
Capturing Multicellular System Designs Using Synthetic Biology
Open Language (SBOL)
Bradley Brown, Bryan Bartley, Jacob Beal, Jasmine E. Bird, Ángel Goñi-Moreno,
James Alastair McLaughlin, Göksel Mısırlı, Nicholas Roehner, David James Skelton, Chueh Loo Poh,
Irina Dana Ofiteru, Katherine James, and Anil Wipat*

Cite This: ACS Synth. Biol. 2020, 9, 2410−2417 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Synthetic biology aims to develop novel biological systems
and increase their reproducibility using engineering principles such as
standardization and modularization. It is important that these systems can
be represented and shared in a standard way to ensure they can be easily
understood, reproduced, and utilized by other researchers. The Synthetic
Biology Open Language (SBOL) is a data standard for sharing biological
designs and information about their implementation and characterization.
Previously, this standard has only been used to represent designs in
systems where the same design is implemented in every cell; however,
there is also much interest in multicellular systems, in which designs
involve a mixture of different types of cells with differing genotype and
phenotype. Here, we show how the SBOL standard can be used to
represent multicellular systems, and, hence, how researchers can better share designs with the community and reliably document
intended system functionality.

KEYWORDS: multicellular systems, microbial communities, Synthetic Biology Open Language (SBOL), data standards

The increasing popularity of synthetic biology has yielded a
wealth of biological systems that have been designed,

implemented, and characterized to various degrees.1,2 These
systems span a wide range of functionalities, from fundamental
genetic circuits such as oscillators3 and toggle switches,4 to
applied devices such as biosensors5 and microbial factories.6

To date, most synthetic biology systems have been
homogeneous in nature, meaning that every cell in the
population is intended to have both the same genotype and the
same phenotype. While this approach has yielded promising
results, the complexity and optimization of such systems can
become limited for certain applications.7 One reason for these
limitations is that the larger genetic circuits required by more-
complex systems can place cells under metabolic strain,
resulting in suboptimal performance. Another reason is that
elements in large and complex designs havw a tendency to be
drawn from many diverse sources, which have different optimal
environments.8 Therefore, the host cell chosen to express these
circuits hasa tendency to be a compromise that limits overall
performance. Finally, it is also the case that many applications
inherently involve cells with multiple distinct phenotypes, such
as organoid models9 and microbiome engineering.10

To tackle the issues mentioned above, there has been an
increased interest in multicellular biological designs that
involve more than one distinct population of cells and
interactions between populations. In such systems, the overall

design is split across the multiple cell populations. These
populations can be engineered to communicate with each
other, creating a co-culture of cells that, together, can perform
a desired function.11−16 This approach can reduce the
metabolic burden on individual cells, which now only have
to perform a fragment of the overall system.17 In addition,
different host cells can be chosen for each element of the
design, allowing optimal cells to be chosen for each element of
the design. This could be extended further to create designs
which involve both engineered and nonengineered cells.18

Splitting designs between cell populations can also assist
with the concept of modular design, where modules with
specific functions can be designed, shared, and easily reused in
other system designs. This modularity can also be achieved by
splitting designs across different plasmids, which are then
implemented in the same host.19 However, as this can already
be easily captured using SBOL (The Synthetic Biology Open
Language), it is not focused on here.

Received: April 1, 2020
Published: July 31, 2020

Research Articlepubs.acs.org/synthbio

© 2020 American Chemical Society
2410

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
IO

W
A

 o
n 

Ja
nu

ar
y 

8,
 2

02
1 

at
 1

4:
21

:0
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bradley+Brown"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bryan+Bartley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+Beal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jasmine+E.+Bird"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A%CC%81ngel+Gon%CC%83i-Moreno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+Alastair+McLaughlin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+Alastair+McLaughlin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Go%CC%88ksel+M%C4%B1s%C4%B1rl%C4%B1"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Roehner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+James+Skelton"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chueh+Loo+Poh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irina+Dana+Ofiteru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irina+Dana+Ofiteru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katherine+James"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anil+Wipat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.0c00176&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=agr1&ref=pdf
https://pubs.acs.org/toc/asbcd6/9/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/9?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf


One of the major hallmarks of synthetic biology is
standardization, which aims to increase the reproducibility of
engineered biological systems and facilitate reuse by other
researchers. To fully realize this aim, it is important that
information about the design, implementation, and character-
ization of engineered systems can be easily shared with and
understood by other members of the synthetic biology
community. SBOL20 has been developed by a community of
synthetic biologists to capture information about engineered
systems in a standardized format. In a similar fashion to the
way that file formats such as the GenBank flat file format
(GBF) were developed to capture information about natural
biological systems,21 SBOL enables the design-build-test cycle
to be standardized by storing the information required at each
stage. This information can detail designs, build plans,
implementation details, and experimental information/results.
SBOL aids the sharing of information between researchers and
laboratories and promotes more reliable documentation22.23

Previously, however, this standard has only been used to
represent homogeneous designs and has not explicitly been
used to represent strain or other aspects of host context. Here,
it is shown how the host context of a design can be represented
using SBOL, and how this can be further applied to represent
multicellular system designs.

