
1

Robust Stability of Spreading Blocks in Aggregate Programming

Yuanqiu Mo, Soura Dasgupta and Jacob Beal

Abstract—Self-stabilizing (asymptotically stable) information

spreading algorithms are an important building block of many

distributed systems featuring in Aggregate Computing, but the

dynamics of their convergence has largely remained elusive,

except in a special case of a distance finding variant known

as the Adaptive Bellma-Ford (ABF) Algorithm. As a how they

behave in interconnections involving other building blocks, it is

important to develop a framework to demonstrate their robust

stability. This paper addresses this shortcoming by analyzing a

very general block of which ABF is a special case. It provides a

proof of global uniform asymptotic stability and ultimate bounds

on the state error in face of persistent perturbations.

I. INTRODUCTION

Recent years have witnessed the emergence of complex
networked distributed systems involving compositions of nu-
merous physical and logical systems that may themselves be
distributed. Understanding their dynamics, stability and relia-
bility are of paramount importance. Accordingly the controls
literature has witnessed significant research on the stability of
networked control systems, e.g. [2] - [6].

This paper on its part is concerned with a complementary
set of new challenges posed by the analysis and design
of systems that enable the dispersion of services to local
devices as in smart cities, tactical information sharing, per-
sonal and home area networks, and the Internet of Things
(IoT) [9]. Realizing the potential of these domains requires
devices to safely and seamlessly collaborate with neighboring
devices through low latency peer to peer communications,
often in feedback loops, with individual blocks independently
subjected to perturbations due to mobility, uncertainty and
noise. These systems are open, i.e. are expected to support
an unbounded and rapidly evolving collection of distributed
services. Their analysis requires a framework for analyzing
the composition of distributed services, to guide service engi-
neering and support run time monitoring and management of
complex compositions of dispersed services.

The emerging field of aggregate computing is conceived to
address the ensuing challenges. Aggregate computing views
the basic computing unit as a physical region comprising

Mo and Dasgupta are with the Dept. of ECE, University of Iowa,
Iowa City, IA 52242, USA. Dasgupta has a visiting position in
the Shandong Computer Science Center (National Supercomputer Cen-
ter in Jinan), Shandong Provincial Key Laboratory of Computer Net-
works. [yuanqiu-mo,soura-dasgupta]@uiowa.edu. Beal is
with the Raytheon BBN Technologies Cambridge, MA, USA 02138.
jakebeal@ieee.org. This work has been supported by the De-
fense Advanced Research Projects Agency (DARPA) under Contract No.
HR001117C0049. The views, opinions, and/or findings expressed are those
of the author(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government. This
document does not contain technology or technical data controlled under either
U.S. International Traffic in Arms Regulation or U.S. Export Administration
Regulations.

a groups of interacting computing devices, rather than an
individual physical device [9]. Much like the OSI model for
communication networks, [9] abstracts the system into differ-
ent layers by factoring distributed system design into separate
tasks of device-level communication and discovery, coherence
between collective and local operations, resilience, and pro-
grammability. In particular, [7] and [8], show that a broad class
of dispersed services are captured by the interaction between
three types of building block distributed algorithms: (i) G-
blocks that spread information through a network of devices,
(ii) C-blocks that summarize salient information about the
network to be used by interacting units, and (iii) T -blocks that
maintain temporary state. While the dynamics of these basis
set systems appear amenable to effective composition [10]–
[12], the formal analysis of each of these blocks has been
limited to demonstrating self-stabilization, which lacks the
explicit notion of robustness inherent to such concepts in the
stability theory literature as uniform asymptotic stability, [1].

As a first step towards understanding the stability of
possibly feedback interconnection of aggregate computing
blocks one must study them individually to see whether their
behavior is robust to perturbations. At the minimum this
in turn requires their uniform asymptotic stability without
perturbations. This is so as the uniform asymptotic stability of
unperturbed systems permits them to be well behaved under
modest perturbations, [15]- [18]. Beyond that, finding ultimate
bounds in the face of perturbations, would permit the use of
sophisticated refinements, [22], of the small gain theorem, [1],
to help establish closed loop stability.

Indeed in [24] and [25] we have conducted such an anal-
ysis of a very special G-block: The Adaptive Bellman-Ford
(ABF) algorithm, which is an adaptive version of the classical
Bellman-Ford algorithm, [19], [20]. The ABF adaptively finds
the distance of nodes in a network from a set of sources. In this
paper we look at a much more general variant of the G-block,
[23]. This general G-block accommodates non-Euclidean dis-
tance metrics, as for example those that discourage certain
routes, permits implementing broadcast where each source
broadcasts a stored value to nodes nearest to it, and other
features, some of which are described in Section II.

