
Specifying Combinatorial Designs with the Synthetic Biology Open
Language (SBOL)
Nicholas Roehner,*,† Bryan Bartley,† Jacob Beal,† James McLaughlin,‡ Matthew Pocock,§

Michael Zhang,∥ Zach Zundel,∥ and Chris J. Myers∥

†Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
‡Newcastle University, Newcastle upon Tyne NE1 7RU, UK
§Turing Ate My Hamster, Ltd., Tyne and Wear, NE27 0RT, UK
∥University of Utah, Salt Lake City, Utah 84112, United States

*S Supporting Information

ABSTRACT: As improvements in DNA synthesis technology and
assembly methods make combinatorial assembly of genetic constructs
increasingly accessible, methods for representing genetic constructs
likewise need to improve to handle the exponential growth of
combinatorial design space. To this end, we present a community
accepted extension of the SBOL data standard that allows for the
efficient and flexible encoding of combinatorial designs. This extension
includes data structures for representing genetic designs with “variable”
components that can be implemented by choosing one of many linked designs for existing genetic parts or constructs. We
demonstrate the representational power of the SBOL combinatorial design extension through case studies on metabolic
pathway design and genetic circuit design, and we report the expansion of the SBOLDesigner software tool to support users in
creating and modifying combinatorial designs in SBOL.

KEYWORDS: combinatorial design, combinatorial libraries, biodesign automation, standards, SBOL

Synthetic biologists are generating increasingly rich and
complex libraries of genetic construct variants using many

different techniques for the combinatorial assembly of genetic
parts.1−5 Such combinatorial libraries can play an important
role in genetic design by allowing designers to explore the
impact of part choice, order, and orientation on construct
behavior. In order to support the design of such libraries, an
expanding collection of tools and formalisms have been
developed to enable the specification, permutation, and
sampling of combinatorial genetic design spaces.6−9 In turn,
these tools and formalisms have given rise to the need for a
standard representation of combinatorial genetic designs in
order to enable sharing of such designs between tools and
laboratories as well as simplify human and machine reasoning
over them.
As a basis for this representation, we have chosen the

Synthetic Biology Open Language (SBOL), an existing
community standard for representing both structural and
functional aspects of genetic designs.10,11 SBOL has support
for hierarchical design, modular composition, and partial
specification, making it a natural fit for representing
combinatorial design templates and variables. Accordingly,
we have developed an extension of SBOL to represent
combinatorial designs, and we have incorporated this extension
into the SBOL 2.2 specification12 and SBOL software libraries
(www.sbolstandard.org/libsbol).13−15

■ RESULTS

Here we briefly summarize the data model for this extension
and discuss its application in two example use casesa library
of pathway variants to optimize enzyme expression,16 and a
library of genetic circuit variants to optimize logic gate
function2,17as well as in an updated version of the
SBOLDesigner software tool.18

Representing Combinatorial Design. Building on the
core data model of SBOL, the representation of combinatorial
design is a relatively lightweight extension. Namely, the
representation of a combinatorial design (a CombinatorialDer-
ivation) involves the specification of (1) a design template and
any constraints on its structure (a ComponentDefinition and
its sub-Components), (2) the variable portions of the template
and their cardinality (sub-Components specified by the
VariableComponents of the CombinatorialDerivation), and
(3) the variants or values that these variables can assume
(possible ComponentDefinitions for each sub-Component as
specified by the VariableComponents of the Combinator-
ialDerivation). SBOL does not require any particular algorithm
or data structure to be used in enumerating designs from a
combinatorial specification, but provides rules and best

Special Issue: IWBDA 2018

Received: February 28, 2019
Published: June 17, 2019

Technical Note

pubs.acs.org/synthbioCite This: ACS Synth. Biol. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acssynbio.9b00092
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