■ METHODS
In this section, the relevant portions of the SBOL data model
are reviewed and it is shown how they may be used to
represent host context and multicellular systems. These
representational practices are based on SBOL version 2.3.0.24

Note that, in this discussion, the word “class” is used to refer
to types of entities in the SBOL data model.
Defining Parts, Devices, and Systems with the

ComponentDef inition and ModuleDef inition Classes.
The current SBOL data model has two main classes used to
capture biological designs: ComponentDef inition and Module-
Def inition. The ComponentDef inition class is usually used to
store information about physical structures, such as DNA and
proteins, whereas the ModuleDef inition class is used to group
biological entities together in a design in order to define the
functional interactions between such entities.
The designs captured can range in complexity, from the

representation of single parts (such as promoters, coding
sequences, proteins), to devices composed of multiple parts
(for instance, an expression construct), to complex systems
comprising many devices (for example a genetic biosensor). In
the case of devices and systems, each of the individual parts
must be described by a separate ComponentDef inition or
ModuleDef inition. The use of that part is then described within
a ModuleDef inition class, with the part being referenced using
the FunctionalComponent class.
The ModuleDef inition class may contain interactions

between biological entities in the design (for example, a
coding sequence (CDS) encoding a protein, which, in turn,
represses a promoter, or a small molecule inhibiting a protein),
whereas instances of ComponentDef inition may not. These
relationships are formally captured using two other SBOL
classes, Interaction and Participation: the Interaction class
specifies the type of interaction (e.g.; genetic production)
and contains instances of Participation giving the role played by
each interacting object (for example, a CDS as genetic
template and a protein as product). In addition, the
ComponentDef inition class has both type and role properties,

but ModuleDef inition has only role properties. The type
property in SBOL is used to describe the category within
which a biological entity falls (for example DNA molecule,
small molecule, protein), and the role property describes the
intended biological function for an entity or design. For
example, a metabolic pathway might have roles of “metabolic
process” and ‘small molecule biosynthetic process’ from the
Gene Ontology (GO),25 and a biosensor might have a role of
“response to chemical” also from GO.

Ontologies in SBOL. An ontology can be thought of as a
set of formal descriptions for specific terms and their
relationships. In synthetic biology, ontologies allow a stand-
ardized language to be used when describing biological
systems. Many separate ontologies are used in SBOL to better
describe entities within a system, and how those entities
interact. The SBOL-OWL ontology defines the relationships
between classes in the SBOL data model and terms from other
ontologies.26 For example, the role property used by instances
of the ComponentDef inition class is recommended to be
defined using terms taken from the Sequence Ontology
(SO).27 Examples of terms used in this property are
“Promoter” (SO:0000167), “Ribosome Entry Site”
(SO:0000139), and “CDS” (SO:0000316). Another key
ontology is the Systems Biology Ontology (SBO),28 which is
used for defining types for Interaction instances, such as
“Genetic Production” (SBO:0000589) and roles for Partic-
ipation instances, such as “Template” (SBO:0000645) and
“Product” (SBO:0000011). Other ontologies commonly used
in SBOL include the Gene Ontology (GO),25,29 and Chemical
Entities of Biological Interest (CHEBI).30

Representing Cells in SBOL. When attempting to
reproduce a previously designed multicellular system, it is
necessary to know some fundamental information about the
cells used. The most crucial information consists of the strains
that were used, any plasmids transformed into the cells, and
the expected functionality. By providing precise taxonomic
information, it can be ensured that the correct strains are used
when other researchers attempt to re-create a system, hence
increasing reproducibility. Finally, it is useful to record and
share the exact functionality of a design to ensure that future
users select the correct system for their desired application, and
to allow for informed modification of the system.
Using the classes and ontologies described in the section

above, a recommended approach for representing cells in a
biological system using SBOL has been developed. This
approach captures (i) taxonomy, (ii) interactions occurring
within the cell, and (iii) components inside the cell (for
example, DNA and small chemical molecules).
The approach uses an instance of the ModuleDef inition class

to represent a system that involves a specified type of cell
(Figure 1). Usage of the cell type is represented by an instance
of the FunctionalComponent class inside the ModuleDef inition,
whose definition is a ComponentDef inition instance that is used
to capture information about the species and strain of the cell
in the design. This ComponentDef inition has a type of “cell”
from the Gene Ontology (GO:0005623) and a role of
“physical compartment” (SBO:0000290). Taxonomic informa-
tion is captured by annotating the class instance with a URI
that leads to a description of the strain. As a best practice, and
where possible, the organism’s species and strain should be
defined by providing a link to the relevant entry in the National
Center for Biotechnology Information (NCBI) taxonomy
database. This standardized approach would allow for easier

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2411

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


automated retrieval of information about the organism. While a
link to an NCBI entry would be preferable, there are instances
where this may not be possible (for example, when using a
novel strain that is not yet recorded in NCBI). In these cases, it
is suggested that a different database, which does contain the
organism, is used. If the organism is not in any database, then a
description of the organism should be provided.
Other relevant entities, such as inducer molecules or plasmid

DNA, are also captured using instances of the FunctionalCom-
ponent class. Interactions that occur within the system are
captured using the Interaction and Participation classes, and
interactions that occur within the cell are specified by including
a Participation for the cell with a role of “physical compart-
ment”. An additional Interaction class instance can also be used
to explicitly define which entities are only present within the
cell and, therefore, not available to the rest of the system. This
interaction has a type of “containment” (SBO:0000469) and
has at least two participants: the cell, which has a role of
“physical compartment”, and one or more contained entities,
which have roles of “contained” (SBO:0000064) (Figure S1B
in the Supporting Information).
Note that when a cell is included in a SBOL design, it is

actually representing a “pool” of cells of that type. This is
similar to how, for example, in SBOL, genetic production of a
protein from a plasmid is interpreted as production of a pool of
some number of proteins from a collection of some number of

copies of the plasmid. Thus, for example, a containment
interaction such as in Figure S1B may be interpreted as stating:
“in this system, cells of type X contain plasmids of type Y”.

