
A Spatial Computing Approach to Distributed
Algorithms

Jacob Beal
Raytheon BBN Technologies

Cambridge, MA, USA
Email: jakebeal@bbn.com

Richard Schantz
Raytheon BBN Technologies

Cambridge, MA, USA
Email: schantz@bbn.com

Abstract—Creating distributed applications for large, decen-
tralized networks is challenging for traditional programming
approaches, posing a growing obstacle as the number and
capabilities of networked devices continue to advance. In many
applications, however, the network of devices is not itself of
interest. Rather, we are interested in the relationships of the
devices to their surroundings and their relative positions. We may
thus instead write programs for the continuous space occupied
by the devices, viewing the network as a discrete approximation
of that space. This “amorphous medium” approach to spatial
computing leads to algorithms based on manifold geometry,
which are by their nature robust, adaptive, and scalable to vast
numbers of devices. This paper brings together previous results
into an overview of this programming approach and explains how
the manifold geometry abstraction provides benefits in scalability,
robustness, and adaptability.

Keywords-spatial computing; amorphous medium; distributed
algorithms; Proto; self-*

I. INTRODUCTION

Distributed networked systems are a fundamental challenge
in our current network-centric era. Centralized systems are
often impractical due to considerations of speed, robust-
ness, adaptivity, etc. Distributed systems have the potential
to overcome all of these problems, but in order to do so
many challenges must be addressed, such as coordination of
decisions and adaptation to changes in the computation or in
the network. The difficulty of overcoming these challenges
means that current distributed systems generally address only
a selected portion, and fall short of their overall potential.
For example, in the domain of sensor networks, the DARPA
SensIT project[1] performed collaborative tracking of moving
vehicles, but network organization and recovery from failure
were largely centralized or absent. The ExScal project[2],
which followed it, demonstrated scaling to 1000 devices, but
only by requiring a limiting hierarchical structure and precise
deployment of all devices into a preconfigured pattern.

Many distributed systems, including sensor networks, multi-
robot systems, and ad-hoc mobile networks, belong to the class
of spatial computers—potentially large networks of devices
where the cost of moving information between two devices
is strongly related to the physical distance between them. To
aid organization of distributed computation on such systems,
we may model the system as a continuous space, rather than
as a network. By programmatically manipulating regions of

!"#$%&'%()*+,-./#01(2

3%1456*+5**7

7%81$%

Fig. 1. An amorphous medium, highlighting a device and its neighborhood
(left), and a network of devices that approximate the amorphous medium
(right).

geometric space rather than the individual devices, many of the
details of the program and its adaptability are made implicit.
Doing so allows a programmer to work more directly on the
end goal of the application of interest, rather than trying to
build it from the bottom up in terms of individual devices
exchanging bits. Not only does this potentially simplify the
programming problem, but since many types of adaptability
in these networks can be derived from the spatial abstraction,
we can build distributed algorithms that, by the very nature
of their construction, address many of the problems that
are often neglected because they are too hard or less well
understood, and wind up making prototype distributed systems
un-deployable in practice. This continuous space approach has
been developed incrementally across a number of previous
papers[3], [4], [5], [6], [7], [8], [9], [10].

This paper presents an overview of the programming ap-
proach and explains how the manifold geometry abstraction
produces benefits in scalability, robustness, and adaptability.
We begin with a brief review of spatial computing and the
amorphous medium abstraction. We then give an example,
drawn from the domain of sensor networks, of how complex
applications can be formulated in terms of geometric compu-
tations over a manifold. This geometric formulation creates
implicit program adaptability at two levels: local adaptation
through maintenance of the continuous/discrete relationship
and long-range adaptation through the conformance of man-
ifold geometric operations to network structure. Finally, we
discuss open problems and likely benefits for practical dis-
tributed applications.

(a) Continuous Model (b) Discrete Model

Fig. 2. Continuous and discrete models of a unit of tanks moving through a network of sensor devices (red) that can detect (blue) nearby tanks.

