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Abstract— Self-stabilizing information spreading al-

gorithms are a key basis block for building dis-

tributed system for device coordination. The adap-

tive Bellman-Ford (ABF) algorithm is a special case

of these spreading algorithms. It finds the distance

estimate of each node in a graph from a source

set, but unlike the classical Bellman-Ford algorithm

does not assume that all initial distance estimates

exceed their true values. Though globally uniformly

asymptotically stable (GUAS), its convergence can

be very slow in graphs will short edges if some ini-

tial estimates are smaller than their true values. We

propose here a generalization of ABF with additional

parameters to permit faster convergence. We prove it

to be GUAS, bounding the time to converge, and show

via simulations that it withstands persistent bounded

perturbations in the graph edge lengths.

I. Introduction

In the last few decades the multi-agent systems litera-
ture has studied the stability of complex, networked, and
distributed systems, [2]- [9]. Yet, this literature has yet
to tackle stability issues associated with open systems
like smart cities, the internet of things and tactical
networks, all of which must support an unbounded and
rapidly evolving collection of distributed services. They
require stable, resilient, seamless and safe decentralized
local coordination through low latency peer to peer
communication, permitting devices to share and execute
multiple applications and flexibly use local resources.

Their potential of open systems is limited by cur-
rent constrained and inflexible device coordination (e.g.,
single-purpose IoT devices) and the frequent use of cloud-
like remote infrastructure. Constraints on devices restrict
reusability and the ability to be involved in multiple
applications. Centralization engenders high latency, im-
pairing the agility to exploit local infrastructure.

Aggregate computing is conceived to meet the challenge
of open systems [12]. It uses a layered architecture [12]
where the middle layer contains three classes of coor-
dination blocks whose compositions, including feedback,
realize many distributed services [10], [11]. These blocks
are distributed graph algorithms and are: G-blocks that
propagate information through a network; C-blocks that
collect and summarize information to coordinating de-
vices; and T -blocks that delay actions for stability.

Stability of their interconnections is critical to
their proper functioning, but most studies have either
been empirical [13], [15], or only demonstrated self-
stabilization [17]. Unlike global uniform asymptotic sta-
bility (GUAS), [1], [19], [18], self-stabilization does not

guarantee any robustness to even the smallest perturba-
tions which are inevitable under feedback. The excep-
tions are [24], [25] and [26]. Among these [26] establishes
the GUAS and the convergence time of a fairly, but not
the most general, G-block. Under an additional Lipschitz
condition it proves the ultimate boundedness of this G-
block under persistent perturbations in the edge lengths
defining the neighborhoods in a network of devices.

On the other hand [24] and [25] consider a special case
of the G-block studied in [26]– the Adaptive Bellman-

Ford (ABF) algorithm– that adaptively finds the distance
between all devices and a source set. Unlike the classical
Bellman-Ford (CBF) algorithm [22], ABF does not as-
sume that all initial distance estimates are overestimates,
an assumption that precludes GUAS. Using a Lyapunov
framework [24], [25] prove GUAS, with tight bounds
on convergence time and ultimate boundedness under
persistent perturbations. Ultimate bounds in the face of
perturbations holds may allow the use of sophisticated
refinements [23] of the small gain theorem [1], or for that
matter the passivity theorem [20] or its o�shoots, [21] to
help establish stability under feedback.

As underestimates in ABF converge slowly, we formu-
late a special case of the most general G-block given in
[17] which has additional parameters that can be tuned
to achieve faster convergence. We call this algorithm the
generalized ABF (GABF). Without a dead zone param-
eter D Ø 0, GABF performs poorly under structural
perturbations, but D > 0 makes it robust to persistent
perturbations at the price of slower convergence. Its anal-
ysis is nontrivial as unlike ABF no Lyapunov function
has been found to prove GUAS. Yet we prove its GUAS,
providing a conservative bound on its time to converge.
Simulations confirm that GABF is robust to persistent
perturbations when D > 0 and is still faster than ABF.