Representing Designs with Multiple Cells. Once cells
have been individually defined, they can be included in a
design for a multicellular system. In systems involving more
than one cell, it is important to capture the relative amounts of
each cell type, since this can have a large effect on the system’s
behavior. In addition, it is important to define how each cell
type interacts with other cells in the system, as these
intercellular interactions are usually the basis for a multicellular
system’s functionality. Intercellular interactions normally occur
by the same type of molecule being involved in processes of
different cells. For example, two cell types in the system may
require the same molecule for metabolic pathways to facilitate
cell growth and, hence, are competing for resources, or one cell
may produce a molecule that interacts with genetic circuits in a
second cell, which is the basis for intercellular communication.
Given the above representation for a single class of cells, the

same approach can be used to represent designs that
incorporate more than one cell type. At the simplest level,
one can simply have one FunctionalComponent for each cell
type and appropriate Interaction and Participation instances to
specify which aspects of the systems are associated with each
cell type.
One can also compose a multicellular system by using the

Module class to link together ModuleDef inition instances that
each define a design for a system containing a single type of
cell. Figure 2 shows an example of this approach. Here, each
Module instance has its definition pointing to the ModuleDe-
f inition class that is used to represent each single system
containing a cell type. In order to capture links between the
same entities present in multiple parts of the same design, the
Module classes contain instances of the MapsTo class. Here, a
MapsTo class with a refinement value of “merge” is used to link
FunctionalComponent classes that represent a cell type in the
multicellular system to the FunctionalComponent class used to
represent the same cell in the lower-level cell system design.
Instances of the MapsTo class are also used to capture the fact
that noncell entities in the multicellular system are identical to
those same entities when used in the cell system design, such
as a small molecule produced by one cell population and
utilized by another population.
Finally, it is recommended that the proportion of cell types

in a multicellular system can be captured using the Measure
class.31 The Measure class has value, unit, and type properties,
which allow specification both of a parameter and of how to

Figure 1. A cell-encoded depiction using SBOL Visual. A UML
diagram of the system shown here is represented in Figure S1 in the
Supporting Information. Using the best practices described here, each
cell should be contained within its own system. Entities, such as the
two molecules in this diagram, can be represented within the system
and the SBOL Interaction class can be used to convey that they are
contained within the cell. Additional interactions, not shown here for
clarity, can also be used to represent behavior such as active transport
of molecules into the cell, or binding of entities to the cell’s surface.
Taxonomic information about the cell in the system is captured using
an instance of the ComponentDef inition class, which is referenced from
the data structure representing the cell in the cell system. This allows
for a distinction between an organism in general, and an actual cell in
a system.

Figure 2. Multicellular system representation using SBOL Visual. A UML diagram of the system shown here is represented in Figure S2 in the
Supporting Information. In this diagram, a multicellular system composed of two different cells of different organism types is shown. The two cell
types are represented by cell system 1 and 2 and are depicted similarly to the cell in Figure 1. Here, the two cells contain molecule A, which is
imported into the cell from the extracellular environment. In SBOL, the multicellular system itself is represented by an instance of the
ModuleDef inition class. This ModuleDef inition contains elements representing the two cells and Molecule A, which are referenced from the original
cell systems.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2412

https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


interpret it in the context of the biological system.32 For
example, Figure 3 shows how an instance of the Measure class

can be used to annotate the Module instance in the
multicellular design, which represents a cell system. The
Measure instance can capture the proportion of cells using any
relevant units, including percentage, cell count, mass, or culture
volume. Note that the Measure class could be used to help
represent structured multicellular systems by describing the
location of cells in space.

■ RESULTS AND DISCUSSION
Having presented a method for using SBOL to represent
multicellular designs, in this section, it is applied to two recent
complex designs, one a sensor system distributed across three
types of cells, the other an inducible cell-sorting system with
two types of cells.
Example System: A Modular, Multicellular Biosensor.

Figure 4 shows an example of a multicellular system: the
Modular, Multicellular Biosensor (MMB) described by the
Newcastle team for the 2017 International Genetically
Engineered Machines (iGEM) competition.33 The MMB
consists of three cell types: (i) a detector cell that converts
the presence or absence of a specific stimulus into a genetic
signal; (ii) a processor cell that modifies the signal from the
detector cell in some way (for instance, amplifies it); and (iii) a
reporter cell that converts the genetic signal to a response, such
as color change or regulation of a metabolic pathway.
The three cell types in the MMB exhibit unidirectional

communication, in which the detector cell passes a signal to
the processor cell, and the processor cell passes a signal to the
reporter cell. This communication is enabled using two
orthogonal quorum sensing (QS) mechanisms. The LasIR
QS mechanism is used to pass the signal from the detector cell
to the processor cell. When the stimulus is present, the

detector cell produces the acylhomoserine lactone (AHL)
C12-HSL (homoserine lactone), which diffuses out of the
detector cell and activates gene expression in the processor cell.
The RhIIR QS mechanism is used to pass the signal from the
processor cell to the reporter cell in a similar way, except that
the processor cell produces AHL C4-HSL to activate gene
expression in the reporter cell.34

