Adjustable Autonomy for Cross-Domain Entitlement
Decisions

Jacob Beal
Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA, USA 02138

jakebeal@bbn.com

ABSTRACT

Cross-domain information exchange is a growing problem, as
business and governmental organizations increasingly need
to integrate their information systems with those of par-
tially trusted partners. Current identity management and
access control technologies operate only within a specific do-
main and are unable to scale to the asymmetric, heteroge-
neously administered, and highly restrictive security policies
of cross-domain environments. We approach the problem as
one of adjustable autonomy, in which the human adminis-
trator needs to encode policy intent in a way that allows
routine decisions about policy interactions to be safely dele-
gated to the machine. In this paper, we present work toward
such a system, combining a lattice representation of access
control decisions and client attributes with search through a
space of cross-domain mapping relations. This combination
enables a policy resolution algorithm that resolves routine
policy interactions while flagging potential conflicts for at-
tention from a human administrator.

Categories and Subject Descriptors

D.3.2 [Programming Languages|: Language Classifica-
tions—Specialized application languages; 1.2.3 [Artificial In-
telligence]: Deduction and Theorem Proving—Inference
engines

General Terms
Security, Theory, Algorithms

Keywords

Cross-Domain, Policy Description, Domain-Specific Language

1. INTRODUCTION

In today’s increasingly networked world, cross-domain in-
formation exchange, in which an organization’s information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AlSec’10, October 8, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-4503-0088-9/10/10 ...$10.00.

Jonathan Webb
Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA, USA 02138

jwebb@bbn.com

Michael Atighetchi
Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA, USA 02138
matighet@bbn.com

system is integrated with the information systems of par-
tially trusted partners, is a problem of rapidly growing im-
portance. Information must be able to flow freely, but only
in accordance to the policies of the organizations involved—
both their own internal policies and the exchange policies
that have been mutually agreed upon. For example:

e A business may need to integrate its systems with part-
ners that it has long-term contracts with, yet avoid ex-
posing sensitive information to competitors that con-
tract with the same partners.

e Ethically and legally protected data, such as personal
medical records and financial information, needs to be
able to flow through a network of service providers
while being protected.

e Government agencies need to be able to safely share in-
formation with other agencies and with coalition part-
ners.

Current identity management and access control technolo-
gies perform identity validation and enforcement of access
rights only within a specific domain and are unable to op-
erate within the asymmetric and highly restrictive security
policies of cross-domain environments. In addition to the
basic challenges of heterogeneity, multi-party maintenance,
and data-sharing constraints, there is a fundamental prob-
lem of safety and maintenance. Simply put: the potential
interactions of a set of cross-domain policies quickly grow
beyond the ability of humans to reliably determine whether
the composed policy-set erroneously allows prohibited infor-
mation flows.

One view in approaching such a problem, which we have
adopted, is of adjustable autonomy: the human and machine
are viewed as a cooperative team, with the human in ulti-
mate control but delegating authority for routine decisions
to the machine. The challenge before us, then, is to create
a policy representation that allows a human administrator
to succinctly control policy interactions where necessary, to
delegate most routine decisions about policy interactions to
machine reasoning, and to tractably prove safety properties
for composed policy sets.

In this paper, we present foundational work toward such
a system of policy representation. We begin by representing
access control decisions as a lattice, with the meet relation
used for autonomous decision combination. The set of appli-
cable policies can then be determined by a search through
cross-domain mapping relations, with a lattice representa-
tion of client attributes allowing implicit precedence rela-
tions between policies to be inferred. Together the lattices

Identity The essence of an entity. One’s identity is of-
ten described by one’s characteristics, among
which may be any number of identifiers.

Identifier A data object (for example, a string) mapped
to a system entity that uniquely refers to the
system entity.

Attribute A distinct characteristic of an object.

Credential Data that is transferred to establish a claimed
principal identity.

Policy A set of rules and practices that specify or
regulate how a system or organization pro-
vides security services to protect resources.

Decision The result of evaluating a policy.

