
Synthetic Biology Curation Tools (SYNBICT)
Nicholas Roehner,* Jeanet Mante, Chris J. Myers, and Jacob Beal

Cite This: ACS Synth. Biol. 2021, 10, 3200−3204 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Much progress has been made in developing tools to
generate component-based design representations of biological
systems from standard libraries of parts. Most biological designs,
however, are still specified at the sequence level. Consequently,
there exists a need for a tool that can be used to automatically infer
component-based design representations from sequences, partic-
ularly in cases when those sequences have minimal levels of
annotation. Such a tool would assist computational synthetic
biologists in bridging the gap between the outputs of sequence
editors and the inputs to more sophisticated design tools, and it
would facilitate their development of automated workflows for
design curation and quality control. Accordingly, we introduce
Synthetic Biology Curation Tools (SYNBICT), a Python tool suite for
automation-assisted annotation, curation, and functional inference for genetic designs. We have validated SYNBICT by applying it to
genetic designs in the DARPA Synergistic Discovery & Design (SD2) program and the International Genetically Engineered Machines
(iGEM) 2018 distribution. Most notably, SYNBICT is more automated and parallelizable than manual design editors, and it can be
applied to interpret existing designs instead of only generating new ones.

KEYWORDS: sequence annotation, design specification, network inference, SBOL, SYNBICT

While much progress has been made in developing tools
to generate component-based design representations

for biological systems from standard libraries of parts, these
tools all assume that their output representations are new
designs to be manually specified by a human1−3 or automati-
cally generated from a functional specification.4,5 Most
biological designs, however, are still specified at the sequence
level, either for historical reasons or because they are created
using sequence editors and other low-level design approaches.
Consequently, there exists a need for a tool that can be used to
automatically infer component-based design representations
from sequences in a retrospective manner, particularly in cases
when those sequences have minimal levels of annotation. Such
a tool would assist computational synthetic biologists in
bridging the gap between the outputs of sequence editors and
the inputs to more sophisticated design tools, and it would
facilitate their development of automated workflows for design
curation and quality control.
While existing bioinformatics tools for sequence annotation

such as SnapGene (available at http://snapgene.com) can be
used to generate annotation-based design representations,
many of these tools lack support for representing the multiple
distinct classes of design information relevant to synthetic
biology designs (for example, representing a genetic circuit
both in terms of its structural organization into transcriptional
units and its functional organization as a regulatory network).

Consequently, it is much more difficult to unambiguously
reason about the higher-order structure and function of designs
represented with these tools.
For functional inference, there do exist bioinformatics tools

and resources6 for inferring biochemical networks based on the
genes and molecular species present. These tools, however,
tend to focus on gene−gene and protein−protein interactions
instead of the DNA−protein interactions that are common to
synthetic biology designs. In addition, while a computational
synthetic biology workflow has been developed to infer
networks based on component hierarchies,7 it does not
automate generation of these hierarchies, nor does it automate
abstraction of the inferred networks.
Accordingly, in order to support inference of rich

component-based design representations from genetic sequen-
ces, we introduce Synthetic Biology Curation Tools (SYNBICT),
a tool suite for automation-assisted annotation, curation, and
functional inference for genetic designs.

Received: May 19, 2021
Published: November 10, 2021

Technical Notepubs.acs.org/synthbio

© 2021 American Chemical Society
3200

https://doi.org/10.1021/acssynbio.1c00220
ACS Synth. Biol. 2021, 10, 3200−3204

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
IO

W
A

 o
n 

Ja
nu

ar
y 

3,
 2

02
2 

at
 2

0:
28

:2
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Roehner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeanet+Mante"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+J.+Myers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+Beal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.1c00220&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?goto=recommendations&?ref=pdf
http://snapgene.com
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=agr1&ref=pdf
https://pubs.acs.org/toc/asbcd6/10/11?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/11?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/11?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/11?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.1c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf


Figure 1. Workflow diagram for SYNBICT. SYNBICT supports multiple workflows that can begin with either selecting target DNA components
for sequences_to_features or features_to_circuits, or by selecting target network modules for circuits_to_truth_tables. Optional steps are able to
be bypassed by following an overlapping arrow.