Figure 5 illustrates key aspects of the SBOL representation
of a variant of the detector cell in the MMB, in this case
designed to detect IPTG (isopropyl β-d-1-thiogalactopyrano-
side). A full XML file with this file can be found in the
Supporting Information. An instance of the ModuleDef inition
class is used to represent the system in which the IPTG
Detector cell is implemented, and a separate ComponentDef i-
nition instance is used to capture taxonomic information about
the cell; in this case, that it is an Escherichia coli DH5α strain.
This ComponentDef inition is used to define an instance of the
FunctionalComponent class, which represents the cell within the
system. The important molecules in the design are captured
using instances of the FunctionalComponent class, and trans-
formation of the cell with a plasmid can be captured in the
same way. However, the containment of the plasmid within the
cell must also be captured explicitly using a “containment”
interaction. This Interaction instance has the host cell and
plasmid DNA as participants with roles of “physical compart-
ment” and “contained”, respectively. Other molecules that are
produced by the cell and are not transported out into the
extracellular space can also be defined in this way.
It is possible to explicitly capture the movement of

molecules in/out of the cell if desired by using the Interaction
class to define specific transport mechanisms. This approach
can provide additional information that may be important,
such as if transportation is passive or relies on additional
cellular machinery. In this case, however, we do not add this
additional information, because it is not anticipated to be of
significance for the MMB design.
Figure 6 depicts how a design containing the IPTG Detector

Module and Processor Module from the MMB can be
captured using SBOL and the best practices described in the
Methods section. An XML file describing this system can also
be found in the Supporting Information. In this design, there
are two cell populations; each population contains identical
bacterial strains (E. coli DH5α) but are transformed with
different plasmids (either the IPTG Detector Plasmid or the
Blank Processor Plasmid). The design contains two
ModuleDef initions to capture information about each cell
type. These ModuleDef initions include one of the cell types as a
FunctionalComponent, that is defined by a ComponentDef inition

Figure 3. Diagram depicting how to capture cell ratios using SBOL. A
UML diagram of the system shown here is represented in Figure S3 in
the Supporting Information. This diagram shows a multicellular
system composed of two undefine cells: Cell 1 and Cell 2. Cell 1
comprises 30% of all cells in the system, and Cell 2 comprises the
other 70%.

Figure 4. Schematic of a generic modular, multicellular biosensor. The Modular, Multicellular Biosensor (MMB) Framework described by
Newcastle iGEM 2017 consists of three modules: a detector, a signal processor, and a reporter. These three modules are expressed on separate
plasmids and transformed to Escherichia coli cells. A co-culture of these three cell types is then created to form a functional biosensor. The signal
propagates from detector cells to processor cells to reporter cells, using AHL (acylhomoserine lactone)-based quorum sensing mechanisms.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2413

https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


that links to the NCBI entry from E. coli DH5α, which conveys
that both cell populations are composed of identical bacterial
strains. The ModuleDef initions representing the cell systems
also contain other important entities; in the case of the
Detector or Processor plasmid, this is an inducer molecule
(IPTG for the Detector system and C12-HSL for the
Processor system) and a molecule that is produced by the
cell (C12-HSL for the Detector system and C4-HSL for the
Processor system). Each of these entities are included as a
FunctionalComponent, which is defined by a ComponentDef ini-
tion. The small molecule C12-HSL is involved in both cell
systems, and therefore the FunctionalComponents in both
systems are defined by the same ComponentDef inition, which
directly conveys that this molecule pool is identical.
Each ModuleDef inition representing a cell system also

contains an Interaction, which defines the function of that
cell system. This design captures that, within the Detector cell,
the small molecule IPTG stimulates something on the
Detector plasmid to produce C12-HSL, and, within the
Processor cell, C12-HSL stimulates the production of C4-HSL.
More details could be included at this point (such as exact
mechanisms for how IPTG stimulates the production of C12-
HSL or the diffusion of the small molecules across the cell
walls), but, for the sake of clarity, this functionality is
abstracted here. Also note that, ordinarily, it would be
recommended that an additional Interaction class be included
to capture that the plasmids that are contained within each cell
(as depicted in Figure 1), but again this is omitted in Figure 6
for the sake of clarity.
Each cell system can now be included in a new

ModuleDef inition as a Module to convey that they are members
of a multicellular design. The other important biological
entities, such as the small molecules, can also be included in
the multicellular design as FunctionalComponents, along with
the cell populations. MapsTo classes are used to explicitly link
identical entities between the cell system designs and the
multicellular design. In this way, interactions between the cell
system become apparent. In this example, the small molecule
C12-HSL is produced by the Detector cell population, which
then stimulated production of C4-HSL in the Processor cell
population, therefore conveying unidirectional communication
from the Detector cells to the Processor cells.
Finally, the proportion of each cell population is captured by

annotating the Modules which represent each cell system in the

multicellular design with the Measure class. In the example in
Figure 6, each cell population is annotated as comprising
33.33% of the entire cell population. Since this does not add up
to 100%, it can be inferred that another cell population may be
required, or that there are unknown cell types in the design.