Table 1: Definitions of security terms used in this
paper, taken from [1] and [2].

and relation search enable a policy resolution algorithm that
may be applied statically or dynamically to autonomously
resolve routine policy interactions while flagging potential
conflicts for attention from a human administrator.

1.1 Related Work

A significant amount of work exists in the areas of privilege
and identity management, both within and across domains.
We divide the space into enforcement substrates, privilege
management frameworks, policy analysis solutions, and se-
curity models.

Enforcement substrates:.

Enforcement substrates: XACML([2] and SELinux[3, 4]
are two widely used technologies for enforcing access con-
trol policies. XACML is part of the OASIS standards stack
and defines both architectural components, e.g., policy deci-
sion points (PDPs) and policy enforcement points (PEPs),
as well as an XML-based policy language for expressing ac-
cess control rules. XACML is widely used in service-oriented
architecture based systems to restrict access to critical ser-
vices. SELinux is available for many standard Linux dis-
tributions today, and allows fine-grained restriction of func-
tions processes are allowed to perform on operating system
resources, such as opening files or sending packets over the
network. SELinux is also used as a main component in mili-
tary high assurance platforms (HAPs)[5]. Our work uses ex-
isting enforcement technologies, in particular XACML PDPs
and PEPs, for making online access control decisions.

Privilege management frameworks:.

A number of access control and identity management frame-
works exist that provide a federated capability. OpenIDI[6]
and Shibboleth([7] provide single sign on capabilities across
a federation domains, OpenPERMIS[8] provides distributed
access control in grid environments with advanced support
for delegation of authority and normalization between differ-
ent policy representations. DISA is pursuing the notion of
policy-based and risk adaptive policy management that com-
bines information from the enterprise including policies, user
attributes, resource meta-data, environmental attributes, and
the action performed to provide access control capabilities
to dynamic operating environments. These ongoing efforts
are facing and addressing many of the same problems de-
scribed in this paper, but lack formalisms that scale with the
number of users, attributes, and resources, and can support

information sharing requirements associated with handling
of classified information in cross domain environments.

Policy analysis solutions:.

Various analysis methodologies have been used to ana-
lyze and deconflict access control policies. The Lobster[9]
domain specific language and tool chain enables expression
of high-level security policies through graphs, focusing on
information flow between resources in a system. Lobster
also provides a tool chain for automated assured refinement
of those policies into enforceable SELinux policies, and can
check policies for consistency through definition and evalu-
ation of policy assertions. Lobster also provides support for
automatically constructing high-level policies from manually
crafted low-level policies. Lobster does not support obliga-
tions on flowing data (e.g. filters or logs) or precedence rela-
tionships by which policies can override one another, which
is a key feature of our work. KAoS[10] is a policy manage-
ment framework, based on semantic web technology, that
has been used in multi-agent frameworks to uses ontological
representations of policies and provides deconfliction anal-
ysis through use of the Stanford Java Theorem Prover[11].
For theorem proving, we are currently exploring the use of
Alloy[12], a first-order logic modeling language frequently
used for program analysis, on our models to find theorems.

Formal security models:.

A number of formal security models were developed in the
70’s for cross domain interactions in military contexts. The
Bell-La Padula [13] model formalizes interactions that im-
plement a “read-down, write-up” secrecy policy. The BIBA
model [14] formally describes constraints on access control
rules that prevent violation of data integrity . Our work re-
lates to these models in the sense that rigorous formalisms
are used to describe valid and invalid interaction patterns.
However, these models are becoming increasingly unten-
able because of the increasing need to seamlessly handle
dynamically unfolding events and the associated need to dy-
namically change policies. Our approach aims at establish-
ing proof that any policy modification and composition is
integrity preserving by analyzing the resulting policies for
unauthorized disclosure (leakage) or denial of permissible
information access (blockage).