II. SPATIAL COMPUTING AND THE AMORPHOUS MEDIUM

The key insight enabling a continuous spatial approach is
the recognition that there are many systems where the focus
is best placed not on the devices that make up the system, but
rather on the space through which the devices are distributed.
Sensor networks are a prototypical example: e.g., the point of a
target-tracking network is to monitor the movement of entities
through an area. The fact that this involves observations made
by and at particular devices is only of interest so far as it
contributes toward that goal. Multi-robot systems and ad-hoc
mobile networking are good examples as well: e.g., the point
of a robot coverage algorithm is to examine all points in a
space of interest, and the point of an ad-hoc routing algorithm
is to move information across space to where it is needed.

If devices only communicate directly over short distances
(e.g. to nearby neighbors over low-power wireless commu-
nication) then the aggregate structure of the communication
network forms a discrete approximation of the structure of the
space of interest. Combining these two observations allows us
to view the network using an abstraction that we call the amor-
phous medium[3]. An amorphous medium is a Riemannian
manifold1 with a computational device at every point, where
every device knows the recent past state of all other devices
in a local neighborhood (Figure 1). A network of locally
communicating devices can thus be viewed as a discrete
approximation of an amorphous medium, with each device
representing a small region of nearby space and messages sent
between nearby devices implementing the information flow
through neighborhoods.

With carefully chosen computational primitives and a means
of combining those primitives, such as provided by Proto[4],
[6], [7], [10], it is possible to maintain a tight relationship
between an abstract computation specified for a Riemannian
manifold and an actual computation being carried out on a
real network that is distributed through that space, so that
a program written to execute over continuous space can be

1A manifold is a mathematical object that looks like Euclidean space
locally, but globally may be different. For example, the surface of the Earth
is a 2-dimensional manifold: locally it looks flat, but if you keep going in a
straight line, you will return to your starting location. A Riemannian manifold
also guarantees the availability of other key geometric building blocks such
as angle, distance, area and volume, curvature, and gradients (generalized
derivatives).

approximated on real devices. The problem of building a
distributed system utilizing this abstraction is thus factored
into three components:

1) Application code built in terms of geometric computa-
tions and information flows on regions of a manifold.

2) Algorithms that map from any combination of geomet-
ric computations and information flows into a robust,
distributed implementation on the neighborhood inter-
actions of an amorphous medium.

3) A virtual machine for approximating the neighborhood
interactions of an amorphous medium on a network of
communicating devices.

III. EXAMPLE GEOMETRIC APPLICATION: TRACKING A
UNIT OF TANKS

In this section, we will walk through an example of how
a complex distributed application can be formulated geomet-
rically. Traditionally, distributed algorithms are almost always
designed and analyzed in terms of the local network interac-
tions of individual devices—Lynch’s classic textbook[11] is a
good representative example. As a result, it can be hard to
conceive of how to re-formulate applications for a continuous
geometric world.

Consider an example from the domain of sensor networks:
tracking a unit of moving tanks. We wish to track these
tanks using a network of sensor devices, where each sensor
device can detect the relative position of any tank within 50
meters of the device. Let us describe how this can be done,
highlighting in bold face the elementary geometric operations
of the computation.

Assume that the sensor network programmer wants to
consider tanks to be acting as part of the same unit whenever
are close to one another (e.g., within 200 meters) and are
moving together (e.g. their most recent motions were within
10 km/hr speed and 30 degrees direction), and wants to report
the size and aggregate movements of each detected unit. For
example, Figure 2 shows a single unit of 5 tanks moving at
60 km/hr on a bearing of 120 degrees.

A tank can be detected by multiple sensors, and each sensor
can detect multiple tanks, so a good place to start is aggregat-
ing detections into tanks: each device runs a computation for
each tank it detects, and computations share information with

neighboring computations only if they are about the same
tank. This can be determined for each neighbor of a device
by comparing the relative position of the local detection with
the sum of the neighbor’s current value for its detection and
the neighbor’s relative position.

Each tank’s speed and bearing can be estimated geomet-
rically by tracking what devices are entering and exiting its
detection region. The speed can be estimated by comparing the
area of the region of detection to that of the regions of devices
that have joined or left the region of detection over a short time
interval of length dt. The bearing can be estimated by taking
a distributed surface integral of relative tank position over
the devices that have just entered the region of detection and
subtracting a surface integral of relative tank position over
the devices that have just exited the region of detection, then
normalizing the resulting vector.