An Inducible Cell-Sorting System. Another prototypical
example of systems involving multiple types of cells are
pattern-formation systems based on cell sorting. Here, we
consider a recent work in this area on programmable cell
sorting,35,36 in which the pattern formed is controlled
predictably by mixing cells with high cadherin expression
and cells with low cadherin expression. If the cadherins used
are all the same, then cell motility will result in high-adhesion
cells gradually sorting into clusters with low-adhesion cells on
the outside of each cluster. The shape formed in this manner is
controlled by the fraction of high-adhesion cells: above a
critical threshold, they form a “sorted ball”, consisting of a
single large cluster with a surface of low-adhesion cells. At
lower fractions, the high-adhesion cells instead form “polka
dots”, with small clusters embedded in a unified background of
low-adhesion cells. Controlling cadherin expression (e.g., by
adding a synthetic expression cassette with an inducible
promoter) can further allow sorting behavior to be selected
dynamically.
Figure 7 shows an example of how such an inducible cell-

sorting system can be represented in SBOL, following the
recommendations given above. In this case, the two strains of
cells are both Chinese Hamster Ovary (CHO) cells, which are
natively low in cadherin expression and clump only weakly.
One of the two strains, however, has been transformed with
the addition of a synthetic Doxycycline-inducible cadherin
expression cassette. Within the ModuleDef inition describing
this system, each cell strain’s representation is based on a
FunctionalComponent, both using the same definition of a
CHO cell ComponentDef inition. However, the inducible CHO
(iCHO) cells are enhanced with an Interaction type of
containment that sets them as the physical compartment that
contains the FunctionalComponent instantiations of both the
cadherin cassette and the cadherin that is its output. The
production of cadherin from this cassette is represented by a
second Interaction (additional details of the structure of the
cassette and its induction by Doxycycline are omitted for space
purposes). The actual cell-to-cell adhesion relationships that
implement the sorting behavior are included in the

Figure 5. SBOL Visual depiction of the IPTG detector cell. A UML diagram of the system shown here is represented in Figure S4 in the
Supporting Information. This diagram depicts how the IPTG Detector Cell from the MMB in Figure 4 can be represented using SBOL. The cell’s
species is E. coli DH5α and it contains two small molecules (IPTG and C12-HSL), and the IPTG Detector Plasmid. In SBOL, these entities are
defined using ComponentDef inition classes and implemented within the cell as FunctionalComponent classes. The small molecules travel from the
extracellular environment into the cell, whereas the plasmid is contained only within the cell. This information is stored in SBOL using the direction
property of the FunctionalComponent class. An instance of the Interaction class could also be used to explicitly state this behavior, along with any
other information.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2414

https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig5&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


ModuleDef inition as more Interactions, each representing one
of the three adhesion relations in the system: CHO cells with
CHO cells, CHO cells with iCHO cells, and iCHO cells with
iCHO cells. Finally, the parameters and dynamics of this
system may be represented by attaching Measures to the
FunctionalComponents and a Model to the ModuleDef inition
(not shown).

■ DISCUSSION
While the SBOL data model has previously been used to
capture information about genetic constructs and intracellular
interactions, it has not been widely used to describe and share
information about multicellular systems. This paper describes a
set of best practices for how multicellular system designs can
be captured in a standard way using SBOL. Examples have
been provided to illustrate specific concepts and demonstrate

feasibility, and valid illustrative SBOL documents are available
(see the Supporting Information). The SBOL documents
provided were created using the currently available python
SBOL libraries.
The best practices described focus on ensuring that there is

sufficient flexibility to describe a wide variety of multicellular
designs, and incorporates the concept of modular design,
which is an important principle in synthetic biology. In
addition, to ensure that the approach described here is as
backward compatible as possible, terminology from ontologies
already widely used in the current version of SBOL are used,
and no new classes or features are required. In addition, it is
recommended that, where possible, existing resources such as
the NCBI database be used to reference in-depth information,
to avoid replication of information.
The best practices described here have been included with

the latest version of SBOL version 2 (2.3.0). Note that SBOL
version 3 is now available; however, most libraries and tools
are not compatible with this latest version and the underlying
data model is subject to change. Therefore, the approaches
described here for capturing information about multicellular
systems using SBOL 2 should be relevant for the coming years.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176.

XML files for SBOL Files 1−5 (ZIP)

Figure 6. SBOL Visual diagram showing intercellular interactions
using SBOL. A UML diagram of the system shown here is represented
in Figure S5 in the Supporting Information. This diagram depicts how
the IPTG Detector Cell and Blank Processor Cell variants of the
MMB interact. The two cell types are represented using the same
principles described by Figure 5. Both cells contain three entities
(captured in SBOL as FunctionalComponent objects). One of these
entities, the small molecule C12-HSL, is present in both cell systems:
in the Detector Cell, it has a role of “product”, and in the Processor
Cell, it has a role of “stimulator”. When both cell types are combined
into a multicellular system (represented in SBOL as a ModuleDef i-
nition), the sharing of this molecule is captured as a shared
FunctionalComponent. This feature can be used to capture intercellular
interactions in a nonexplicit way. In this case, the interaction between
the Detector Cells and Processor Cells can be derived as follows: The
Detector Cell produces C12-HSL, which stimulates the Processor
Cell to produce the small molecule C4-HSL.

Figure 7. Visual representation of a cell sorting system using SBOL. A
UML diagram of the system shown here is represented by Figure S6
in the Supporting Information. Two cell types are captured in this
system, both of which are CHO cells. The natural CHO cells (blue)
clump together weakly (shown by the association glyph). In SBOL,
this clumping is represented using the Interaction class. The iCHO
cells (purple) have been transfected with a cadherin cassette encoding
cadherin, which enhances cell clumping. This allows the iCHO cells
to clump together at a greater rate. The CHO and iCHO cells can
also associate to form a CHO−iCHO cell complex.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2415

https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00176/suppl_file/sb0c00176_si_001.zip
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?fig=fig7&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


UML diagrams for the systems described in the paper
(SBOL File 1); SBOL file representing the system
depicted in Figure 1 (SBOL File 2); SBOL file
representing the system depicted in Figure 2 (SBOL
File 3); SBOL file representing the system depicted in
Figure 5 (SBOL File 4); SBOL file representing the
system depicted in Figure 6 (SBOL File 5); and SBOL
file representing the system depicted in Figure 7 (SBOL
File 6) (PDF)

Special Issue Paper
Invited contribution from the 11th International Workshop on
Bio-Design Automation.