2. A MOTIVATING EXAMPLE

Consider the following example of policy interaction, which
we will use to motivate discussion throughout the remainder
of the paper: Bob is a purchaser working for a large online
retailer “Bacchae.com,” where he is typically logged into its
System B. In the course of business, he frequently interacts
with the manufacturer Acme Inc., one of Bacchae’s sup-
pliers, obtaining inventory and shipping data from Acme’s
System A.

Acme grants purchasers on B access to shipping data only
regarding its contracts with Bacchae, since it sells to Bac-
chae’s competitors as well. Acme grants access to inventory
information to all of its logistics staff, and grants Bacchae lo-
gistics staff the same permission by treating them like Acme
logistics staff. However, Acme’s logistics staff are allowed
unfiltered access to shipping data.

The pseudo-code for these policies (Figure 1) is:

Bacchae.com Acme

(System B) (System A)
"~ Shipping
alh

LogistiCs, mmmmmp- LOgistiCs,

Inventory

Figure 1: Policy and attributes for a simple case
of privilege escalation through cross-domain policy
combination: credential/attribute relations are pur-
ple arrows, attribute remapping is blue, access priv-
ileges are green arrows with modifications in yellow
boxes.

1. Purchaserp reads Shippinga with filter: B-contracts
only

2. Logisticsa reads Inventorya
3. Logisticsg — Logisticsa
4. Logisticsa reads Shippinga

This is a situation that has the potential for privilege es-
calation, since Acme does not want System B users to have
unfiltered access to shipping data, but the alternate path
through Logisticsa does not have a filter. This potential
can be induced via any of three locally correct actions:

e Policy 3 is added to give System B users access to
inventory data.

e Policy 4 is added to give System A users access to
shipping data.

e The filter is added to Policy 1, weakening previously
unfettered access.

Let us analyze how a situation of this type can be resolved,
considering the four types of access information that can
flow across boundaries: Credentials, Attributes, Poli-
cies, and Decisions. In the use case in Figure 1, System B
originates all relevant Credentials and Attributes, while
System A originates all relevant Policies.

In addition to Policies that declare privileges, we will
consider two other types of user-provided policy informa-
tion: Precedence relationships between policies, determin-
ing when one policy supersedes another and Mappings that
translate Credentials and Attributes from one domain to
another.

3. DECISION AUTOMATION LATTICES

At the end of the day, what is most important for any
access control system is that an appropriate decision gets
made, so we will start by organizing decisions and working
our way back from there.

When multiple policies apply, they may specify different
decisions about what access a client is entitled to for a re-
source. In some cases, there may be many variants on a
basically similar decision, and in these cases we want the
system to be able to autonomously combine the variants
into a compound decision compatible with all of them. In

other cases, the policies may specify fundamentally incom-
patible decisions, and in these cases we want the system to
log an error for a human operator to debug.

Typical existing combination methods are ad hoc and make
it impossible to reason about the intent of the human spec-
ifying the policy. For example, XACML[2] offers several
standard combination methods, such as “first-applicable” or
“deny-overrides.” These fail to provide safety even in a sim-
ple example such as the one we have given: “first-applicable”
gives unfettered access if Policy 4 happens to be listed be-
fore Policy 1, and “deny-overrides” silently combines the two
paths without noticing the fundamental incompatibility that
indicates a mistake has been made in policy specification.

We will use the algebraic concept of a lattice as a combi-
nation method that will better represent user intent. A lat-
tice is a partial order on a set, where the least upper bound
(“join”) and greatest lower bound (“meet”) of any subset con-
tains precisely one element. Any finite lattice thus includes
two special elements, top and bottom, which are the greatest
and least elements of the set respectively. By representing
decisions as a lattice and interpreting the bottom element as
an error, we can automate combination of decisions: any set
of decisions whose meet is above bottom can be safely com-
bined to that meet, while any set of decisions with a meet of
bottom is a problem that requires human intervention.

There are three basic Decisions in any security system:
Permit, Deny, and Conflict, where Conflict is a report of
an error of some sort (and will usually be implemented as a
denial plus some sort of report to the system administrator).