To cluster tanks into units, we begin by selecting, for
each tank, a region of every point within 100 meters: this
guarantees that if two tanks are within 200 meters of one
another (and therefore close enough to be in the same unit)
there will be at least one point where their regions overlap.
These regions can be constructed by measuring the distance
to the tank and testing whether the distance is less than 100
meters, producing an indicator field: a function mapping each
point in space to a boolean, true for points in the region and
false for points not in the region. For those devices that cannot
detect the tank directly, distance can be estimated by applying
the triangle inequality: the minimum over all neighbors of
the sum of a neighbor’s current value for the estimate and
the range to the neighbor.2

Devices that know the current speed and bearing estimates
for a tank can supply them to others in the 100-meter region by
taking the gradient of the distance estimates. This produces
a vector field indicating which direction the estimates should
flow from the source. Given recent speed and bearing esti-
mates, points where two regions intersect can compare them
and determine whether the two tanks are part of the same unit.
Finally, the number of tanks in a unit and its aggregate velocity
can be computed with surface integrals over the union of
regions for tanks in the same unit.

We can thus see how a distributed algorithm might be
formulated in terms of geometric computations. These compu-
tations in turn rely on maintaining the Riemannian manifold
abstraction over the network. More sophisticated applications,
for example, incorporating reliability estimates from sensors
or accounting for sharp turns in the unit definition, can be
implemented with more sophisticated geometric computations.

IV. BENEFITS OF GEOMETRIC SPECIFICATIONS

In this section, we explain how using a manifold geometry
abstraction provides benefits in scalability, robustness, and
adaptability. Specifically, we detail two ways of exploiting the
inherently spatial nature of domains like sensor networks.

2A more sophisticated geometric computation (e.g. [12], [13]) is necessary
if we want the estimate to adapt smoothly to changes in the source region or
the structure of the manifold.

! ! "
Fig. 3. Local adaptivity through maintenance of the continuous/discrete
relationship: when an individual device fails (red dot), others in the vicinity
(blue dots) split up responsibility for the space it previously approximated,
coarsening algorithm execution.

• Local Adaptation: maintenance of the continuous/discrete
relationship allows programs written using physical units
to automatically adapt to local changes in the network
that approximates the space.

• Long-Range Adaptation: the conformance of manifold
geometric operations to network structure allows pro-
grams written using geometric computations and infor-
mation flow to automatically adapt to gross changes in
the structure of the space or its network approximation.

A. Physical Units Enable Local Adaptation

When a domain is inherently spatial, many of the computa-
tions that we wish to express in that domain are more natural
to express in physical units such as meters, seconds, density,
curvature, etc. The continuous space abstraction allows pro-
grams to be expressed directly in these units, rather than units
specific to a particular network, such as hops, devices, and
rounds of communication. A distributed virtual machine[7] is
then responsible for making a best-effort translation between
physical units and the current values of hops, neighbors,
rounds, etc. for each device in its interactions with others
nearby, and also for reporting the current quality of these
approximations, so that an application can determine when
its requirements cannot be met.

As a result, a continuous space program can be written
agnostic as to which devices represent which portions of space
and how they maintain connectivity, and also agnostic to
the rates of program execution on devices[5]. If the virtual
machine that implements the continuous/discrete relationship
is written to adapt to changes in the set of other devices it
communicates with, then every physical unit computation on
neighborhoods will inherit this adaptability as well.

For example, if a device fails, its neighbors need to stop
using information from the dead device and to split up

! ! "
Fig. 4. Because manifold geometry operations conform to the structure of
the space, a geometric program adapts automatically to large-scale changes
in network structure.

responsibility for the space that the dead device was previously
responsible for, making the approximated computation coarser
(Figure 3). A program based on physical units does not need
to know how this happens, just to be able to measure the local
density of devices (which can also be expressed in physical
units) and change its behavior only if the computation has
become too coarse to meet its high-level goals. Likewise,
adding new devices simply increases the resolution of the
discrete approximation, automatically improving the quality of
a computation so long as there are not so many neighbors that
they begin to interfere with one another’s communications.

The virtual machine may even be able to automatically adapt
to problems with too few or too many neighbors. If there are
too few neighbors, the device may be able to increase the range
at which it communicates (e.g. by adjusting the power of a
radio transmitter). If there are too many neighbors, the device
might decrease the range of communication, or might also
decrease the frequency of communication. A program written
in physical units will automatically adapt to these changes as
well: all that has happened is that the values have changed
for variables in its computation such as speed of information
flow, distance to neighbors, and age of information.