Ja
co

b 
B

ea
l o

n 
Ju

ly
 1

3,
 2

01
9 

at
 1

7:
55

:5
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

http://www.sbolstandard.org/libsbol
pubs.acs.org/synthbio
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.9b00092
http://dx.doi.org/10.1021/acssynbio.9b00092


practices for validating whether such designs are correct
realizations of their specification.
The new combinatorial data model of SBOL 2.2 consists of

two classes: the CombinatorialDerivation class and its
associated VariableComponent class (the latter is used to
elaborate the properties of the former). The Combinator-
ialDerivation class is used to link between the template for a
library of combinatorial designs and the sets of variables and
values that can fill in the template to form specific
combinations. The template is defined using a ComponentDe-
finition: ComponentDefinition is a base class of SBOL that can
be used to specify the structure of a biopolymer or other
molecule in a modular, hierarchical manner, along with
constraints on this structure. For instance, the ComponentDe-
finition for an abstract transcriptional unit (TU) might contain
sub-Components for a promoter, coding sequence (CDS), and
terminator (some or all having no specified Sequence), as well
as a set of SequenceConstraint objects to assert their relative
ordering and orientation. The CombinatorialDerivation class
can also be used to broadly recommend how to derive
individual designs from the template by setting its strategy
property. At present, two generic strategies are defined:
exhaustive enumeration of every possible design, or sampling
an unspecified subset.

The other class, VariableComponent, is used to specify how
the template of a CombinatorialDerivation is filled in to create
fully implemented designs. Each instance of the VariableCom-
ponent class specifies a set of available ComponentDefinition
variants that can define a sub-Component variable from the
template ComponentDefinition. These variant ComponentDe-
finitions can be aggregated individually or as part of an SBOL
Collection, or they can also be derived in accordance with
another CombinatorialDerivation (a variantDerivation), there-
by enabling the specification of a hierarchical combinatorial
design. The operator property of the VariableComponent then
specifies how many Component objects are expected to be
derived from the sub-Component variable with one of four
cardinalities: one, zero-or-one, zero-or-more, or one-or-more.
A more detailed description of the CombinatorialDerivation
and VariableComponent classes can be found in the SBOL 2.2
technical specification.12

Theorem 1. The expressive power of a CombinatorialDer-
ivation is equivalent to a regular language.
Proof. Assume an alphabet that includes all possible

ComponentDefinitions and that A and B are Combinator-
ialDerivations.
A CombinatorialDerivation with an empty template

ComponentDefinition results in the empty language, {ϵ}.

Figure 1. Representation of combinatorial designs for a violacein pathway (top) and Cello logic circuits (bottom) using SBOL. Instances of the
new combinatorial design classes are blue, with cardinalities shown as a number on each variable component.

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.9b00092
ACS Synth. Biol. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acssynbio.9b00092


A CombinatorialDerivation with a template ComponentDe-
finition that includes a single sub-Component, which has a
VariableComponent with operator “one”, a variable that refers
to this Component, and a variant that refers to a single
ComponentDefinition a results in the singleton language {a}.
Assume C is a CombinatorialDerivation that has a template

ComponentDefinition with two sub-Components in series, and
two VariableComponents with operator “one” that each refer
to one of the Components as a variable. If the VariableCom-
ponent that refers to the first Component has a variantDer-
ivation that refers to A and the VariableComponent that refers
to the second Component has a variantDerivation that refers
to B, then the result is the concatenation of A and B (i.e., A·B).
Assume C is a CombinatorialDerivation that has a template

ComponentDefinition with one sub-Component, and one
VariableComponent with operator “one” that refers to the
Component as a variable. If the VariableComponent has A and
B as variantDerivations, then the result is the union of A and B
(i.e., A ∪ B).
Assume C is a CombinatorialDerivation that has a template

ComponentDefinition with one sub-Component, and one
VariableComponent with operator “zero-or-more” that refers
to the Component as a variable. If the VariableComponent has

A as a variantDerivation, then the result is the Kleene star of A
(i.e., A*).

Use Case: Pathway Design. Figure 1A demonstrates how
SBOL can be used to encode the combinatorial design of a
library of 3125 violacein pathway variants originally designed
by the Dueber lab.16 The SBOL representation consists of a
two-level hierarchy of ComponentDefinition and Combinator-
ialDerivation objects, with root objects at the top of this
hierarchy and leaf objects at the bottom. The root
ComponentDefinition is a template that specifies the complete
ordering of five partially abstract TUs, each defined by a
ComponentDefinition containing an abstract promoter
followed by one of the enzyme CDSs from the violacein
pathway and the terminator tADH1, all with inline orientation.
The root CombinatorialDerivation then specifies that each of
the five TUs in the template should be filled in with one of five
possible TUs with different promoters as specified by a leaf
CombinatorialDerivation. Each of these leaf Combinatorial-
Derivations refers to the same set of five promoter variants but
refers to a different template ComponentDefinition with a
different enzyme CDS.