After introducing the algorithm in Section II we provide
a stability theoretic proof of its global uniform asymptotic
convergence in Section III. This proof is much more nontrivial
as compared to the analysis for ABF, in [24] and [25]. For
starters ABF assumes that all source states, representing the
distance from the set of sources, are held at zero. There is
a comparable set of nodes in the general algorithm, but the
states of these nodes may not converge to these values. In fact
unlike ABF one cannot even a priori assume the existence
of stationary points: Rather it emerges as a byproduct of a
proof. While for ABF we were able to find a simple non-

2

increasing Lyapunov function, none such is readily available
for this analysis. There is a simple Lyapunov function that is
nonincreasing but only after a certain time. Despite this fact,
with an additional Lipschitz condition on the update kernel we
are able to establish ultimate bounds on the state error under
persistent perturbations, in Section IV. Section V gives several
simulations. Section VI concludes.

II. A GENERAL SPREADING BLOCK

We consider an undirected graph, G with node set V =

{1, 2, · · · , N}. Nodes i and k are neighbors if they share an
edge. The set of neighbors of i, will be denoted by N (i). In
this section we present one of the two versions of the general
spreading or G-block enunciated in [23]. As the formulation
in [23] uses language from field calculus which most control
theorists are unfamiliar with, we translate the formulation in
[23] to notation and framework that are more standard for the
control setup.

Suppose the desired state at the i-th node is xi. Then in the
t-th iteration its estimate x̂i(t) obeys

x̂i(t+ 1) = min

⇢

min

k2N (i)
{f (x̂k(t), eik)} , si

�

, 8t � t

0

. (1)

The eik define the structural aspects of G; e.g. they may be
the edge lengths between neighbors; si is the maximum value
that x̂i(t) can acquire. For some they are infinity. Define

S⇤
= {i 2 V |si < 1}. (2)

The following assumption holds.

Assumption 1. The underlying graph is connected. All si �
s

min

� 0, eik = eki � ✏ > 0, S⇤ defined in (2) is nonempty
and S⇤ 6= V . Further f(a, b) obeys for some � > 0,

f(a, b) > a+ �, (3)

f(a

1

, b) � f(a

2

, b), if a
1

� a

2

. (4)

and is finite for all finite a, b.

Note (3) makes f(a, b) progressive in a, while (4), makes it
monotonic in a. The definition of progressive is stronger than
that in [23], which only requires that f(a, b) > a. This is so
as [23] is only concerned with self-stabilization, which unlike
asymptotic stability does not have the notion of robustness
attached to it. By contrast we are concerned with robust
behavior and thus require this strengthened condition. While
no such conditions are imposed on with respect to b for the
convergence analysis in Section III they are needed in Section
IV, where ultimate bounds under parturbations are provided.
The stationary point x = [x

1

, · · · , xN]

T of (1) obeys:

xi = min

⇢

min

k2N (i)
{f (xk, eik)} , si

�

, 8 i 2 V. (5)

The existence of this stationary point will emerge as a byprod-
uct of our convergence proof. We make a few definitions one
of which assumes the existence of the stationary points.

Definition 1. If in (5), xi = si then we say that i is its own
true constraining node. Otherwise, the minimizing k in (5) is

a true constraining node of i. As i may have more than one
true constraining node, its set of true constraining nodes is
designated as C(i). Similarly, if in (1), x̂i(t) = si, then we
say that i is its constraining node at time t. Otherwise, the
minimizing k in (1) is a constraining node of i at time t. As
i may have more than one constraining node, its set of true
constraining nodes at time t is designated as ˆC(i, t).

We now provide some examples of (1). The first and sim-
plest is the Adaptive Bellman-Ford (ABF) algothm a variant
of the classical Bellman-Ford algorithm, [19], [20], for finding
the Euclidean distance of nodes from a set of source nodes
S. In particular with ˆ

dk(t) the estimated distance of the k-th
node from a set of sources S, ABF proceeds as

ˆ

di(t+ 1) =

(

minj2N (i)

n

ˆ

dj(t) + eij

o

i /2 S

0 i 2 S

, (6)

where eij > ✏ > 0 is the edge length between nodes i and
j. Observe (6) is a special case of (1): f(a, b) = a + b > a,
ˆ

di = x̂i,, si = 0 if i 2 S and si = 1 for all i /2 S. Unlike
the classical Bellman-Ford algorithm, ABF does not require
that ˆ

di(t0) at the initial time be no smaller than its true value
di. It also accommodates multiple sources that the classical
algorithm does not. We oberve that we have analyzed ABF in
a Lyapunov framework in [24] and [25]. The latter reference
also provides ultimate error bounds under perturbations. The
generalizations provided here are nontrivially different as
unlike ABF, in (1), f is permitted to be nonlinear.

Observe (1) generalizes (6) in several ways. First, it permits
non-Euclidean distance measures. For example, the length of
a path might be quantified not by distance but by time to
traverse, modulated by traffic, speed limits, intersections, etc.
Other measures move further away from typical notions of
distance: for example, metrics for the cumulative exposure to
a space-filling hazard such as radiation or hostile action.