B. Manifolds Enable Long-Range Adaptation

Where physical units provide adaptability in local in-
teractions, geometric computations on a manifold provide
adaptability to gross changes in the structure of the space
of interest, its approximation by the network, or the goals
of a program. Geometric computations on a manifold are
warped to fit its shape, so when a computation is run on a
manifold approximated by a network, large-scale changes in
the structure of the space or the network automatically change
the results of the computation to suit the new structure of
the network (Figure 4). Note that a large-scale change of the
network could involve any number of nodes—for example,

! ! "

Fig. 5. The adaptivity of manifold geometric operations can allow a program
to adapt to qualitatively different execution environments, such as computing
the expected rendezvous of two units in an open field versus city streets.

breaking a connection between two regions could involve the
failure of massive numbers of nodes or a single critical link,
and represent the same change of structure for the space being
approximated. Likewise, scaling up an algorithm to larger
networks can be represented by either increasing the volume of
approximated space or increasing the quality of approximation.

The Riemannian manifold representing a network is implied
by its neighborhoods: once we have modeled local interactions
as neighborhoods of continuous space, the regions of space
represented by individual devices are stitched together along
neighborhood relations to form a manifold that represents the
gross structure of the network. Geometric constructions on a
Riemannian manifold (e.g. finding a bisector or the shortest
path between points) work much like ordinary Euclidean
constructions, except that a construction is warped by the
shape of the manifold and the distance metric implied by its
neighborhoods. This means that geometric computations will
be able to automatically adapt to different circumstances.

Consider, for example, the tracking tanks in an open field
versus through city streets. If communication is short-range
and blocked by buildings (e.g. low-power, high-frequency
wireless), then the structure of the network approximates
that of the space: a large open region for the field and an
interconnected web for city streets (Figure 5). This means that
distance estimates in the open field will be as-the-crow-flies,
while distance estimates in the city will be along the streets,
and the computation described above will automatically adapt
such that tanks that are near one another in absolute terms but
distant in terms of their ability to move through the streets
will not be considered part of the same units.

The toolkit of geometric constructions on Riemannian man-
ifolds is slightly different than for Euclidean space, but many
Euclidean constructions do translate easily. For example, the
distance between two locations in a Riemannian manifold
can be quickly and efficiently calculated by applying the

triangle inequality, and this computation is straightforward to
distribute (though making it adapt efficiently as the network
changes is more challenging[12], [13]). Most importantly, if
the distributed versions of the elementary toolkit of geometric
constructions can be made to adapt efficiently to changes in
manifold structure, then any complex program constructed
from them will adapt as well.

Just as with physical units, this is not a panacea, but sep-
arates small changes that can be handled automatically from
big ones that a system designer needs to address carefully. For
example, a frequent challenge in networking is determining
when a failure really matters: for example, if there is a lot
of connectivity near a communications path, a cheap local
repair process can fix a broken connection, but if a critical
device fails an entirely new route may need to be constructed.
Viewing a network as a Riemannian manifold makes such
a distinction easy and natural, since a failure in a well-
connected region does not change the structure of the manifold
abstraction, but the failure of a critical device does. Moreover,
measuring geometric properties of the manifold in physical
units could be a useful predictor of when a communications
path is endangered—for example, integrating density on lines
perpendicular to a communication path gives a good approx-
imation of the underlying connectivity of the network in that
area, and therefore the fragility of the communications path.

We thus see that when there is a strong relationship between
a physical space and the structure of a networked computation,
using physical units and manifold geometry calculations al-
lows a one-time investment in infrastructure to harden a system
against a wide variety of failures and changes in the network
or its environment.

V. CONTINUING CHALLENGES AND POTENTIAL IMPACT

We have presented an overview of the continuous-space
approach to distributed algorithm programming. We have
seen that complex distributed algorithms can be specified
geometrically, using the amorphous medium abstraction. This
can provide implicit scalability, robustness, and adaptability,
both locally though maintenance of the continuous/discrete
relationship, and over long ranges by the conformance of
manifold geometric operations to network structure.

There are many continuing challenges in the further de-
velopment of the continuous-space programming approach.
Amongst the most pressing are:

• Theory of computation and universality on continuous
space-time surfaces, extending the work in [9].

