioSim (47 , 48 ).

In the genetic circuit design workflow discussed in this manuscript, the 4-input AND

sensor was modeled in iBioSim (38 ) as SBML annotated with SBOL (42 ) and SBO (36 )

terms to indicate which chemical species and reactions represent genetic components and

their interactions. This annotation scheme facilitates the conversion between SBML and

SBOL. In the case of the 4-input AND sensor, its SBML model was manually annotated

with DNA components and constructs imported from SBOL Designer and DNAplotlib as

SBOL 1.1 files and converted to SBOL 2.0 using libSBOLj (39 ). Note that the SBML for

the aTc sensor did not need to be manually annotated in this way, since it was imported

from Cello as SBOL 2.0 and converted to SBOL-annotated SBML using the SBOL-to-SBML

converter described in (48 ). Once composed, the overall SBOL-annotated SBML model for

the whole 4-input AND sensor was converted to a SBOL 2.0 file using the SBML-to-SBOL

converter described in (47 ) and stored in the SBOL Stack repository (21 ).

18



SBOL Stack

The SBOL Stack (21 ) is a Resource Description Framework (RDF) (49 ) database developed

by Newcastle University that has been specifically designed for storing and sharing SBOL

data. Data in the Stack is stored in triplestore repositories where it can be accessed using

SPARQL queries (50 ), a provided RESTful API, or a provided Web interface. The SBOL

Stack takes advantage of the fact that SBOL data is RDF and stores that data as RDF

triples instead of storing actual files. By storing the data as triples, the Stack is able to

perform automatic data integration. Thus, data attached to resources that use the same

URI are combined to help form a more complete picture of the resource.

In the workflow presented in this paper, the SBOL files describing the 4-input AND

sensor designed and constructed by the other tools were deposited into Newcastle’s publicly

facing instance of the SBOL Stack. This RDF data is now available for users to query

and download using one of the aforementioned methods of accessing the data in the Stack.

Additionally, if more data is uploaded to the Stack concerning any of the components used

in the 4-input AND sensor, then this data is automatically integrated with the data already

present, allowing future users to download an SBOL document containing more complete

information on each component.

Acknowledgement

This material is based upon work supported by National Science Foundation under grants

No. DBI-1355909 and DBI-1356401, and the Engineering and Physical Sciences Research

Council under grant EP/J02175X/1. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author(s) and do not necessarily reflect

the views of these funding agencies. We thank Bryan Der (MIT), Oge Nnadi (JBEI), and

James McLaughlin (Newcastle University) for their support in demonstrating the workflow

presented in this manuscript.

19



Supporting Information Available

The supporting information consists of a zip archive that contains a supplementary PDF

document and two iBioSim project directories. The supplementary document describes

version 2.0 of the SBOL data model, serialization, and libraries in greater detail, while the

project directories contain SBOL and SBML files describing the miRNA sensor and 4-input

sensor. In addition, the project directory for the 4-input AND sensor contains time-series

simulation data generated by iBioSim from the SBML files for the design.

This material is available free of charge via the Internet at http://pubs.acs.org/.

20



References

1. Benenson, Y. (2012) Biomolecular computing systems: principles, progress and potential.

Nature Reviews of Genetics 13, 455–468.

2. Woolston, B., Edgar, S., and Stephanopoulos, G. (2013) Metabolic Engineering: past

and future. Annual Review of Chemical and Biomolecular Engineering 4, 259–288.

3. Markson, J., and Elowitz, M. (2014) Synthetic Biology of Multicellular Systems: New

Platforms and Applications for Animal Cells and Organisms. ACS synthetic biology 3,

875–876.

4. Rhodius, V., Segall-Shapiro, T., Sharon, B., Ghodasara, A., Orlova, E., Tabakh, H.,

Burkhardt, D. H., Clancy, K., Peterson, T., Gross, C., and Voigt, C. (2013) Design of

orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters.

Molecular systems biology 9, 702.

5. Stanton, B., Nielsen, A., Tamsir, A., Clancy, K., Peterson, T., and Voigt, C. (2014)

Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature chemical

biology 10, 99–105.

6. Y-J.Chen,, Liu, P., Nielsen, A., Brophy, J., Clancy, K., Peterson, T., and Voigt, C.

(2013) Characterization of 582 natural and synthetic terminators and quantification of

their design constraints. Nature methods 10, 659–664.