Figure 2. Examples of SYNBICT outputs, including (A) an annotated component hierarchy from sequences_to_features, (B) a network module
from features_to_circuits, and (C) a truth table from circuits_to_truth_tables. All glyphs are defined by the SBOL Visual standard.11 In (A),
SYNBICT adds subcomponent annotations to the target construct component based on exact sequence matches and removes an existing generic
annotation for YFP. In (B), SYNBICT creates a network module that contains the annotated construct component and adds regulatory
submodules based on whether they contain DNA components with the same ID as a subcomponent of the annotated construct. In this case,
submodules are added for AraC, pBAD, PhlF, pPhlF, and YFP. Then SYNBICT infers which non-DNA components are inputs and outputs on the
basis of the absence of incoming and outgoing regulatory arcs, respectively. In this case, SYNBICT infers that L-Arabinose is an input and
YFP_protein is an output. In addition, SYNBICT infers transcription interactions between promoter subcomponents and CDS subcomponents on
the basis of their locations in the annotated construct. In this case, SYNBICT infers that pPhlF stimulates YFP and pBADmin stimulates PhlF.
These interactions do not appear in submodules because they do not exist outside of the context of the annotated construct. Also note that in this
diagram all instances of the same glyph are assumed to map to a single component in the design. In (C), SYNBICT generates each row of the truth
table by setting an input component’s value to zero and then propagating that value to other components in the network based on the logical
interpretations of the regulatory interactions between these components. In this case, the value of the output component YFP_protein is inferred to
be the negation of the input component L-Arabinose and the other intermediate components.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.1c00220
ACS Synth. Biol. 2021, 10, 3200−3204

3201

https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In its current form, SYNBICT is targeted toward computa-
tional synthetic biologists with some experience using the
Python programming language, but in the future it could be
made more accessible via the development of graphical or web-
based interfaces for use by synthetic biologists in general. The
remainder of this manuscript is organized as follows: we
present the architecture of SYNBICT, discuss how it has been
applied, and finally discuss implications and future work.

■ RESULTS
SYNBICT is implemented as three Python applications that
curate designs at increasing levels of abstraction. Its efficacy has
been validated through application to genetic designs in the
DARPA Synergistic Discovery & Design (SD2) program and the
International Genetically Engineered Machines (iGEM) 2018
distribution.
Implementation of SYNBICT. The architecture of

SYNBICT is illustrated in Figure 1. First, the sequences_to_-
features module handles sequence annotation and curation,
then features_to_circuits infers networks of interactions, and
finally circuits_to_truth_tables abstracts the behavior of
regulatory networks as logic functions. SYNBICT reads and
writes design representations encoded in the Synthetic Biology
Open Language (SBOL) 2 standard8 using SBOL’s native
Python software library, pySBOL2.9 SBOL is a community
standard for modular, hierarchical representation of biological
designs that can be used to represent individual DNA
components as well as the overall biochemical systems that
encompass them.
sequences_to_features. For sequence annotation, SYN-

BICT uses the Aho-Corasick string matching algorithm as
implemented by the flashtext10 Python package. Given an
SBOL 2 file containing a library of DNA components,
SYNBICT simultaneously matches their sequences to those
of target components in an SBOL 2, FASTA, or GenBank file.
Whenever a library component’s sequence is a complete, exact
match to a contiguous portion of a target component’s
sequence, SYNBICT annotates the target component with the
location of the match and includes the library component as a
subcomponent of the target component, thus creating an
SBOL 2 component hierarchy as its output (see Figure 2A). If
there are no exact matches, then no component hierarchy is
created.
Since library and target component sequences may be

similar but not match exactly, sequences_to_features can also
extend a library of DNA components prior to sequence
annotation by aligning their sequences to portions of the target
component’s sequence that have already been annotated with
another tool (such as an open reading frame finder). If the
alignment score for a library component’s sequence is above a
user-defined threshold, and if the name of the library
component is contained by the name of the annotation (or
vice versa), then the matching portion of the target
component’s sequence is used to derive a new DNA
component that is effectively a sequence variant of the library
component. This is a fairly conservative approach to extending
component libraries given the requirement that names match
as well as sequences, but it can be necessary in cases when
identical sequences have different functional roles (such as a
guide RNA CDS and its binding site).
Besides annotating sequences, sequences_to_features can

also curate sequence annotations by identifying those that
overlap and are potentially redundant. Depending on which

options are set, these annotations can be automatically merged
according to certain criteria, or they can be returned to the
user to decide which to keep and which ones to delete.
Sequence annotations can also be automatically deleted if their
properties include a particular functional role or if they do not
specify the location of a subcomponent.