A Decision of Permit, however, may be modified: “Yes,
but...” (in XACML, this is implemented via “obligations”).
For example, a redaction filter may be added that allows
only client-specific information to cross a domain boundary,
or an entry may be added to a log file recording the decision.

We will systematize such modifications into two allowable
categories:

e Filter is an operator that modifies the content of the
service interaction regulated by the Decision.’

e SideEffect is an operator that takes an action that
does not modify policy, does not modify the behavior
of either this or future service interactions, and does
not send information across domain boundaries.

Figure 2 shows the type-lattice of order relationships be-
tween the three basic decisions, these two categories, and a
top element AnyDecision, of which all decisions are sub-
types.

These categories do not cover all of the possible modifi-
cations that one could make to a decision. For example,
a rate-limiting policy might use a side-effect to count how
many times a given client has used a service. However, such
modifications appear harder to prove safety properties about
so we will begin by excluding them from consideration, re-
serving the possibility of later expanding the set of allowable
categories.

We further require that the set of Filter operators for a
system must be commutative, associative, and idempotent,
as must be the set of SideEffect operators. Commutativ-
ity and associativity mean that the same effects will hap-
pen, no matter what order the operators are arranged in.

Note that some filters may be unsafe or impractical to prove
safety properties about; we are assuming that filters and the
safety of their combination is vetted elsewhere.

{}

AnyDecision m
m X} X} {X;} X3
Deny Permit Filter
1 1 1 XX (XX XX
Deny Permit Filter XXX
+ SideEffect + SideEffect + SideEffect = " 7" °
Conflict XXXy o X

(a) Decision Lattice

(b) Power Set Lattice

Figure 2: Type lattice (a) giving ordering relationships between Decisions, where Filter and SideEffect are
deployment-specific sub-lattices. The base form of these sub-lattices is subset ordering over the power set of
Filter or SideEffect operators (b). Important to note is that there is no ordering between Deny, Permit, and
Filter, such that their GCS is always Conflict, but that side-effects can be added or filters combined without

causing conflicts.

Idempotent means that two copies of an operator can be
consolidated into one without changing its effect.? These
sorts of compositional properties are not generally consid-
ered in current policy design, but many of the obvious classes
of Filter and SideEffect operators can be constructed to
satisfy them. For example, is it easy to prove that most
information-removing filters are commutative, associative,
and idempotent.

With these restrictions, we are guaranteed that the set of
Filter operators and the set of SideEffect operators can
each be arranged into a lattice. Given a set of associative,
commutative, and idempotent operators, it is always pos-
sible to establish a lattice over their power set, taking or-
dering from subset relations. Adding ordering relationships
between operators can compact the lattice, making it more
efficient. For example, time delay filters of variable length
can be ordered such that longer delays supersede shorter de-
lays. Thus, given any two time delay filters, the one with
the shorter delay can be discarded, eliminating all lattice
elements containing more than one time delay filter.

It is thus possible to take any set of decisions, includ-
ing arbitrary side-effects and filters, and determine whether
the set is consistent by finding the greatest common subtype
(GCS, ak.a meet, greatest lower bound, or infimum). An
inconsistent set has a GCS of Conflict, an indeterminate
set has a GCS of AnyDecision, and a consistent set (no
matter how large) resolves to a GCS or a single Decision
that consolidates all of the behaviors implied by the policy
into their simplest possible implementation.

The lattice in Figure 2 thus plays a critical role in system
design, as it determines when the system will view differ-
ing policies as a problem to report, as opposed to when it

2Note that for this to hold for logging operations, we must
define the effect to be “Entry X is contained in the log file”,
or else the (unimportant) ordering and/or duplication of log
entries fails commutativity and idempotence. Redaction fil-
ters must be constructed in a similar manner where the effect
is “Entry X is not contained in the document.”

will view them as an opportunity for automatic resolution
to be useful. Both spurious problem reports and incorrect
automatic resolution of problems are not acceptable, so we
must strike a balance that attempts to minimize these mis-
behaviors, and given the concerns of security we are biased
to prefer spurious reports over incorrect automatic decisions.