Second, in ABF si = 0, 8 i 2 S⇤. In contrast, in (1) the
finite si may be nonzero, and in the stationary state values of
these nodes need not equal si and may in fact be smaller. For
example, the set of finite si might be exfiltration points from
a tactical network, with values equal to the time needed to
transmit information back to a supporting cloud environment.
In this scenario, a fast link through an airborne asset would
have a low si value, while a slow link through a satellite would
have a high si value, causing exfiltration to route through the
airborne asset when it is nearby, but shift to the backup satellite
link when that high-speed link is not available.

Finally, (1) accommodates computations besides distance-
like fields, such as broadcast, where each device takes on the
most recent value held by the source nearest to it. This is
accomplished by using a pair rather than a single value for
the state xi, where the first element of the pair a distance
metric as before, but where the second element is an arbitrary
state. Using a lexicographic ordering over pairs, each device
then takes its second pair value as an arbitrary computation
on the second pair value held by its current constraining node.
Broadcast is the simplest such function, which uses the identity
function for the second pair value, that is carried outward from
each source along shortest paths.

3

III. CONVERGENCE WITHOUT PERTURBATIONS

We now analyze the convergence of (1) without perturba-
tions, i.e. when the eik, the edge set, and si do not change,
and when Assumption 1 holds. A key difference between
this analysis and that for ABF in [24] and [25] is that in
these references, the linearity of f(·, ·) permits a formulation
of a Lyapunov function. The very general nature of f(·, ·)
here makes finding this Lyapunov function harder. This is
particularly exacerbated by the fact that unlike ABF one
cannot even a priori assume the existence of stationary points
let alone their uniqueness. This is so even when like ABF
f(a, b) = a + b, but members of S⇤ defined in (2) may
have nonzero si values. Instead we first prove convergence
exploiting purely the structure of (1), thus implicitly proving
the existence of a stationary point.

Define two time varying sets. The first at time t comprises
nodes in S⇤ that acquire their maximum values si, i.e.

S(t) = {i 2 S⇤|x̂i(t) = si}. (7)

The second set U(t) requires a recursive definition below.

Definition 2.

U(t
0

� 1) = �. (8)

Further, U(t + 1) = S(t + 1)

S

R(t + 1) where R(t + 1)

comprises nodes constrained at t by a member of U(t).

For our first lemma we define a function that we will prove
is strictly increasing while the set U(t) 6= V :

x̂

min

(t) = min

j /2U(t)
{x̂j(t)}. (9)

Lemma 1. Consider (1), with U(t) and x̂

min

(t) in Definition
2 and (9), respectively, and Assumption 1 in force. Then for
all x̂(t

0

) � 0 the following holds while the set U(t) 6= V :

x̂

min

(t+ 1) > x̂

min

(t). (10)

Proof. Suppose for some k /2 U(t+1), x̂
min

(t+1) = x̂k(t+1).
Consider any j 2 ˆC(k, t). To establish a contradiction, suppose
j = k. Then from Definition 1, x̂k(t+ 1) = sk i.e. from (7),
k 2 S(t + 1) ⇢ U(t + 1) leading to a contradiction. Thus
j 6= k. As k /2 U(t+ 1), by Defintion 2, j /2 U(t).

Then

x̂

min

(t+ 1) = x̂k(t+ 1)

= f(x̂j(t), ekj)

> x̂j(t) + �

> x̂

min

(t),

where the last inequality follows from (9) and the fact that
j /2 U(t).

The next lemma proves that at least one member of S⇤ must
converge to its maximum value. To this end define

s

min

= min

j2S⇤
{sj}. (11)

Lemma 2. Under the conditions of Lemma 1, suppose for
some i 2 S⇤, s

min

in (11) equals si. Define

x̄(t) = min

j2V
{x̂j(t)}. (12)

Then either
x̄(t) = x̂i(t) = si (13)

or
x̄(t+ 1) � x̄(t) + �. (14)

Further there exist a T � t

0

, such that for all t � T , x̂i(t) =

si.

Proof. Proving that either (13) or (14) holds will prove the
lemma. Suppose (14) is violated. Then from the progressive
property in (3), for some j 2 S⇤

x̄(t+ 1) = sj = x̂j(t+ 1) = sj = x̄(t) � si � x̂i(t).

Thus unless (13) holds (14) must hold. As si is the maximum
value of x̂i(t), the result follows.

As will be evident in the sequel this will be important in
the characterization of stationary points. Observe also that this
lemma states that at least one member of S⇤ converges to
its maximum value in a finite time, and does not preclude
others from doing so. Further this also proves that all states
are bounded.

Lemma 3. Under the conditions of Lemma 1 there exists an
M , dependent on the initial states x̂i(t0) � 0 such that for
all t � t

0

, and all i 2 V , |x̂i(t)| < M .