Use Case: Genetic Circuit Design. Figure 1B demon-
strates how SBOL can be used to encode the combinatorial

Figure 2. SBOLDesigner, a sequence-based computer-aided design tool, and its application to a combinatorial design encoded in SBOL. Each part
labeled with a grid symbol corresponds to a variable component that can be implemented by choosing one of multiple variant parts or constructs,
or potentially omitted if the variant operator includes “zero”.

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.9b00092
ACS Synth. Biol. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acssynbio.9b00092


design of all 1030 genetic circuit variants that can be
constructed from the Cello gate NOR/NOT gate library.
The key differences between this combinatorial design and that
of the violacein pathway are that the root CombinatorialDer-
ivation does not specify the relative order or orientation of any
of its 12 generic TUs, nor does it require that each of these
TUs be filled in (because each VariableComponent has a zero-
or-one operator). Consequently, the circuit derived from this
combinatorial design can contain any number of TUs up to 12,
and these TUs can have any ordering. In addition, each leaf
CombinatorialDerivation has a single zero-or-one Variable-
Component corresponding to the second promoter in the
template TU ComponentDefinition, thus capturing the fact
that each derived TU can have NOT or NOR logic (one
promoter or two promoters).
Use Case: SBOLDesigner. SBOLDesigner is a sequence-

based computer-aided design tool that supports creating and
modifying combinatorial designs represented using SBOL.18

We have expanded SBOLDesigner to support designs that
make use of the new combinatorial design extension. Figure 2
shows an example of the new interface being used to specify a
combinatorial design of a green fluorescent protein reporter
circuit (shown here on SBOLDesigner’s main canvas). In this
design, the promoter and CDS are described using
combinatorial variants, which can be edited using a variant
editor dialogue, shown here being applied to set the choices for
implementing the green fluorescent protein CDS. In this case,
each combination of promoter and CDS will be enumerated
with the same ribosome binding site and a hierarchically
defined double terminator.

■ DISCUSSION

Currently, the SBOL representation of combinatorial design is
equivalent in expressive power to a regular language. Though
not demonstrated by these use cases, SBOL can be used to
represent design patterns in which a particular component or
motif is repeated an indefinite number of times. For example,
this could be used to represent the design of a promoter with a
variable number of operator sites. Should the need arise to
represent palindromic design patterns, such as with a context-
free language, SBOL can be extended with additional types of
constraints to assert that the same number of components
must be derived from different parts of the template.
Many key cases of combinatorial library design can be

represented using SBOL with the new combinatorial design
extension, ranging from existing industrial applications in
optimizing biosynthetic pathways to current research in
controlling biological systems. This improves over prior
representations by integrating combinatorial design with
hierarchical, ontology-supported representation, thereby en-
abling unambiguous reasoning over multiple levels of design
abstraction and their relationship to other classes of
information (such as experimental products) and other sources
of metadata outside of the SBOL standard. We thus anticipate
that SBOL representation of combinatorial design will support
improved tooling and workflows, better reuse and attribution
of designs, faster engineering of circuits and components, and
novel applications across many subdomains of synthetic
biology.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssyn-
bio.9b00092.

ZIP archive containing two SBOL files (.xml file
extension) for the combinatorial designs from the
violacein pathways and Cello logic circuits use cases
(ZIP)
ZIP archive containing two SBOL files (.xml file
extension) for the combinatorial design and enumerated
designs from the GFP reporter use case (ZIP)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: nicholas.roehner@raytheon.com.
ORCID
Nicholas Roehner: 0000-0003-4957-1552
Bryan Bartley: 0000-0002-1597-4022
Michael Zhang: 0000-0002-1084-6734
Zach Zundel: 0000-0003-1355-6721
Chris J. Myers: 0000-0002-8762-8444
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors of this work are supported by the National
Science Foundation under Grant No., CCF-1748200 (C.M.),
DBI-1356041 (M.Z. and C.M.), #1522074 (N.R.), and
DARPA award HR0011-15-C-0084 (N.R.), and FA8750-17-
C-0229 (Z.Z. and C.M.). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the funding agencies. This document does not contain
technology or technical data controlled under either U.S.
International Traffic in Arms Regulation or U.S. Export
Administration Regulations.