features_to_circuits. SYNBICT’s approach to network
composition is the following: given an SBOL 2 file containing
one or more target components and an SBOL 2 file containing
a library of network modules that include DNA subcompo-
nents, SYNBICT checks for each network module whether all
of its DNA subcomponents match at least one subcomponent
of the target component(s) by ID. If so, then SYNBICT makes
the network module a submodule of a new root network
module. After composing the root network module, SYNBICT
maps between subcomponents (DNA and otherwise) under
the assumption that multiple copies of the same subcompo-
nent function identically. Finally, SYNBICT infers the
existence of transcription interactions by comparing the
locations and orientations of promoter subcomponents to
those of CDS subcomponents. Whenever SYNBICT finds a
promoter that precedes a CDS, is in the same orientation, and
is close enough according to a user-defined threshold, it adds a
transcription interaction between them to the root network
module (see Figure 2B). While Figure 2 only includes
submodules that contain stimulation, inhibition, and genetic
production interactions, SYNBICT can generally take as input
modules that contain any type of interaction (e.g., complex
formation), provided that they also contain at least one DNA
component.
Like sequences_to_features, features_to_circuits can also

extend a library of network modules based on the similarity of
their DNA subcomponents to annotated portions of a target
component’s sequence. If one or more of a network module’s
DNA subcomponents appear to be variants as described in the
previous section, then SYNBICT derives a new network
module with the same type of interaction(s) between the
variant DNA and protein subcomponents (and nonvariant
subcomponents, if any).

circuits_to_truth_tables. SYNBICT uses several simplify-
ing assumptions to abstract a network module as a truth table
of logic functions and values for its non-DNA subcomponents.
First, SYNBICT assumes that the network module does not
contain cycles since it currently only supports inference of
truth tables for combinational logic circuits. Second, SYNBICT
only considers stimulation and inhibition interactions in the
network module that are described using the Systems Biology
Ontology (SBO)12 terms recommended by the SBOL standard.
Third, SYNBICT only considers each subcomponent in the
network module that is not regulated by more than two other
subcomponents (either directly or via regulation of any
transcriptional units producing the subcomponent) in order
to simplify the assignment of a logic function to compute its
value. A complete description of how SYNBICT abstracts
different interaction and transcriptional unit motifs can be
found in its documentation (see Data Availability).

Application to Design Collections. SYNBICT has been
tested by application to genetic designs from the iGEM registry
and the DARPA Synergistic Discovery and Design (SD2)
program.
For the iGEM registry, we applied SYNBICT to the 2018

iGEM distribution. For this application, we used a component
library derived from the RegulonDB database13 (8824

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.1c00220
ACS Synth. Biol. 2021, 10, 3200−3204

3202

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


promoter components, 218 CDS components) to annotate the
sequences of 1410 target constructs greater than 700 bp in
length, which took 15 min. Of these constructs, SYNBICT
produced annotations for 266 of them, identifying a total of
361 promoters and 20 CDS components, or an average of 1.4
annotations per construct. Of the 381 annotations made,
SYNBICT identified 285 (275 promoter components and 10
CDS components) as potentially novel features that were not
previously annotated in the target constructs. SYNBICT also
inferred 8 transcriptional interactions between promoter and
CDS components in the target constructs. In this case,
however, no circuit designs were able to be generated, likely
indicating an insufficient overlap between the functional
interactions contained in RegulonDB and the functional
interactions included in the 2018 iGEM distribution.
For the DARPA SD2 program, SYNBICT was applied to

sequences for genetic circuits designed by several laboratories.
In particular, we used SYNBICT and component libraries for
CRISPR-dCas914 and TetR-homologue4 genetic circuits to
generate designs for 92 out of 101 strains with available DNA
sequences (31 E. coli strains and 61 yeast strains). Of the
remaining nine strains, six were base strains that were not
engineered with a genetic circuit (i.e., SYNBICT correctly
generated a null output), and only three were not adequately
covered by the input component libraries. Figure 2B shows an
example of one of the TetR-homologue genetic circuit designs
generated during SD2.