After motivating the Generalized ABF in Section II,
we introduce the algorithm in Section III. Section IV has
preliminaries, Section V has the proof of GUAS , Section
VI the simulations and Section VII the conclusion. Proofs
are omitted due to space constraints.

II. Background

The version of G-block that specializes to ABF was
enunciated in [17] using field calculus language and
proved as self-stabilizing for states in a noetherian ring.
It was shown to be GUAS for real state in [26],

Suppose an undirected graph, G has node set V =
{1, 2, · · · , N}. An edge exists between nodes i and k if



they are neighbors and can communicate with each other.
the set of neighbors of i is N (i). With xi the desired state
of the i-th node, x̂i(t) its estimate at time t, obeys

x̂i(t + 1) = min
;

min
kœN (i)

{f (x̂k(t), eik)} , si

<
, ’t Ø t

0

,

(1)
where eik > e

min

> 0 is the edge length between i and k

and si is the maximum value of x̂i(t), possibly infinite.
The function f(·, ·) is progressive i.e. for some ‡ > 0,

f(a, b) > a+‡, and obeys f(a
1

, b) Ø f(a
2

, b), if a

1

Ø a

2

.

In [26] we proved that (1) is GUAS, i.e. the x̂i(t) converge
to xi if at least one si is finite, and that it is ultimately
bounded under persistent perturbations in the eik.

A special case, ABF finds the distance of all nodes
from a source set S µ V . In particular the true distance
di of node i from the source set S obeys,

di =
;

minjœN (i) {dj + eij} i /œ S

0 i œ S

(2)

where eij are the edge lengths. Mimicking these relations,
ABF adaptively updates the estimate d̂k(t) of dk, using

d̂i(t + 1) =
I

minjœN (i)

Ó
d̂j(t) + eij

Ô
i /œ S

0 i œ S

, (3)

’t Ø t

0

. Thus f(a, b) = a + b, d̂i = x̂i, si = 0 if i œ S and
si = Œ for all i /œ S. Unlike CBF, ABF permits d̂i(t0

) to
be smaller than its true value di, and multiple sources.
We have analyzed ABF in a Lyapunov framework in [24]
and [25] and given tight ultimate error bounds under
perturbations and tight bounds on the time to attain
them.

Define the distance estimation errors,
�i(t) = d̂i(t) ≠ di, (4)

the least underestimate �≠(t) = max [0, ≠ mini �i(t)]
and �+(t) = max [0, maxi �i(t)] , the greatest overes-
timate. Then [24] shows that in ABF both �≠(t) and
�+(t) are nonincreasing and that there is a T such
that they each decrease by a minimum amount (unless
they become zero) at least every T iterations. Thus,
L(t) = �+(t) + �≠(t) is a Lyapunov function for ABF.

We show in [25], that while �+(t) falls rapidly to zero,
the convergence time for �≠(t) may be slow, being upper
bounded by Á(d

max

≠ d̂

min

(t
0

))/e

min

Ë where d

max

and
d̂

min

(t
0

) are the largest distance in the graph and the
smallest initial estimate respectively. Thus if e

min

is the
edge length between two nodes whose initial distance es-
timates are underestimates, then their estimation errors
rise by e

min

at a time. Convergence is slow when e

min

is small. GABF overcomse this di�culty, by providing
additional parameters that increase the convergence rate.

III. Generalized ABF

The most general G-block in [17] obeys

x̂i(t+1) = F

3
min

;
min

kœN (i)
{f (x̂k(t), eik)} , si

<
, x̂i(t), vi

4
, .

(5)

where vi are certain environmental variables. The func-
tion F (¸

1

, ¸

2

, v) obeys for some M and ” > 0,

F (¸
1

, ¸

2

, v)
I

= ¸

1

¸

1

= ¸

2

or ¸

2

> M

Ø ¸

2

+ ” otherwise
. (6)

Thus in (1) M = ≠Œ. In (5) and (6), x̂i(t) = ¸

2

. The
second bullet in (6) permits a faster initial ascent of x̂i(t).