Proof. From Lemma 2 there exist T and i 2 S⇤ such that for
all t � T , x̂i(t) = si. Since f(·, ·) is finite for finite arguments,
(1) cannot have finite escape time i.e. all states are finite at
t = T . As the graph is connected there is a path from i to
every node in the graph. Consider any k 2 N (i). Then from
(1) for all t � T

x̂k(t+ 1) f(si, eik). (15)

Continuing in this vein all nodes are bounded.

In view of Lemma 1 this immediately yields the following
result:

Lemma 4. Under the conditions of Lemma 1 there is a T

1

such that for all t � T

1

, U(t) = V .

We will now prove that for all t > T

1

defined in (4), all
states are nonincreasing. This in particular proves that should
xi that satisfy (5) exist then

x̂i(t) � xi, 8i 2 V, t � T

1

. (16)

Theorem 1. With T

1

as in Lemma 4, the following holds.

x̂i(t+ 1) x̂i(t), 8i 2 V, t � T

1

.

Proof. There exists an n � 0 such that U(T

1

� n � 1) = �,
but U(t) is nonempty for all t 2 {T

1

�n, T

1

�n+1, · · · , T
1

}.
From Definition 2,

U(T

1

� n) = S(T

1

� n) 6= �. (17)

Now consider any i

0

2 U(T

1

). Then by Definition 2, there is
a sequence of nodes ik 2 U(T

1

�k), k 2 {1, · · · , n} such that
ik 2 ˆC(ik�1

, T

1

�k). We now assert that for all k 2 {1, · · · , n}

x̂ik(t) x̂ik(T1

� k), 8t � T

1

� k. (18)

4

We will prove (18) by induction on k. From (17), in 2 S(T

1

�
n). By definition of S(t) in (7), x̂in(T1

�n) has its maximum
value sin . Thus the result holds for k = n. Now suppose it
holds for all l 2 {k, · · · , n}, k > 0. As ik 2 ˆC(ik�1

, T

1

� k),
it follows that ik 2 N (ik�1

). Then from (3, (4) and (1), for
any t � T

1

� k + 1, there holds

x̂ik�1(t) = min

⇢

min

j2N (ik�1)

�

f

�

xj(t� 1), eik�1,j

�

, sik�1

�

 min

�

f

�

xik(t� 1), eik�1,ik

�

, sik�1

 min

�

f

�

xik(T1

� k), eik�1,ik

�

, sik�1

= x̂ik(T1

� k + 1)

where the last step uses the fact that ik 2 ˆC(ik�1

, T

1

� k).
Thus for every i

0

2 U(t), t � T

1

, x̂i0(t + 1) x̂i0(t). As
U(t) = V for all t � T

1

, the result follows.

We now have the proof of convergence to a stationary point.

Theorem 2. Under the conditions of Theorem 1, there exist
xi such that for all i 2 V

lim

t!1
x̂i(t) = xi.

Further the convergence is uniform in t

0

.

Proof. From Lemma 2, for all t � T , defined in the lemma,
and all j 2 V , x̂j(t) � s

min

. From Theorem 1 all x̂j(t)

are nonincreasing for all t � T

1

. From Lemma 3 all states are
bounded. Thus for for all t � T

1

each x̂j(t) is a nonincreasing
sequence on a compact set, and hence must converge.

We now turn to proving the uniqueness of this stationary
point. To this end we make a definition.

Definition 3. In a stationary point satisfying (5) the source
set S1 = {i|xi = si}.

We now argue that S1 is unique through a process of
elimination. Without loss of generality assume that s

1

= s

min

defined in Lemma 2. From Lemma 2

i

1

2 S1. (19)

Consider now two nodes i 2 S⇤ and j 2 S⇤. As the graph is
connected there is at least one path between i = k

0

! k

1

!
k

2

! · · · ,! kl = j. Define the sequence ck0 = si and

cki+1 = min

�

f(cki , eki,ki+1), ski+1

. (20)

We will call this the shortest path from i to j if cj is the
minimum over all such paths, and the minimum cj the distance
between i and j. From (19) any j cannot be a source if the
distance between 1 and j is smaller than sj . Eliminate all such
j. In this candidate source set obtained after the removal of
these nodes, there is any node whose distance from another is
smaller than its maximum value, then all such nodes must also
be removed from the source set. This way we can arrive at a
final source set which because of (19) is not empty. Further
one can show that it is unique and determined entirely by
f(·, ·), eik and the si. One can also then show that the the
remaining xi values are unique.

We conclude this section by upper bounding the time to
converge. To this end we need a lemma.

Lemma 5. Consider true constraining nodes defined in 1 and
a sequence of nodes k

1

, · · · , kl such that k
1

is a source, ki
is the true constraining node of ki+1

, and ki 6= ki+1

. Then
there exists a number D(G), called the effective dimameter of
the graph G such that l D(G).