Since side-effects do not change the cross-domain infor-
mation flow, it is safe to set it so that side-effects will never
create conflicts (thus their position as subtypes of all other
decisions).

Intuitively, it seems reasonable that combining Permit
and Deny should result in a conflict, so they should not be
ordered with respect to one another. This may be reinforced
by considering example policies in which either should over-
ride:

e [f attributes are normal, then Deny, but when given
special permission the decision should instead be Per-
mit, e.g. white-listing, common firewall rules.

e [f attributes are normal, then Permit, but when a
security incident flag is set the decision should instead
be Deny, e.g. black-listing, certificate revocation.

Given that the override can go in either direction, it must be
established explicitly in the policy design, rather than being
implicit via an ordering of Permit and Deny in the lattice
of Decisions.

This leaves filters, which could be argued to be related
either to Permit, which can be viewed as a null filter, or
to Deny, which can be viewed as a total filter. For now,
however, we choose to leave them unordered (so that com-
bining Filter with either Permit or Deny is a conflict).
We do not order Filter and Deny since we believe that
security policies generally make a qualitative distinction be-
tween no access and any trickle of access no matter how
small. We do not order Filter and Permit because we be-
lieve it likely that cross-domain security policies will often
want to carefully separate unfettered in-domain access and
filtered cross-domain access.

System B |
1

System C

Figure 3: Even when only a small number of do-
mains are involved, there is potentially a significant
search task required in order to determine all appli-
cable policies for a service request. In the example
scenario above, with Bob on System B requesting ac-
cess to shipping data on System A, there are 8 differ-
ent applicable Policy combinations, each involving a
different cross-domain path. Attributes are shown
as letters, Credential/Attribute relations are purple
arrows, cross-domain Mappings for Credentials and
Attributes are blue arrows, and access Policies are
green arrows.

4. DISCOVERING POTENTIAL POLICY
CONFLICTS

If only one access policy applies to a service request, then
the decision is clear. It is often the case, however, that
multiple policies may apply (for this work, we will assume
that the resolving party has access to all policy information;
the conditions under which it is even possible to detect con-
flicts with incomplete information are not currently known).
Sometimes this is intentional, as when a policy specifies an
exception that overrides a more general policy. Sometimes
this is a mistake, as in our example when two separately
conceived policies interact to create an unintended privilege
escalation.

We would like to detect all instances of the latter case,
while resolving the former case with as little explicit in-
struction from the human security administrator as possible.
The reason is one of scalability: for n policies, there are n?
possible statements of precedence between applicable poli-
cies. We expect that some explicit precedence statements
will always be required—otherwise, all resolution could have
been built into the Decision lattice, as explained above.
The more precedence statements that an administrator is
required to make, however, the greater the administrative
burden and the more likely it is for mistakes to be intro-
duced.

The likelihood of multiple policies applying to a service
request, as well as of unintended policy interaction, is sig-
nificantly higher in the case of cross-domain interactions:
not only are there are more independent decision makers,
but credentials and attributes may need to be translated be-
tween different standards, and in-domain and cross-domain
policies may interact, as in our example from Figure 1.

Figure 3 shows some of the many ways in which in-domain

Analyst,
>—> SeniorAnalyst,
Analyst, = Analyst, ServiceYears,

(a) One to One At- (b) Many to One Attribute
tribute

Analyst, Analyst, SeniorAnalyst,
Analyst, -< >.<
Foreign, ServiceYears, Foreign,

(c) One to Many At- (d) Many to Many Attribute

tribute
Analyst,
—_— =P Analyst, _<
Alice, Alice, Alice, Alice, Foreign,

(e) Credential to (f) Credential to (g) Credential to
Credential Attribute Many Attributes

Figure 4: Examples of the seven possible cases of
cross-domain mapping of Attributes and Creden-
tials.

and cross-domain information can interact to produce many
different applicable policy combinations. In addition to within-
domain policies, cross-domain policies introduce two addi-
tional relations:

e A cross-domain reference is the inclusion of a Cre-
dential or Attribute from System X in a policy orig-
inated by System Y.