7. Temme, K., Zhao, D., and Voigt, C. (2012) Refactoring the nitrogen fixation gene cluster

from Klebsiella oxytoca. Proceedings of the National Academy of Sciences 109, 7085–

7090.

8. Cummings, M., Breitling, R., and Takano, E. (2014) Steps towards the synthetic biology

of polyketide biosynthesis. FEMS microbiology letters 351, 116–125.

21



9. Kim, E., Moore, B. S., and Yoon, Y. (2015) Reinvigorating natural product combinatorial

biosynthesis with synthetic biology. Nature chemical biology 11, 649–659.

10. Casini, A., Storch, M., Baldwin, G. S., and Ellis, T. (2015) Bricks and blueprints: meth-

ods and standards for DNA assembly. Nature Reviews Molecular Cell Biology 16, 568–

576.

11. Appleton, E., Tao, J., Haddock, T., and Densmore, D. (2014) Interactive assembly al-

gorithms for molecular cloning. Nature Methods 11, 657–662.

12. Wilson, E. H., Sagawa, S., Weis, J. W., Schubert, M. G., Bissell, M., Hawethorne, B.,

Reeves, C. D., Dean, J., and Platt, D. (2016) Genotype specification language. ACS

Synth. Biol. DOI: 10.1021/acssynbio.5b00194.

13. Bartley, B., Beal, J., Kevin, C., Goksel, M., Roehner, N., Oberortner, E., Pocock, M.,

Bissell, M., Madsen, C., Nguyen, T., Zhang, Z., Gennari, J. H., Myers, C., Wipat, A.,

and Sauro, H. (2015) Synthetic Biology Open Language (SBOL) Version 2.0.0. Journal

of Integrative Bioinformatics 12, 272.

14. Galdzicki, M. et al. (2014) SBOL: A community standard for communicating designs in

synthetic biology. Nature Biotechnology 32 .

15. Oberortner, E., Bhatia, S., Lindgren, E., and Densmore, D. (2014) A Rule-Based Design

Specification Language for Synthetic Biology. J. Emerg. Technol. Comput. Syst. 11,

25:1–25:19.

16. Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J. C.,

and Densmore, D. (2011) Eugene - a domain specific language for specifying and con-

straining synthetic biological parts, devices, and systems. PLoS One 46, e18882.

17. Beal, J., Lu, T., and Weiss, R. (2011) Automatic compilation from high-level biologically-

oriented programming language to genetic regulatory networks. PLoS ONE 6, e22490.

22



18. Stattery, W. (1971) An Index of US Voluntary Engineering Standards. National Stan-

dards Organizations in the US 329 .

19. Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and Keasling, J. D. (2012)

Design, implementation and practice of JBEI-ICE: an open source biological part registry

platform and tools. Nucleic Acids Research

20. iGEM Foundation, Registry of Standard Biological Parts. http://parts.igem.org (ac-

cessed October 1, 2015).

21. Madsen, C., Misirli, G., Pocock, M., Hallinan, J., and Wipat, A. SBOL Stack: The

One-stop-shop for Storing and Publishing Synthetic Biology Designs. 7th International

Workshop on Bio-Design Automation. 2015.

22. Cardinale, S., and Arkin, A. P. (2012) Contextualizing context for synthetic biology -

identifying causes of failure of synthetic biological systems. Biotechnology Journal 7,

856–866.

23. Pearson, W. R., and Lipman, D. J. (1988) Improved tools for biological sequence com-

parison. PNAS 85, 2444–2448.

24. Bilofsky, H. S., and Christian, B. (1988) The GenBank genetic sequence data bank.

Nucleic Acids Research 16, 1861–1863.

25. Hucka, M. et al. (2003) The Systems Biology Markup Language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics 19, 524–531.

26. Demir, E. et al. (2010) The BioPAX community standard for pathway data sharing.

Nature Biotechnology 28, 935–942.

27. Endy, D. (2005) Foundations for engineering biology. Nature 438, 449–453.

23



28. Roehner, N., Oberortner, E., Pocock, M., Beal, J., Clancy, K., Madsen, C., Misirli, G.,

Wipat, A., Sauro, H., and Myers, C. J. (2014) Proposed data model for the next version

of the Synthetic Biology Open Language. ACS synthetic biology 4, 57–71.