Proof. Since ki 6= ki+1

, ki is not a source for i > 1. Further
the progressive property ensures that xki < xki+1 . Thus, this
sequence has no cycles. Thus as the number of nodes in the
graph is finite, the result follows.

A byproduct of Theorem 1 is that there exists a T

2

 T

1

such that
x̂i(T2

) � xi, 8i 2 V. (21)

We first prove the following Lemma.

Lemma 6. Under the conditions of Theorem 1 suppose there
exists a T

2

such that (21) holds. Then

x̂i(t) � xi, 8i 2 V, t � T

2

. (22)

Proof. Use induction. Observe that (22) holds for t = T

2

.
Suppose it holds for some t � T

2

. Suppose l 2 ˆC(i, t) and
k 2 C(i). Then from (1), (5) and (4), the result follows as:

x̂i(t+ 1) = min {f(x̂l(t), eil), si}
� min {f(xl(t), eil), si}
� min {f(xk(t), eik), si}
= xk.

We now provide an upper bound on the time to converge
in terms of T

2

.

Theorem 3. Under the conditions of Lemma 6 with T

2

defined
in that lemma, (1) converges in at most T

2

+D(G) steps.

Proof. Because of Theorem 1, (16) holds. Now consider a
sequence of true constraining nodes k

1

, · · · , kl defined in
Lemma 5. Then the result will follow from Lemma 5 if we
show that for all i 2 {1, · · · , l}

x̂ki(T2

+ i) = xki . (23)

We now show this by induction. As k

1

is a source and is thus
its constraining node, and (16) holds, from (1) we obtain:

xk1 = sk1

 x̂k1(T2

+ 1)

 sk1

= xk1 .

Thus indeed (23) holds for i = 1. Now suppose it holds for
all i 2 {1, · · · ,m� 1}. Then as km�1

2 C(km) and is thus a
neighbor of km, we have that

xkm x̂km(T

2

+m)

 f(x̂km�1(T2

+m� 1), ekm,km�1)

= f(xkm�1(T2

+m� 1), ekm,km�1)

= xkm .

This proves the result.

5

What about a bound on T

2

the first time at which the
smallest unconverged state exceeds or equals

x

max

= max

i2V
{xi}. (24)

Arguing similarly to the proof Lemma 2, the smallest uncon-
verged if it increases does so by at least �. Thus with x̄(t

0

)

defined in the proof of Lemma 2.

T

2

⇠

x

max

� x̂

min

(t

0

)

�

⇡

. (25)

Thus the time to converge is no greater than

D(G) +

⇠

x

max

� x̂

min

(t

0

)

�

⇡

.

IV. ULTIMATE BOUNDS

In this section, we present the robustness of the general
G-block under perturbations. In [25], robustness of ABF
is demonstrated by showing ultimate boundness of distance
estimates around nominal distance values while edge length
change from its nominal value. For general G-block, we again
present its robustness by showing its ultimate robustness under
perturbations.

First, we introduce the following assumption.

Assumption 2. Now suppose f(·, ·) is monotonic with respect
to its second argument, f(a, b) obeys

f(a, b

1

) � f(a, b

2

), if b
1

� b

2

. (26)

Further, f(·, ·) is Lipschitz continuous on its second argument,
such that

|f(x̂k(t), eik(t))� f(x̂k(t), eik)| L

1

|eik(t)� eik| (27)

with L

1

> 0. Meanwhile, we also assume f(·, ·) is Lipschitz
continuous on its first argument, such that

|f(a
1

, b)� f(a

2

, b)| L

2

|a
1

� a

2

| (28)

where L

2

> 0.

Now we consider the case eij in (1) is not a constant but a
variable eij(t) satisfying

eij(t) = eij + ✏ij(t) (29)

with |✏ij(t)| ✏. Then (27) can be further interpreted as

|f(x̂k(t), eik(t))� f(x̂k(t), eik)| L

1

✏ (30)

Now 8i 2 V and 8k 2 N (i), (1) can be interpreted as:

x̂i(t+ 1) = min

⇢

min

k2N (i)
{f (x̂k(t), eik(t))} , si

�

. (31)

The next lemma provides the upper bound for x̂i(t)�xi, i 2
V .

Lemma 7. Consider (31), then 8i 2 V , x̂i(t) � xi
PD(G)�2

n=0

L

n
2

L

1

✏ with D(G) defined in Lemma 5.