We now enunciate a special case of (5) where d̂i(t) the
current estimate of the distance di of node i from the
source set S, evolves for all t Ø t

0

, as

d̃i(t + 1) =

Y
]

[
min

jœN (i)
{d̂j(t) + eij}, i /œ S

0, i œ S

. (7)

Then distance estimates d̂i(t) evolves as:

d̂i(t + 1) =
I

d̃i(t + 1), d̃i(t + 1) = d̂i(t) or d̂i(t) > M

g(d̂i(t)), otherwise
(8)

where M is a finite number and the strictly increasing

g(x) is finite finite x and obeys for some ” > 0,

g(x) Ø x + ”. (9)

Thus unlike the ABF, (7-9) does not assume that distance

estimates of the sources are anchored to zero. Further,

d̃i(t0

) Ø 0 and d̂i(t0

) Ø 0, ’i œ V. (10)

Initially, most estimates obey the second bullet of (8)
and for large ” rise rapidly until exceeding M, when the
first bullet is invoked. While the second may again be
invoked, we show that there comes a time after which
using the first bullet yields immediate convergence.

Our proof also shows that underestimates are even-
tually eliminated. Though not explicitly quantified in
our proof, in generic networks and large M and ” this
elimination is rapid, especially if M exceeds the graph di-
ameter. In such cases the rising value problem that slows
the convergence of underestimates in ABF is obviated.
As our proof is for all M > 0 and ” > 0, it provides a
conservative estimate of the convergence time. However,
simulations confirm fast convergence for large M and ”.

Yet we argue that (8) and indeed (5) are fundamentally

nonrobust to perturbations in the edge lengths. This is so
as when M > d̂i, update using the first bullet requires
the precise satisfaction of d̃i(t + 1) = d̂i(t). Because of
(7) this cannot be sustained under perturbations in eij ,

resulting in the repeated use of the second bullet and the
rise to M , making M the ultimate error bound. Thus
instead of (8) we use for some dead zone D Ø 0

d̂i(t + 1) =

Y
_]

_[

d̃i(t + 1), |d̃i(t + 1) ≠ d̂i(t)| Æ D

or d̂i(t) > M

g(d̂i(t)), otherwise
. (11)

Indeed (7,9,11) is GABF. Of course (8) is a special case of
(11), with D = 0. Simulations confirm that GABF is ulti-
mately bounded with small bounds under perturbations



in ejk that are smaller than D in magnitude. A larger D

tolerates larger perturbations, but brings GABF closer
to ABF slowing convergence. This is expected. Faster
systems are high pass filters that amplify e�ects of noise.

The convergence analysis of this algorithm is nontrivial
as unlike ABF �+(t) + �≠(t) can increase, and is thus
not a Lyapunov function. The proof of GUAS in the next

section does not use a Lyapunov function at all.

There is a subtle di�erence between the assumptions
made in [17], and those made here. In [17], ¸i are as-
sumed to lie in a Noetherian ring with maximal element
M . Translated to GABF this means that one a priori

assumes the boundedness of the states of the algorithm
with M serving as an upper bound. This assumes that
one knows the largest possible distance in the network
and that M exceeds that value. As open networks can
grow unpredictably this is an unappealing assumption.

In contrast we do not assume that the distance esti-
mates are a priori bounded. Nor do we assume that M

exceeds the largest distance estimate. Thus the proof of

self-stabilization given in [17] does not apply to GABF

even when D = 0. Our proof of GUAS only assumes
that M > 0, D Ø 0, ” > 0, the graph is connected and
the source set S is nonempty.

As all edges are positive (10) is entirely reasonable.
With some abuse of terminology global stability will
involve convergence for all initial conditions obeying (10).