¢ A Mapping takes a set of Credentials or Attributes
from System X and transforms them into Credentials
or Attributes on System Y.

Note that a Mapping could potentially involve multiple sys-
tems (i.e. Acme grants a certain access only to Bacchae staff
who are also dealing with a mutual contract with FedEx).
We believe this introduces much additional complexity for
little gain, and so consider only pairwise Mlappings for now.

4.1 Cross-Domain Mappings

Because the set of Attributes and Policies many vary
greatly across domains, mappings are extremely general. We
will assume, however, that mappings are monotonic: that
is, mappings can only add applicable Credentials and At-
tributes, not delete them (though policy can prevent them
from crossing a boundary). This is an important assump-
tion because otherwise it is possible to construct a set of
mappings that does not resolve, but deadlocks in an infinite
loop of addition and deletion.

The cardinality of an Attribute mapping may be any of
several cases (illustrated in Figure 4):

e One-to-one: e.g. System X treats all analysts from
System Y as though they were System X analysts.

e Many-to-one: e.g. System X distinguishes between
junior and senior analysts, while System Y only has
one type of analyst. System X combines the System Y
analyst Attribute with the number of years of service
to determine whether to treat a System Y analyst as
a junior or senior System X analyst.

e One-to-many: e.g. System X treats all analysts from
System Y as though they were System X analysts, ex-
cept that they are also given a “foreign” attribute that
limits some accesses. This case is distinct from mul-
tiple one-to-one mappings because it encodes the in-
tent that these attributes must be linked together (i.e.
tagging an outsider with the “foreign” flag as their at-
tributes are translated to the local domain).

e Many-to-many: e.g. a combination of the previous
two cases.

Moreover, there may be multiple mappings that can pro-
duce the same output attributes, as when the many-to-one
example of senior and junior analysts is reversed, such that
two types of System Y analyst both map to the same type
of System X analyst. Note that although all cases might
be viewed as special cases of many-to-many mappings, we
begin by distinguishing these cases because we expect that
there may be stronger inferences or more efficient heuristics
that can be applied in the narrower cases and also that a
large fraction of mappings in real systems will be instances
of the narrower cases.

Mappings may involve Credentials as well as Attributes:

e A Credential in one domain can map to a Creden-
tial in another, e.g. Alice has accounts on both System
X and System Y.

e A Credential in one domain can map to Attributes
in another domain, e.g. Alice’s account on System Y
is given the “visiting analyst” attribute by System X.

Although there is no theoretical bar to arbitrary mappings
involving Credentials, we believe that practically it is rea-
sonable to assume that attributes do not map to Creden-
tials, that Credential to Attribute mappings never in-
volve multiple Credentials, and that Credential to Cre-
dential mappings are always one-to-one. It might also be
possible to map other elements from one domain to another,
but doing so is not central to the problem so we do not con-
sider these cases at present.

In order to determine the applicable Policies for a ser-
vice request, it is necessary to find paths between the ser-
vice and the client, where a path is a chain from Policy to
(local or cross-domain) Attributes or Credentials refer-
enced by the Policy, and thence on through cross-domain
mappings and local Credential/Attribute relations to the
original client Credential. Much of this search for paths
might be cached via dynamic programming, of course—for
example, the paths connecting Bob to Logisticsa, discov-
ered when he accesses inventory data on A can be reused
when he attempts to access shipping data on A. In general,
it is necessary to find only those paths capable of producing
a Conflict in the Decision, but in many cases we expect it
will be more expedient simply to find all paths, since there
may be many ways to produce a Conflict.

It is easy to see that, even when only a small number of
domains are involved, there is potentially a significant search
task required in order to determine all applicable policies for
a service request. In the example scenario in Figure 3, with
Bob on System B requesting access to shipping data on Sys-
tem A, there are 8 different applicable policy combinations,
each involving a different cross-domain path.