■ AUTHOR INFORMATION
Corresponding Author
Anil Wipat − School of Computing, Newcastle University,
Newcastle upon Tyne NE4 5TG, United Kingdom;
orcid.org/0000-0001-7310-4191; Email: anil.wipat@

newcastle.ac.uk

Authors
Bradley Brown − School of Engineering, Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom

Bryan Bartley − Raytheon BBN Technologies, Cambridge,
Massachusetts 02138, United States; orcid.org/0000-0002-
1597-4022

Jacob Beal − Raytheon BBN Technologies, Cambridge,
Massachusetts 02138, United States; orcid.org/0000-0002-
1663-5102

Jasmine E. Bird − School of Natural and Environmental
Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU,
United Kingdom

Ángel Goñi-Moreno − School of Computing, Newcastle
University, Newcastle upon Tyne NE4 5TG, United Kingdom;
Centro de Biotecnologiá y Genoḿica de Plantas (CBGP, UPM-
INIA), Universidad Politeńica de Madrid (UPM) - Instituto
Nacional de Investigacioń y Tecnologiá Agraria y Alimentaria
(INIA) Campus de Montegancedo-UPM, 28223 Madrid, Spain

James Alastair McLaughlin − School of Computing, Newcastle
University, Newcastle upon Tyne NE4 5TG, United Kingdom

Go ̈ksel Mısırlı − School of Computing and Mathematics, Keele
University, Newcastle ST5 5BG, United Kingdom

Nicholas Roehner − Raytheon BBN Technologies, Cambridge,
Massachusetts 02138, United States; orcid.org/0000-0003-
4957-1552

David James Skelton − School of Computing, Newcastle
University, Newcastle upon Tyne NE4 5TG, United Kingdom

Chueh Loo Poh − Department of Biomedical Engineering and
NUS Synthetic Biology for Clinical and Technological
Innovation (SynCTI), National University of Singapore,
Singapore

Irina Dana Ofiteru − School of Engineering, Newcastle
University, Newcastle upon Tyne NE1 7RU, United Kingdom

Katherine James − Department of Applied Sciences,
Northumbria University, Newcastle upon Tyne, United
Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.0c00176

Funding
This document does not contain technology or technical data
controlled under either the U.S. International Traffic in Arms

Regulations or the U.S. Export Administration Regulations.
This work was supported in part by NSF Expeditions in
Computing Program Award No. 1522074 as part of the Living
Computing Project and by the Defense Advanced Research
Projects Agency under Contract No. W911NF-17-2-0098. The
views, opinions, and/or findings expressed are of the author(s)
and should not be interpreted as representing official views or
policies of the Department of Defense or the U.S. Govern-
ment. A.G.-M. was supported by the SynBio3D project of the
UK Engineering and Physical Sciences Research Council (No.
EP/R019002/1) and the European CSA on biological
standardization BIOROBOOST (EU Grant No. 820699)
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Jesse Tordoff and Ron Weiss of MIT for
contributing information about inducible CHO cell lines.

■ REFERENCES
(1) Amos, M., and Goñi-Moreno, A. (2018) Cellular Computing
and Synthetic Biology. In Computational Matter (Stepney, S.,
Rasmussen, S., and Amos, M., Eds.), Natural Computing Series, pp
93−110, Springer, Cham, Switzerland.
(2) Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., and
Weiss, R. (2014) Realizing the potential of synthetic biology. Nat. Rev.
Mol. Cell Biol. 15, 289−294.
(3) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(4) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339−342.
(5) Karig, D. K. (2017) Cell-free synthetic biology for environmental
sensing and remediation. Curr. Opin. Biotechnol. 45, 69−75.
(6) Reed, J., Stephenson, M. J., Miettinen, K., Brouwer, B., Leveau,
A., Brett, P., Goss, R. J., Goossens, A., O'Connell, M. A., and Osbourn,
A. (2017) A translational synthetic biology platform for rapid access
to gram-scale quantities of novel drug-like molecules. Metab. Eng. 42,
185−193.
(7) Urrios, A., Gonzalez-Flo, E., Canadell, D., de Nadal, E., Macia, J.,
and Posas, F. (2018) Plug-and-Play Multicellular Circuits with Time-
Dependent Dynamic Responses. ACS Synth. Biol. 7, 1095−1104.
(8) Johns, N. I., Blazejewski, T., Gomes, A. L., and Wang, H. H.
(2016) Principles for designing synthetic microbial communities.
Curr. Opin. Microbiol. 31, 146−153.
(9) Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., and Levy,
O. (2016) Engineering stem cell organoids. Cell stem cell 18 (1), 25−
38.
(10) Mimee, M., Citorik, R. J., and Lu, T. K. (2016) Microbiome
therapeuticsadvances and challenges. Adv. Drug Delivery Rev. 105,
44−54.
(11) Kylilis, N., Tuza, Z. A., Stan, G.-B., and Polizzi, K. M. (2018)
Tools for engineering coordinated system behaviour in synthetic
microbial consortia. Nat. Commun. 9, 2677.
(12) Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and
Castellanos, J. (2011) Biocircuit design through engineering bacterial
logic gates. Nat. Comput. 10, 119−127.
(13) Regot, S., Macia, J., Conde, N., Furukawa, K., Kjelleń, J.,
Peeters, T., Hohmann, S., de Nadal, E., Posas, F., and Sole,́ R. (2011)
Distributed biological computation with multicellular engineered
networks. Nature 469, 207−211.
(14) Macıa, J., Posas, F., and Sole, R. V. (2012) Distributed
computation: The new wave of synthetic biology devices. Trends
Biotechnol. 30, 342−349.
(15) Goñi-Moreno, A., Amos, M., and de la Cruz, F. (2013)
Multicellular Computing Using Conjugation for Wiring. PLoS One 8,
No. e65986.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2416