29. Galdzicki, M. et al. Recent Advances in the Synthetic Biology Open Language. 5th

International Workshop on Bio-Design Automation. 2013.

30. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., and Benenson, Y. (2011) Multi-input

RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–

1311.

31. Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A. (2012) Genetic

programs constructed from layered logic gates in single cells. Nature 491, 249–253.

32. Garny, A., Nickerson, D., Cooper, J., dos Santos, R. W., Miller, A., McKeever, S.,

Nielsen, P., and Hunter, P. (2008) CellML and associated tools and techniques. Philos.

Transact. A: Math Phys Eng Sci 366, 3017–43.

33. Quinn, J. Y. et al. (2015) SBOL Visual: A Graphical Language for Genetic Designs.

PLoS Biol. 13, e1002310.

34. Quinn, J., Beal, J., Bhatia, S., Cai, P., Chen, J., Clancy, K., Hillson, N. J., Galdzicki, M.,

Maheshwari, A., Umesh, P., Pocock, M., Rodriguez, C., Stan, G.-B., and Endy, D.

Synthetic Biology Open Language Visual (SBOL Visual), Version 1.0.0. BBF RFC 93,

2013; DOI: 1721.1/78249.

35. Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., and Ash-

burner, M. (2005) The Sequence Ontology: a tool for the unification of genome annota-

tions. Genome Biology 6, R44.

36. N. Juty and N. Novere, Encyclopedia of Systems Biology ; Springer New York, 2013; pp

2063–2063.

24



37. Vilanova, C., and Porcar, M. (2014) iGEM 2.0–refoundations for engineering biology.

Nature biotechnology 32, 420–424.

38. Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C., and Nguyen, N.-P. D.

(2009) iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics 25,

2848–2849.

39. Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M., Oberortner, E., Sami-

neni, M., Zundel, Z., Beal, J., Clancy, K., Wipat, A., and Myers, C. IEEE Life Science

Letters, In press.

40. Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychal-

ski, E. A., Ross, D., Densmore, D., and Voigt, C. A. (2016) Genetic circuit design

automation. Science 352 .

41. Vaidyanathan, P., Der, B., Bhatia, S., Roehner, N., Silva, R., Voigt, C., and Dens-

more, D. (2015) A Framework for Genetic Logic Synthesis. Proceedings of the IEEE PP,

1–12.

42. Roehner, N., and Myers, C. J. (2014) A methodology to annotate Systems Biology

Markup Language Models with the Synthetic Biology Open Language. ACS Synth. Biol.

3, 57–66.

43. Hedley, W. J., Nelson, M. R., Bellivant, D. P., and Nielsen, P. F. (2001) A short intro-

duction to CellML. Phil. Trans. R. Soc. Lond. A 359, 1073–1089.

44. Hucka, M., Bergmann, F. T., Hoops, S., Keating, S. M., Sahle, S., Schaff, J. C.,

Smith, L. P., and Wilkinson, D. J. The Systems Biology Markup Language (SBML):

language specification for Level 3 Version 1 Core. SBML Specification, 2010;

http://sbml.org/Documents/Specifications#SBML Level 3 Version 1 Core.

25



45. Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. Systems biology ; Springer, 2009; pp

113–167.

46. (2006) IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005

(Revision of IEEE Std 1364-2001) 1–560.

47. Nguyen, T., Roehner, N., Zundel, Z., and Myers, C. J. (2016) A Converter from the Sys-

tems Biology Markup Language to the Synthetic Biology Open Language. ACS Synthetic

Biology DOI: 10.1021/acssynbio.5b00212.

48. Roehner, N., Zhang, Z., Nguyen, T., and Myers, C. J. (2015) Generating Systems Biology

Markup Language Models from the Synthetic Biology Open Language. ACS Synthetic

Biology 4, 873–879.

49. Manola, F., and Miller, E., Eds. RDF Primer ; W3C Recommendation; World Wide Web

Consortium, 2004.

50. Prud’hommeaux, E., and Seaborne, A. SPARQL Query Language for RDF. W3C Rec-

ommendation, 2008; http://www.w3.org/TR/rdf-sparql-query/.

26



Graphical TOC Entry

Sequence CAD

Parts Repositories

SBOL

SBOL Designer, DNAplotlib

Circuit CAE
Cello, iBioSim

27