■ DISCUSSION

With respect to prior approaches to generating biological
design representations, SYNBICT’s key strengths are (1) it is
more automated and parallelizable than manual design editors,
and (2) it can be applied to interpret existing genetic designs,
as opposed to other automated tools that focus instead on
generating new circuit or pathway designs. SYNBICT also
represents designs using an open community standard (SBOL)
that can represent both the structural and functional aspects of
a design, which prior representations from bioinformatics and
systems biology cannot do.
All three of SYNBICT’s applications have opportunities for

improvement. In the case of sequences_to_features, its library
extension capability currently requires the existence of
annotations made with other tools, but in the future this
capability could be made less dependent on existing knowl-
edge, potentially at the cost of introducing some false variants
and increasing runtime. Additionally, this module’s annotation
curation capability currently focuses primarily on overlapping
annotations and selectively deleting or merging them, but it
could do more to analyze the details of these annotations and
highlight potential errors or inconsistencies. In general,
SYNBICT could be augmented to take user constraints on
the structure and/or function of a design as input and verify
whether these constraints are satisfied. For features_to_cir-
cuits, its inference of network modules and interactions is
currently limited to a root network module and transcription
interactions between promoter and CDS components, but this
capability could be expanded to inference of intermediate
network modules based on interactions between components
and their proximity on the same DNA construct or other
considerations. For circuits_to_truth_tables, its capability for
network abstraction could be made to apply to networks that
include feedback and a broader class of regulatory motifs. This

capability could also be applied to other types of high-level
function, such as metabolic synthesis.
Finally, future tooling for automatic generation of biological

design representations could become even more flexible by
reducing or eliminating the requirement for a library of
components as input. This, however, will likely require more
accurate models for predicting the function of a biological
sequence from its structure alone, which will in turn require
some combination of improvements in our mechanistic
understanding of biology and machine learning to extend
hypotheses into areas that are less well understood.

Data Availability. Source code and documentation for
SYNBICT are available on GitHub at https://github.com/
SD2E/SYNBICT under the Apache License, Version 2.0.

■ ASSOCIATED CONTENT
Special Issue Paper
Invited contribution from the 12th International Workshop on
Bio-Design Automation.

■ AUTHOR INFORMATION
Corresponding Author

Nicholas Roehner − Raytheon BBN Technologies, Cambridge,
Massachusetts 02138, United States; orcid.org/0000-
0003-4957-1552; Email: nicholas.roehner@raytheon.com

Authors
Jeanet Mante − Department of Biomedical Engineering,
University of Colorado Boulder, Boulder, Colorado 80309,
United States

Chris J. Myers − Department of Electrical, Computer, and
Energy Engineering, University of Colorado Boulder, Boulder,
Colorado 80309, United States; orcid.org/0000-0002-
8762-8444

Jacob Beal − Raytheon BBN Technologies, Cambridge,
Massachusetts 02138, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.1c00220

Author Contributions
NR and JB designed SYNBICT and NR implemented its three
modules as Python applications. NR applied SYNBICT with
advice from JB to genetic designs obtained from the DARPA
SD2 program and iGEM 2018 distribution. CJM and JM
contributed to the design of the features_to_circuits module
and JM tested the sequences_to_features module. NR wrote
the manuscript, and all authors revised the manuscript.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
NR and JB are supported by DARPA Award HR0011-15-C-
0084. CM and JM are supported by National Science
Foundation under Grant No. 1939892. JM is supported by a
Dean’s Graduate Assistantship at the University of Colorado
Boulder. Finally, CM is supported by DARPA FA8750-17-C-
0229. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.
This document does not contain technology or technical data
controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.1c00220
ACS Synth. Biol. 2021, 10, 3200−3204