S. EXPLICIT AND IMPLICIT RULE
PRECEDENCE

When multiple rules apply and the Decisions which they
specify are not compatible, there must be some way of de-
termining which rule takes precedence. In some cases, this
must be declared explicitly by a human administrator. If
Attribute information is given a lattice structure, however,
similar to the lattice structure of Decisions, then implicit
precedence relations for Policies may be inferred in many
circumstances.

In general, the description language for Policies is too
complex for general inference. In XACML, for example, even
if the full complexity of possible rule specifications were not
too complex to analyze, the ability to invoke arbitrary ex-
ternal code as part of a policy would make it impossible. A
large subset of pragmatically useful policies, however, can
be described as a conjunction of tests on Attribute val-
ues and external circumstances. Moreover, human thinking
about policies often takes the form of defaults and excep-
tions, such as: “Normal employees don’t get access to the
financial database, but contracts and accounting do.” or
“Nobody outside the company gets access to the financial
database, except for the auditors.”

In such cases, implicit precedence can be inferred for pairs
of rules where the tests for one specify a strictly stronger set
of Attributes values and conditions. For example, these
examples of default and exception policies might be specified
as:

5. Deny Employeep read of Financialsp

6. (Employeep and Contractsp) reads Financialsp
7. (Employeep and Accountingg) reads Financialsp
8. Deny Foreignp read of Financialsp

9. Auditors reads Financialsp

Policies 6 and 7 have implicit precedence over Policy 5 be-
cause they each specify a narrower class of employee, e.g.
those employees who are also in accounting. Policies 6 and
7 have no implicit precedence with respect to one another,
however, since Contractsg and Accountingp are indepen-
dent attributes.

The more information is encoded in the Attribute lattice,
the stronger an inference that can be made. For example,
if it is declared that statements about auditors always take
precedence over other statements, Policy 9 will have implicit
precedence over Policy 8 and an external auditor will be
given access to the company financials.

As with the Decision lattice, structure in the Attribute
lattice need not be declared unless it is valuable to the hu-
man administrator. This allows a pragmatic trade-off to
be made where the human can opportunistically determine
whether a given family of relationships is simpler and more
intuitive to declare in terms of policy precedence or attribute
relationships.

6. RESOLUTION ALGORITHM

Given these mathematical foundations, we can now spec-
ify an algorithm for adjustably-autonomous policy resolu-
tion. Assuming that a Policy Decision Point (PDP) has
access to the full set of Policies, it can determine the De-
cision for a given request via the following procedure:

1. Search to find all applicable Policies and evaluate to
collect their Decisions.

2. Use explicit and implicit precedence to create a partial
order on the set of applicable Policies.

3. Find the set of maximal elements in the set of appli-
cable Policies (those where there is no other element
with precedence over them).

4. The overall Decision is the GCS of the Decisions
associated with the set maximal elements (or Con-
flict if an error in policy-writing has caused there to
be no maximal element to exist). If the GCS is Con-
flict then human intervention is requested; otherwise
the policy combination is autonomously resolved to the
GCS value.

Applied dynamically in a PDP, this algorithm considers
particular client requests for resources. Thus, in our privi-
lege escalation example, Bob’s request for shipping data on
System A leads to two Policy/Decision pairs being found:
{Policy 1, Filter (B-contracts only)} and {Policy 4, Per-
mit}. No explicit precedence has been declared, and no im-
plicit precedence exists, since Purchaserg and Logisticsa
are independent attributes, so both are members of the set
of maximal elements. The overall decision is thus the GCS
of Filter (B-contracts only) and Permit, which is Con-
flict. The possibility of privilege escalation is thus caught
and prevented, though the machine must defer to a human
to resolve the conflict by adjusting the Policies. For exam-
ple, the administrator might declare that Policy 1 has prece-
dence over Policy 4. Now if Bob asks for shipping data, both
pairs are found as before, but Policy 1 take precedence. The
GCS of that single Decision is Filter (B-contracts only),
giving him appropriate partial access to the shipping data.