Proof. Considering the sequance n

1

, n

2

, ..., nT where nk+1

is
the true constraining node of nk for k 2 {1, 2, .., T � 1}. As
T D(G), the result holds if for t � i� 1

x̂ni(t)� xni
⇢

Pi�2

n=0

L

n
2

L

1

✏ i 2 {2, · · · , T}
0 i = 1

(32)

We prove (32) by introduction. It is true for i = 1 as xn1 = sn1

and x̂n1(t) sn1 for all t. (32) also holds for i = 2 as for
t � 1

x̂n2(t) f(x̂n1(t), en1n2(t))

 f(x̂n1(t), en1n2 + ✏)

 f(sn1 , en1n2 + ✏)

 xn2 + L

1

✏

Suppose (32) holds for some i 2 {1, 2, ..., T � 1}, then for
t � i� 1 and ni+1

x̂ni+1(t+ 1) f(x̂ni(t), enini+1(t))

 f(x̂ni(t), enini+1) + L

1

✏

 f(xni +

i�2

X

n=0

L

n
2

L

1

✏, enini+1) + L

1

✏

 f(xni , enini+1) + L

2

i�2

X

n=0

L

n
2

L

1

✏+ L

1

✏

= xni+1 +

i�1

X

n=0

L

n
2

L

1

✏

Thus (32) and our result follows.

To address the lower bound of x̂i � x̂i(t), we use an
approach like comparison principle [1]. First, we introduce
the following definition.

Definition 4. Given a graph G, we define a G�, and G� is a
shrunken version of G such that, 8i 2 V and j 2 N (i) in G,
eij becomes e

�
ij in G�, and e

�
ij obeys

e

�
ij = eij � ✏ (33)

Lemma 8. Given a graph G and its shrunken version G�

defined in Definition 4, consider

ˆ

Xi(t+ 1) = min

⇢

min

k2N (i)

n

f

⇣

ˆ

Xk(t), eik � ✏

⌘o

, si

�

. (34)

for G� and (31), suppose for all i 2 V , ˆ

Xi(0) = x̂i(0). Then
x̂i(t) � ˆ

Xi(t), 8t � 0 and i 2 V .

Proof. We prove by induction, the result holds for t = 0,
suppose for some t � 0, x̂i(t) � ˆ

Xi(t), 8i 2 V . Suppose
j 2 N (i) is a current constraining node of i at time t in (31)
while k 2 N (i) is a current constraining node of i at time t

in (34). Then we have

ˆ

Xi(t+ 1) = f(

ˆ

Xk(t), eik � ✏)

 f(

ˆ

Xj(t), eij � ✏)

 f(

ˆ

Xj(t), eij(t))

 f(x̂j(t), eij(t))

= x̂i(t+ 1) (35)

6

Thus the estimates offered by (31) are uniformly lower
bounded by the estimates, ˆ

Xi(t). Now we introduce the
following lemma.

Lemma 9. 8i 2 V , xi Xi +
PD(G�

)�2

n=0

L

n
2

L

1

✏ where G�

is in Definition 4 and D(·) is in Lemma 5.

Proof. Consider nodes n

1

, n

2

, ..., nT1 such that Xn1 = sn1 ,
and for all i 2 {1, ..., T

1

� 1}, ni is a true constraining node
of ni+1

in G�. Each node is in one such sequence. We assert
that

xni �Xni
⇢

Pi�2

n=0

L

n
2

L

1

✏ i 2 {2, · · · , T
1

}
0 i = 1

(36)

As xni sni , (36) holds for i = 1. As ni and ni+1

are
neighbors in both G and G�, ni is the true constraining node
of ni+1

in G�, for i = 2, it follows that

xn2 f(xn1 , en1n2)

 f(Xn1 , en1n2)

 f(Xn1 , en1n2 � ✏) + L

1

✏

 Xn2 + L

1

✏

Suppose it holds for some i 2 {1, ..., T
1

� 1}. As T

1

D(G�

), (36) holds as

xni+1 f(xni , enini+1)

 f(Xni +

i�2

X

n=0

L

n
2

L

1

✏, enini+1)

 f(Xni , enini+1) + L

2

i�2

X

n=0

L

n
2

L

1

✏

 f(Xni , enini+1 � ✏) + L

1

✏+ L

2

i�2

X

n=0

L

n
2

L

1

✏

= Xni+1 +

i�1

X

n=0

L

n
2

L

1

✏

Then our result follows.

As G� a perturbation free graph, based on our theorem in
section III, after a finite time T

1

, 8i 2 V in G�, ˆ

Xi(t) will
converge to Xi. Then we have the following lemma.

Lemma 10. Consider (31), and suppose 8i 2 V , ˆ

Xi(t) = Xi

for t � T

1

, then for t � T

1

xi � x̂i(t)
D(G�

)�2

X

n=0

L

n
2

L

1

✏ (37)

Proof.

xi � x̂i(t) Xi +

D(G�
)�2

X

n=0

L

n
2

L

1

✏� x̂i(t) (38)

 Xi +

D(G�
)�2

X

n=0

L

n
2

L

1

✏�Xi (39)

=

D(G�
)�2

X

n=0

L

n
2

L

1

✏

Here (38) comes from Lemma 9. As ˆ

Xi(t) converge to Xi for
t � T

1

in graph G�, from Lemma 8, x̂i(t) � Xi for t � T

1

,
then (39) follows.

V. SIMULATIONS

In this section, we empirically confirm the results presented
in the prior sections through simulations, and four simulations
we presented have different settings.