3203

https://github.com/SD2E/SYNBICT
https://github.com/SD2E/SYNBICT
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Roehner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4957-1552
https://orcid.org/0000-0003-4957-1552
mailto:nicholas.roehner@raytheon.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeanet+Mante"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+J.+Myers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8762-8444
https://orcid.org/0000-0002-8762-8444
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+Beal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00220?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ REFERENCES
(1) Zhang, M.; McLaughlin, J. A.; Wipat, A.; Myers, C. J.
SBOLDesigner 2: An Intuitive Tool for Structural Genetic Design.
ACS Synth. Biol. 2017, 6, 1150−1160.
(2) Czar, M. J.; Cai, Y.; Peccoud, J. Writing DNA with GenoCAD.
Nucleic Acids Res. 2009, 37, W40−7.
(3) Chandran, D.; Bergmann, F.; Sauro, H. TinkerCell: modular
CAD tool for synthetic biology. J. Biol. Eng. 2009, 3, 19.
(4) Nielsen, A. A. K.; Der, B. S.; Shin, J.; Vaidyanathan, P.;
Paralanov, V.; Strychalski, E. A.; Ross, D.; Densmore, D.; Voigt, C. A.
Genetic Circuit Design Automation. Science 2016, 352, aac7341.
(5) Beal, J.; Lu, T.; Weiss, R. Automatic Compilation from High-
Level Biologically Oriented Programming Language to Genetic
Regulatory Networks. PLoS One 2011, 6, No. e22490.
(6) Escorcia-Rodriguez, J. M.; Tauch, A.; Freyre-Gonzalez, J. A.
Abasy Atlas v2.2: The Most Comprehensive and Up-To-Date
Inventory of Meta-Curated, Historical, Bacterial Regulatory Net-
works, Their Completeness and System-Level Characterization.
Comput. Struct. Biotechnol. J. 2020, 18, 1228−1237.
(7) Misirli, G.; Nguyen, T.; McLaughlin, J. A.; Vaidyanathan, P.;
Jones, T. S.; Densmore, D.; Myers, C.; Wipat, A. A Computational
Workflow for the Automated Generation of Models of Genetic
Designs. ACS Synth. Biol. 2019, 8, 1548−1559.
(8) Roehner, N.; Beal, J.; et al. Sharing Structure and Function in
Biological Design with SBOL 2.0. ACS Synth. Biol. 2016, 5, 498−506.
(9) Mitchell, T.; Bartley, B.; Toll, B. pySBOL2; 2020. https://github.
com/SynBioDex/pySBOL2/releases/tag/v1.2.
(10) Singh, V. Replace or Retrieve Keywords In Documents at Scale.
arXiv, October 31, 2017, 1711.00046.
(11) Beal, J.; Nguyen, T.; et al. Communicating structure and
function in synthetic biology diagrams. ACS Synth. Biol. 2019, 8,
1818−1825.
(12) Courtot, M.; Juty, N.; et al. Controlled Vocabularies and
Semantics in Systems Biology. Mol. Syst. Biol. 2011, 7, 543.
(13) Santos-Zavaleta, A.; Salgado, H.; et al. RegulonDB v 10.5:
Tackling Challenges to Unify Classic and High Throughput
Knowledge of Gene Regulation in E. coli K-12. Nucleic Acids Res.
2019, 47, D212−D220.
(14) Gander, M. W.; Vrana, J. D.; Voje, W. E.; Carothers, J. M.;
Klavins, E. Digital Logic Circuits in Yeast with CRISPR-dCas9 NOR
Gates. Nat. Commun. 2017, DOI: 10.1038/ncomms15459.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://doi.org/10.1021/acssynbio.1c00220
ACS Synth. Biol. 2021, 10, 3200−3204

3204

https://doi.org/10.1021/acssynbio.6b00275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkp361
https://doi.org/10.1186/1754-1611-3-19
https://doi.org/10.1186/1754-1611-3-19
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1371/journal.pone.0022490
https://doi.org/10.1371/journal.pone.0022490
https://doi.org/10.1371/journal.pone.0022490
https://doi.org/10.1016/j.csbj.2020.05.015
https://doi.org/10.1016/j.csbj.2020.05.015
https://doi.org/10.1016/j.csbj.2020.05.015
https://doi.org/10.1021/acssynbio.7b00459?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00459?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00459?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/SynBioDex/pySBOL2/releases/tag/v1.2
https://github.com/SynBioDex/pySBOL2/releases/tag/v1.2
https://doi.org/10.1021/acssynbio.9b00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/msb.2011.77
https://doi.org/10.1038/msb.2011.77
https://doi.org/10.1093/nar/gky1077
https://doi.org/10.1093/nar/gky1077
https://doi.org/10.1093/nar/gky1077
https://doi.org/10.1038/ncomms15459
https://doi.org/10.1038/ncomms15459
https://doi.org/10.1038/ncomms15459?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00220?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