■ REFERENCES
(1) Weber, E., Engler, C., Gruetzner, R., Werner, S., and Marillonnet,
S. (2011) A modular cloning system for standardized assembly of
multigene constructs. PLoS One 6, No. e16765.
(2) Woodruff, L. B., Gorochowski, T. E., Roehner, N., Mikkelsen, T.
S., Densmore, D., Gordon, D. B., Nicol, R., and Voigt, C. A. (2016)
Registry in a tube: multiplexed pools of retrievable parts for genetic
design space exploration. Nucleic Acids Res. 45, 1553−1565.
(3) Ellis, T., Adie, T., and Baldwin, G. S. (2011) DNA assembly for
synthetic biology: from parts to pathways and beyond. Integr. Biol. 3,
109−118.
(4) Cobb, R. E., Ning, J. C., and Zhao, H. (2014) DNA assembly
techniques for next-generation combinatorial biosynthesis of natural
products. J. Ind. Microbiol. Biotechnol. 41, 469−477.
(5) Engler, C., and Marillonnet, S. (2013) Synthetic Biology, pp 141−
156, Springer.
(6) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugene−a domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS One 6, No. e18882.
(7) Yang, K., Stracquadanio, G., Luo, J., Boeke, J. D., and Bader, J. S.
(2016) BioPartsBuilder: A synthetic biology tool for combinatorial
assembly of biological parts. Bioinformatics 32, 937−939.
(8) Roehner, N., Young, E. M., Voigt, C. A., Gordon, D. B., and
Densmore, D. (2016) Double Dutch: a tool for designing

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.9b00092
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acssynbio.9b00092
http://pubs.acs.org/doi/abs/10.1021/acssynbio.9b00092
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00092/suppl_file/sb9b00092_si_001.zip
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00092/suppl_file/sb9b00092_si_002.zip
mailto:nicholas.roehner@raytheon.com
http://orcid.org/0000-0003-4957-1552
http://orcid.org/0000-0002-1597-4022
http://orcid.org/0000-0002-1084-6734
http://orcid.org/0000-0003-1355-6721
http://orcid.org/0000-0002-8762-8444
http://dx.doi.org/10.1021/acssynbio.9b00092


combinatorial libraries of biological systems. ACS Synth. Biol. 5, 507−
517.
(9) Bhatia, S. P., Smanski, M. J., Voigt, C. A., and Densmore, D. M.
(2017) Genetic design via combinatorial constraint specification. ACS
Synth. Biol. 6, 2130−2135.
(10) Galdzicki, M., et al. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for communicat-
ing designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
Computational Biology.
(11) Roehner, N., et al. (2016) Sharing Structure and Function in
Biological Design with SBOL 2.0. ACS Synth. Biol. 5, 498−506.
(12) Cox, R., et al. (2018) Synthetic biology open language (SBOL)
version 2.2.0. J. Integr. Bioinform., DOI: 10.1515/jib-2017-0074.
(13) Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M.,
Oberortner, E., Samineni, M., Zundel, Z., Beal, J., Clancy, K., Wipat,
A., and Myers, C. (2015) libSBOLj 2.0: a Java library to support
SBOL 2.0. IEEE Life Sciences Letters 1, 34−37.
(14) Bartley, B. A., Choi, K., Samineni, M., Zundel, Z., Nguyen, T.,
Myers, C. J., and Sauro, H. M. (2018) pySBOL: A Python Package for
Genetic Design Automation and Standardization. ACS Synth. Biol.,
DOI: 10.1021/acssynbio.8b00336.
(15) McLaughlin, J. A., Myers, C. J., Zundel, Z., Wilkinson, N.,
Atallah, C., and Wipat, A. (2019) sboljs: Bringing the Synthetic
Biology Open Language to the Web Browser. ACS Synth. Biol. 8,
191−193.
(16) Lee, M. E., Aswani, A., Han, A. S., Tomlin, C. J., and Dueber, J.
E. (2013) Expression-level optimization of a multi-enzyme pathway in
the absence of a high-throughput assay. Nucleic Acids Res. 41, 10668−
10678.
(17) Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P.,
Paralanov, V., Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C.
A. (2016) Genetic circuit design automation. Science 352, 352.
(18) Zhang, M., McLaughlin, J. A., Wipat, A., and Myers, C. J.
(2017) SBOLDesigner 2: an intuitive tool for structural genetic
design. ACS Synth. Biol. 6, 1150−1160.

ACS Synthetic Biology Technical Note

DOI: 10.1021/acssynbio.9b00092
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1515/jib-2017-0074
http://dx.doi.org/10.1021/acssynbio.8b00336
http://dx.doi.org/10.1021/acssynbio.9b00092