• Quantitative prediction of the relationship between the
discrete network and the quality with which a computa-
tion is approximated. This has been computed for special
cases[14], and is uncomputable in general, but should be
computable for a wide class of useful algorithms.

• Loosely constrained mobile devices can be modeled with
a gaseous model, described in [8]. This model needs to
be better formalized and also to be extended to liquid,
solid, and mixed-state approximations for devices with
more constraints on their motion.

• Expansion of the library of fast, self-stabilizing algo-
rithms that implement manifold geometric operations,
after the fashion of [12].

• Continued improvement of Proto and its free software
implementation[15].

The future of distributed systems will be driven by smaller,
cheaper, and more capable devices. The continued rapid pace
of hardware improvements, combined with rapid advances in
MEMS, micro-fluidics, and micro-scale sensing, means that
the bulky, expensive, and fragile devices of the past will be
replaced by ever-smaller, cheaper, and hardier devices in every
domain. As we have seen, the continuous space abstraction
approach has the potential to make these problems signifi-
cantly simpler to address and sustain under widely varying
conditions. The impact on distributed systems may be nothing
short of revolutionary: orders of magnitude increase in the
number of devices that can practically participate in a compu-
tation, simple dynamic configuration and system maintenance,
seamless integration of new devices and order of magnitude
decrease in the cost of device failure or movement, and a
greatly strengthened ability to predict algorithm behavior.

REFERENCES

[1] G. Mitchell, J. Mazurek, K. Theriault, and P. Manghwani, “Sensoft:
Development of a collaborative sensor network,” in Distributed Sensor
Networks, S. S. Iyengar and R. R. Brooks, Eds. Chapman & Hall, 2004.

[2] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Ku-
lathumani, Z. Hongwei, H. Cao, M. Sridharan, S. Kumar, N. Sed-
don, C. Anderson, T. Herman, N. Trivedi, M. Nesterenko, R. Shah,
S. Kulkami, M. Aramugam, L. Wang, M. Gouda, Y. Choi, D. Culler,
P. Dutta, C. Sharp, G. Tolle, M. Grimmer, B. Ferriera, and K. Parker,
“Exscal: Elements of an extreme scale wireless sensor network,” in 11th
IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and
Applications, 2005, pp. 102–108.

[3] J. Beal, “Programming an amorphous computational medium,” in Un-
conventional Programming Paradigms Int’l Workshop, September 2004.

[4] J. Beal and J. Bachrach, “Infrastructure for engineered emergence
in sensor/actuator networks,” IEEE Intelligent Systems, pp. 10–19,
March/April 2006.

[5] J. Bachrach and J. Beal, “Programming a sensor network as an amor-
phous medium,” in Distributed Computing in Sensor Systems (DCOSS)
2006 Poster, June 2006.

[6] J. Bachrach, J. Beal, and T. Fujiwara, “Continuous space-time semantics
allow adaptive program execution,” in IEEE SASO 2007, July 2007.

[7] J. Bachrach and J. Beal, “Building spatial computers,” MIT, Tech. Rep.
MIT-CSAIL-TR-2007-017, March 2007.

[8] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous space
programs for robotic swarms,” Neural Computing and Applications,
vol. 19, no. 6, pp. 825–847, 2010.

[9] J. Beal, “A basis set of operators for space-time computations,” in Spatial
Computing Workshop, 2010.

[10] J. Beal and J. Bachrach, “Programming manifolds,” in Computing Media
and Languages for Space-Oriented Computation, Dagstuhl Seminar
Proceedings, A. DeHon, J.-L. Giavitto, and F. Gruau, Eds., no. 06361.
Dagstuhl, Germany: Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[11] N. Lynch, Distributed Algorithms. Morgan Kaufman, 1996.
[12] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing

gradients,” in ACM Symposium on Applied Computing, March 2008.
[13] J. Beal, “Flexible self-healing gradients,” in ACM Symposium on Applied

Computing, March 2009.
[14] J. Bachrach, J. Beal, J. Horowitz, and D. Qumsiyeh, “Empirical charac-

terization of discretization error in gradient-based algorithms,” in IEEE
Int’l Conf. on Self-Adaptive and Self-Organizing Systems, October 2008.

[15] “MIT Proto,” software available at http://proto.bbn.com/, Re-
trieved November 22, 2010.