In our first simulation, 200 nodes, two of which are sources,
are randomly distributed in a 4⇥1km field, communicating
over a 0.6 km radius, run synchronously. Two source nodes,
defined as 1 and 2 are located at [0.25 0.5] and [3.75 0.5],
respectively. The algorithm we use here follows (1) with

x̂i(t+ 1) = min

⇢

min

k2N (i)
{x̂k(t) + eik} , si

�

(40)

and

si =

8

<

:

5 i = 1

0.1 i = 2

1 else

Here eik refers to the distance between node i and k, this
is the same as ABF except that si is redefined. Source with
s

1

= 5 can be seen as a low-speed link while source with
s

2

= 0.1 is a high-speed one, non-source nodes have routed
through sources will be labeled with the color of the source.

In Figure 1, initially, non-source nodes choose to route to
the source closer to them by distance, while some nodes far
from sources remain not routed. Shortly, all non-source nodes
will route through one of the two sources. Finally, all nodes,
including the low-speed link will route to the high-speed link.

After all nodes routed to the high-speed link, we turn it off
so that there is only one source in the network. As we can see
from Figure 2, all the nodes will gradually route to the sole
source, which is a low-speed link.

In Figure 3, 500 nodes are randomly distributed in a 4⇥4km
area, communicating over a 0.2 km radius, run synchronously.
Five source nodes marked as solid circles with different colors
will broadcast their IDs, and a non-source node will be in the
same color as the source if it receives the source ID. The
algorithm used here follows (40) with a slightly different si
defined as follows

si =

⇢

0 i 2 S

1 i /2 S

where S represents the set of sources. As Figure 3 shows,
each non-source node will finally receives the ID of its nearest
source, and the network will be partitioned into 5 parts.

We also carry out simulations by using (1) under non-
Euclidean metric. In Figure 4, 500 nodes are randomly dis-
tributed in a 4⇥4km field, communicating over a 0.6 km
radius, run synchronously. The sole source at (0.3, 0.3) keeps
broadcasting its ID. In the middle of the area, there exists a
2.5⇥2.5km radiation zone, and nodes outside this region will
never get into this region by choosing not to communicate
with nodes inside it. For nodes inside the radiation zone, it will
leave the radiation zone if one of its neighbors has received the
source ID. The whole area is radiating contaminated materials,
suppose node i is communicating with node j in time t, then

7

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 1. In this example, 200 nodes are randomly distributed in a 4⇥1 km
area, and two source nodes marked as solid red circle and solid blue circle are
low-speed link and high-speed link, respectively. Here circles in blue represent
nodes routing through high-speed link while circles in red represent nodes
routing through low-speed link, circles in light blue are nodes not routing
through any source. It shows that finally all nodes will route to the high-
speed link.

it will receive a number of 1000 ⇤ eij units of contaminated
materials if j is in the radiation zone, while i will only get
1 ⇤ eij units if j is not in the radiation zone, besides, the
calculation of contaminate materials is cumulative.

As Figure 4 shows, nodes outside the radiation zone will
detour around the radiation zone. For nodes inside the radiation
zone, those closer to the source will have fewer contaminated
materials as they spend less time getting rid of the radiation
zone.

In Figure 5, 120 nodes, including the sole source, are
randomly distributed in a 4⇥1km field, communicating over
a 1 km radius, run synchronously. The algorithm used is as
follows,

x̂i(t+ 1) = min

⇢

min

k2N (i)
{x̂k(t) + 0.5sin(x̂k(t)) + 1} , si

�

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 2. In this example, after turning the high-speed link off, all nodes will
gradually route to the sole source, the low-speed one marked as solid red
circle.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. In this example, 500 nodes are randomly distributed in a 4⇥4 km
area, and among them there are 5 source nodes, represented by blue, red,
black, green and lihgt blue solid balls. Their locations are (0.6,0.2), (0.5,0.7),
(3.5,0.6), (2,0.8), (2.6,0.2). Each source will broadcast its ID, and nodes will
have the same color as the source if they receive the source ID. It shows that
the field will be partitioned by five nodes.

8

Fig. 4. In this example, 500 nodes are randomly distributed in a 4⇥4 km
area, and there is a 2.5⇥2.5km radiation zone in the middle of the field.
Those communicating with nodes inside the radiaton zone will receive a
1000 unit/km dose of contaminated materials, while those communicating
with nodes outside the zone will receive a 1 unit/km dose. The colorbar
represents the amount of contaminated materials, and uses a log-10 scale.
It shows that nodes outside the radiation zone will detour around the zone,
and for nodes inside the zone, those closer to the source appear to be less
contaminated.