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00176/suppl_file/sb0c00176_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anil+Wipat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7310-4191
http://orcid.org/0000-0001-7310-4191
mailto:anil.wipat@newcastle.ac.uk
mailto:anil.wipat@newcastle.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bradley+Brown"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bryan+Bartley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1597-4022
http://orcid.org/0000-0002-1597-4022
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+Beal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1663-5102
http://orcid.org/0000-0002-1663-5102
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jasmine+E.+Bird"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A%CC%81ngel+Gon%CC%83i-Moreno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+Alastair+McLaughlin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Go%CC%88ksel+M%C4%B1s%C4%B1rl%C4%B1"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Roehner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4957-1552
http://orcid.org/0000-0003-4957-1552
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+James+Skelton"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chueh+Loo+Poh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irina+Dana+Ofiteru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katherine+James"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176?ref=pdf
https://dx.doi.org/10.1038/nrm3767
https://dx.doi.org/10.1038/35002125
https://dx.doi.org/10.1038/35002125
https://dx.doi.org/10.1038/35002131
https://dx.doi.org/10.1016/j.copbio.2017.01.010
https://dx.doi.org/10.1016/j.copbio.2017.01.010
https://dx.doi.org/10.1016/j.ymben.2017.06.012
https://dx.doi.org/10.1016/j.ymben.2017.06.012
https://dx.doi.org/10.1021/acssynbio.7b00463
https://dx.doi.org/10.1021/acssynbio.7b00463
https://dx.doi.org/10.1016/j.mib.2016.03.010
https://dx.doi.org/10.1016/j.stem.2015.12.005
https://dx.doi.org/10.1016/j.addr.2016.04.032
https://dx.doi.org/10.1016/j.addr.2016.04.032
https://dx.doi.org/10.1038/s41467-018-05046-2
https://dx.doi.org/10.1038/s41467-018-05046-2
https://dx.doi.org/10.1007/s11047-010-9184-2
https://dx.doi.org/10.1007/s11047-010-9184-2
https://dx.doi.org/10.1038/nature09679
https://dx.doi.org/10.1038/nature09679
https://dx.doi.org/10.1016/j.tibtech.2012.03.006
https://dx.doi.org/10.1016/j.tibtech.2012.03.006
https://dx.doi.org/10.1371/journal.pone.0065986
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf


(16) Grozinger, L., Amos, M., Gorochowski, T., Carbonell, P.,
Oyarzuń, D., Stoof, R., Fellermann, H., Zuliani, P., Tas, H., and Goñi-
Moreno, A. (2019) Pathways To Cellular Supremacy In Biocomput-
ing. Nat. Commun. 10, 5250.
(17) Tsoi, R., Wu, F., Zhang, C., Bewick, S., Karig, D., and You, L.
(2018) Metabolic Division Of Labor In Microbial Systems. Proc. Natl.
Acad. Sci. U. S. A. 115, 2526−2531.
(18) Kong, W., Meldgin, D., Collins, J., and Lu, T. (2018) Designing
Microbial Consortia With Defined Social Interactions. Nat. Chem.
Biol. 14, 821−829.
(19) Voyvodic, P. L., Pandi, A., Koch, M., Conejero, I., Valjent, E.,
Courtet, P., Renard, E., Faulon, J., and Bonnet, J. (2019) Plug-and-
play metabolic transducers expand the chemical detection space of
cell-free biosensors. Nat. Commun. 10, 1697.
(20) Roehner, N., Beal, J., Clancy, K., Bartley, B., Misirli, G.,
Grünberg, R., Oberortner, E., Pocock, M., Bissell, M., Madsen, C.,
Nguyen, T., Zhang, M., Zhang, Z., Zundel, Z., Densmore, D., Gennari,
J., Wipat, A., Sauro, H., and Myers, C. (2016) Sharing Structure and
Function in Biological Design with SBOL 2.0. ACS Synth. Biol. 5,
498−506.
(21) Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and
Wheeler, D. L. (2005) GenBank. Nucleic Acids Res. 33, 34−38.
(22) Goni-Moreno, A., Carcajona, M., Kim, J., Martınez-Garcıa, E.,
Amos, M., and de Lorenzo, V. (2016) An Implementation-Focused
Bio/Algorithmic Workflow for Synthetic Biology. ACS Synth. Biol. 5,
1127−1135.
(23) Myers, C. J., Beal, J., Gorochowski, T. E., Kuwahara, H.,
Madsen, C., McLaughlin, J. A., Misirli, G., Nguyen, T., Oberortner, E.,
Samineni, M., Wipat, A., Zhang, M., and Zundel, Z. (2017) A
standard-enabled workflow for synthetic biology. Biochem. Soc. Trans.
45, 793−803.
(24) Madsen, C., Goni Moreño, A., P, U., Palchick, Z., Roehner, N.,
Atallah, C., Bartley, B., Choi, K., Cox, R. S., Gorochowski, T.,
Grünberg, R., Macklin, C., McLaughlin, J., Meng, X., Nguyen, T.,
Pocock, M., Samineni, M., Scott-Brown, J., Tarter, Y., Zhang, M.,
Zhang, Z., Zundel, Z., Beal, J., Bissell, M., Clancy, K., Gennari, J. H.,
Misirli, G., Myers, C., Oberortner, E., Sauro, H., and Wipat, A. (2019)
Synthetic Biology Open Language (SBOL) Version 2.3. J. Integr.
Bioinform. 16 (2), DOI: 10.1515/jib-2019-0025.
(25) Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H.,
Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., Harris, M.,
Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.,
Richardson, J., Ringwald, M., Rubin, G., and Sherlock, G. (2000)
Gene Ontology: tool for the unification of biology. Nat. Genet. 25,
25−29.
(26) Mısırlı, G., Taylor, R., Goñi-Moreno, A., McLaughlin, J. A.,
Myers, C., Gennari, J. H., Lord, P., and Wipat, A. (2019) SBOL-
OWL: An Ontological Approach for Formal and Semantic
Representation of Synthetic Biology Information. ACS Synth. Biol. 8
(7), 1498−1514.
(27) Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L.,
Durbin, R., and Ash-burner, M. (2005) The Sequence Ontology: a
tool for the unification of genome annotations. Genome Biol. 6, R44.
(28) Juty, N., and Novere, N. (2013) Encyclopedia of Systems Biology,
p 2063, Springer, New York.
(29) The Gene Ontology Consortium (2017) Expansion of the
Gene Ontology knowledge base and resources. Nucleic Acids Res. 45,
D331−D338.
(30) Hastings, J., Owen, G., Dekker, A., Ennis, M., Kale, N.,
Muthukrishnan, V., Turner, S., Swainston, N., Mendes, P., and
Steinbeck, C. (2016) ChEBI in 2016: Improved services and an
expanding collection of metabolites. Nucleic Acids Res. 44, D1214−
D1219.
(31) Beal, J., and Roehner, N. (2018) SEP 028−Measurements/
Parameters and Units, github.com/SynBioDex/SEPs/blob/master/
sep_028.md, accessed Jan. 10, 2020.
(32) Gkoutos, G. V., Schofield, P. N., and Hoehndorf, R. (2012)
The Units Ontology: A Tool for Integrating Units of Measurement in