Potential conflicts may also be detected statically by con-
sidering a generic client. This client gives all possible an-
swers to policy questions, unless there are explicit declara-
tions that certain attributes have exclusive value sets. For
example, if there are policies that Managers are permitted
access to a resource and Technicians are denied access, then
this will appear to be a conflict unless there is attribute type
information specifying that the job category Attribute has
precisely one value per individual or an individual can never
be both a Manager and a Technician.

If no PDP has access to sufficient information about the
full set of Policies (both internal and cross-domain), how-
ever, it is not possible to guarantee safety for the 3+ domain
case, and is only possible to guarantee safety for a subset of
the two domain case. It may thus be desirable for a group of
interacting domains to share their Policies, either with each
other or with a hub that has been entrusted with the job of
determining applicable cross-domain policy. It may also be
possible to compose analyses of policies, such that although
Policies themselves are not shared, sufficient summary type
information is shared to ensure safety.

7. CONTRIBUTIONS

We have presented a lattice-based approach to policy rep-
resentation that allows some of the policy intent of a human
administrator to be inferred or explicitly captured. Combin-
ing this representation with search through a set of cross-
domain mapping policies enables a policy resolution algo-
rithm that resolves routine policy interactions autonomously

while flagging potential conflicts for attention from a human
administrator.

To move from this foundation to practical deployment in
real cross-domain scenarios, some key challenges must be
addressed: a succinct means of specifying and maintaining
policies must be developed, the framework must be proved
to sufficiently capture administrator intent, and it must be
instantiated in a form where its safety is certifiable. Finally,
since organizations may not wish to share their entire poli-
cies with one another, it is an open question how to identify
the minimum information must be shared in order to safely
resolve policy interactions.

Acknowledgements

The authors would like to acknowledge the support and col-
laboration of the US Air Force Research Laboratory (AFRL)
Information Directorate. This material is based upon work
supported by the Air Force Research Laboratory under Con-
tract No. FA8750-10-C-0131.

8. REFERENCES

[1] J. Hodges et al. (March, 2005) “Glossary for the OASIS
Security Assertion Markup Language (SAML) V2.0.”

[2] Tim Moses. (1 Feb 2005) eXtensible Access Control
Markup Language (XACML) Version 2.0.

[3] Bill McCarty, SELinux: NSA’s Open Source Security
Enhanced Linux.: O’Reilly, 2005.

[4] Karl MacMillan, and David Caplan. Frank Mayer,
”SELinux by Example.,” Open Source Software
Development Series, vol. Prentice Hall, 2007.

[5] NSA Web Site. [Online]. http://www.nsa.gov/ia/
programs/h_a_p/releases/index.shtml

[6] OpenID Web Site. [Online]. http://openid.net

[7] Shibboleth Web Site. [Online].
http://shibboleth.internet2.edu/, August 2009

[8] David Chadwick and Gansen Zhao, PERMIS: a
modular authorization infrastructure, Concurrency and
Computation: Practice and Experience, vol. 20, no. 11,
pp. 1341-1357, 2008.

[9] Peter White, Security Configuration Domain Specific
Language (DSL), 2008 SELinux developer summit,
[Online], http://selinuxproject.org/files/
2008_selinux_developer_summit/2008_summit_white.pdf

[10] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R.,
Suri, N., & Uszok, A. (2003). Semantic Web languages
for policy representation and reasoning: A comparison
of KAoS, Rei, and Ponder. International Semantic Web
Conference (ISWC 03). Sanibel Island, Florida.

[11] Java Theorem Prover (JTP), [Online].
http://www-ksl.stanford.edu/software/jtp/

[12] The Alloy analyzer, [Online],
http://alloy.mit.edu/community/

[13] David Elliott Bell, “Looking Back at the Bell-La
Padula Model,” Washington, DC, USA, 2005.

[14] Biba, K. J. "Integrity Considerations for Secure
Computer Systems”, MTR-3153, The Mitre
Corporation, April 1977.