Fig. 5. In this example, 120 nodes are randomly distributed in a 4⇥1 km area,
the solid red circle represents the source, and solid blue circles represent non-
source nodes. We apply (1) to this network with f(a, b) = a+0.5sin(a)+1.
It shows that each node will finally find a shortest path towards the source.

such that f(·, ·) is a non-linear function, and si follows

si =

⇢

0 i 2 S

1 i /2 S

where S represents the set of sources. From Figure 5, we can
see that all nodes will finally find a shortest path towards the
source, which verify our theories in section III.

VI. CONCLUSION

We have provided a global uniform asymptotic stability of
a general building block of Aggregate Computing that spreads
information through a network. We have also established
ultimate bounds in face of persistent perturbations, with an
additional Lipschitz condition on the upadate kernel. We view
this as an early step towards our long term goal of provong
stability of feedback interconnections featuring these blocks.

REFERENCES

[1] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.
[2] M. Vidyasagar, “Decomposition techniques for large-scale systems with

nonadditive interactions: Stability and stabilizability,” IEEE Transactions
on Automatic Control, vol. 25, pp. 773 – 779, 1980.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, pp. 215 – 233, 2007.

[4] J. Baillieul and A. Suri, “Information patterns and hedging brockett’s
theorem in controlling vehicle formations,” in Proceedings of 42nd IEEE
Conference on Decision and Control, 2003.

[5] S. Dasgupta, and B. D. O. Anderson, “Controlling rectangular forma-
tions”, in Proceedings of AUCC, 2011, Melbourne, Australia.

[6] T. H. Summers, C. Yu, S. Dasgupta, and B. D. O. Anderson, “Control
of minimally persistent leader-remote-follower and coleader formations
in the plane,” IEEE Transactions on Automatic Control, vol. 56, pp.
2778 – 2792, 2011.

[7] J. Beal and M. Viroli, “Building blocks for aggregate programming of
self-organising applications,” in Workshop on Foundations of Complex
Adaptive Systems (FOCAS), 2014.

[8] M. Viroli and D. Ferruccio, “A calculus of self-stabilising computational
fields,” in Coordination 2014, 2014, pp. 163–178.

[9] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, September
2015.

[10] A. Kumar, J. Beal, S. Dasgupta, and R. Mudumbai, “Toward predicting
distributed systems dynamics,” in Spatial and COllective PErvasive
Computing Systems (SCOPES). IEEE, September 2015, pp. 68–73.

[11] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organizing systems by self-stabilising fields,” in IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). IEEE, September 2015, pp. 81–90.

[12] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in ACM Symp. on Applied Computing, 2008.

[13] J. Beal, “Flexible self-healing gradients,” in Proceedings of the 2009
ACM Symposium on Applied Computing. 2009, pp. 1197–1201, ACM.

[14] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
Resilient Collective Adaptive Systems by Self-Stabilisation,” in ACM
Transactions on Modeling and Computer Simulation to appear. Also
available from:https://arxiv.org/abs/1711.08297.

[15] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, P. V. Kokotovic,
R. L. Kosut, I. M. Y. Mareels, L. Praly, and B. D. Riedle, Stability of
Adaptive Systems: Passivity and Averaging Analysis, MIT Press, 1986.

[16] Dasgupta, S., Anderson, B.D.O and Kaye, R.J., “Identification of physi-
cal parameters in structured systems,” Automatica, March 1988, vol. 24,
pp 217-225.

[17] S. Dasgupta, C. R. Johnson Jr and A.M. Baksho, “Signsign LMS
convergence with independent stochastic inputs”, IEEE Transactions on
Information Theory, pp. 197-201, 1990.

[18] W. Hahn, Stability of Motion, Prentice Hall, 1967.
[19] R. E. Bellman, “On a routing problem,” Quarterly of Applied

Mathematics, vol. 16, pp. 87–90, 1958.
[20] L. R. Ford Jr., “Network flow theory,” Tech. Rep. Paper P-923, RAND

Corporation, 1956.
[21] M. Fu and S. Dasgupta, “Parametric lyapunov functions for uncertain

systems: The multiplier approach,” Advances in linear matrix inequality
methods in control, pp. 95–108, 2000.

[22] Z. Jiang, I. M. Y. Mareels, and Y. Wang, “A lyapunov formulation
of the nonlinear small-gain theorem for interconnected ISS systems,”
Automatica, vol. 32, pp. 1211 – 1215, 1996.

[23] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
Resilient Collective Adaptive Systems by Self-Stabilisation,” in ACM
Transactions on Modeling and Computer Simulation to appear. Also
available from:https://arxiv.org/abs/1711.08297.

[24] S. Dasgupta and J. Beal, “A Lyapunov Analysis for the Robust Stability
of an Adaptive Bellman-Ford Algorithm,” in Proceedings of 55th IEEE
Conference on Decision and Control, 2016.

[25] Y. Mo, S. Dasgupta and J. Beal, “Robustness of the Adaptive Bellman-
Ford Algorithm: Global Stability and Ultimate Bounds”, submitted to
IEEE Transactions on Automatic Control.