Science, Database: J. Biol. Databases Curation, DOI: 10.1093/
database/bas033.
(33) Newcastle iGEM 2017 (2017), Sensynova, 2017.igem.org/
Team:Newcastle, accessed Jan. 10, 2020.
(34) Papenfort, K., and Bassler, B. L. (2016) Quorum sensing signal-
response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14,
576−588.
(35) Tordoff, J., Beal, J., Weiss, R., Bartley, B., Gumuskaya, G.,
Kiwimagi, K., Krajnc, M., Lebo, K., Shvartsman, S., Tseng, A., and
Walczak, N. (2018) Toward Programming 3D Shape Formation in
Mammalian Cells. Presented at the 10th International Workshop on
Bio-Design Automation (IWBDA).
(36) Tordoff, J., Krajnc, M., Walczak, N., Lima, M., Beal, J.,
Shvartsman, S., and Weiss, R. (2020) Incomplete cell sorting creates
engineerable structures with long term stability, manuscript in
revision.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00176
ACS Synth. Biol. 2020, 9, 2410−2417

2417

https://dx.doi.org/10.1038/s41467-019-13232-z
https://dx.doi.org/10.1038/s41467-019-13232-z
https://dx.doi.org/10.1073/pnas.1716888115
https://dx.doi.org/10.1038/s41589-018-0091-7
https://dx.doi.org/10.1038/s41589-018-0091-7
https://dx.doi.org/10.1038/s41467-019-09722-9
https://dx.doi.org/10.1038/s41467-019-09722-9
https://dx.doi.org/10.1038/s41467-019-09722-9
https://dx.doi.org/10.1021/acssynbio.5b00215
https://dx.doi.org/10.1021/acssynbio.5b00215
https://dx.doi.org/10.1093/nar/gki063
https://dx.doi.org/10.1021/acssynbio.6b00029
https://dx.doi.org/10.1021/acssynbio.6b00029
https://dx.doi.org/10.1042/BST20160347
https://dx.doi.org/10.1042/BST20160347
https://dx.doi.org/10.1515/jib-2019-0025
https://dx.doi.org/10.1515/jib-2019-0025?ref=pdf
https://dx.doi.org/10.1038/75556
https://dx.doi.org/10.1021/acssynbio.8b00532
https://dx.doi.org/10.1021/acssynbio.8b00532
https://dx.doi.org/10.1021/acssynbio.8b00532
https://dx.doi.org/10.1186/gb-2005-6-5-r44
https://dx.doi.org/10.1186/gb-2005-6-5-r44
https://dx.doi.org/10.1093/nar/gkw1108
https://dx.doi.org/10.1093/nar/gkw1108
https://dx.doi.org/10.1093/nar/gkv1031
https://dx.doi.org/10.1093/nar/gkv1031
http://github.com/SynBioDex/SEPs/blob/master/sep_028.md
http://github.com/SynBioDex/SEPs/blob/master/sep_028.md
https://dx.doi.org/10.1093/database/bas033?ref=pdf
https://dx.doi.org/10.1093/database/bas033?ref=pdf
http://2017.igem.org/Team:Newcastle
http://2017.igem.org/Team:Newcastle
https://dx.doi.org/10.1038/nrmicro.2016.89
https://dx.doi.org/10.1038/nrmicro.2016.89
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00176?ref=pdf