IV. Preliminaries

Assumption 1 is the standing assumption of this paper.
Assumption 1: Graph G is connected, S ”= ?, S ”= V ,

e

max

Ø eik = eki Ø e

min

> 0, D Ø 0 and g(·) obeys the
conditions given below (11).

As in any iteration the estimated distance of a node
is obtained by one of the bullets in (11), at each t, we
partition V into two sets defined below.

Definition 1: The ABF set A(t) comprises all nodes
that use the first case in (11) to obtain d̂i(t + 1). Define
a set the set of extraordinary nodes E(t) = V \A(t) to be
those that use the second case in (11) to obtain d̂i(t+1).

We also introduce the notion of a constraining node of
i that determines d̂i(t + 1).

Definition 2: For i œ A(t), the minimizing j in (7)
used to find d̃i(j + 1), is i’s current constraining node at
t. For i œ E(t), i is its own current constraining node.
Sources are their own constraining nodes.

It is important to note that a source may well be in
the extraordinary set E . The next definition introduces
a true constraining node.

Definition 3: A j that minimizes the right hand side
of (2) is a true constraining node of i œ V \ S. As a
node may have multiple true constraining nodes, the set
of true constraining nodes of a node i œ V \ S is C(i).

Based on Definition 3, we introduce another.
Definition 4: Call a path from a node i to the source

set a shortest path, if it starts at i, ends with a source
node and each node in the path is a true constraining

node of its predecessor. Call a shortest path from i, the
longest shortest path if it has the most nodes among all
shortest paths of i. The set Fi is the set of nodes whose
longest shortest paths to the source have i+1 nodes. Call
D(G) the e�ective diameter of G if the longest shortest
path among all i œ V has D(G) nodes.

Thus if a node i has two shortest paths one having two
and the other three nodes then i /œ F

1

but i œ F
2

. From
Definition 4, Fi follows

F
0

= S. Fi ”= ?, i œ {0, 1, ..., D(G) ≠ 1}. (12)

Every node in Fi+1

has a true constraining node in Fi:

C(j)
‹

Fi ”= ?, ’ j œ Fi+1

. (13)

Further it has been shown in [25] that D(G) is finite.

V. Global uniform asymptotic stability

The first lemma asserts that distances estimates of all
nodes are upper bounded.

Lemma 1: Consider (7), (9) and (11) under Assump-
tion 1 and all initialization as in (10). Then for ’i œ Fj

defined in Definition 4, and e

max

in Assumption 1,

d̂i(t) Æ max{di, g(g(M))} + je

max

, ’t Ø j + 1. (14)
We define two sets requiring recursive definitions.
Definition 5: The set of nodes R(t) rooted to S obeys

R(t
0

) = S. Further R(t + 1) comprises all nodes whose
current constraining node at t + 1, is in R(t). We also
define a set U(t) as unrooted to the source set if U(t

0

) =
V \ S, and U(t + 1) comprises all nodes whose current
constraining node at t + 1, is in U(t).

Then lemma 2 shows that U(t) and R(t), partition V.

Lemma 2: Consider (7), (9) and (11) under Assump-
tion 1, with R(t) and U(t) defined in Definition 5. Then
for all initialization as in (10) and for all t,

U(t)
€

R(t) = V, and U(t)
‹

R(t) = ?. (15)
Observe from the definition of the unrooted set that

U(t) = ? ∆ U(t + 1) = ?. (16)

This is so because at t + 1 every node i has a current
constraining node j. As U(t) is empty, from Lemma 2,
j œ R(t) and thus i œ R(t + 1). We further define the
following function:

d̂

min

(t) = min
jœU(t)

{d̂j(t)} if U(t) ”= ?. (17)

The next lemma asserts that the lower bound of d̂i(t)
with i œ U(t) strictly increases.

Lemma 3: Consider (7), (9) and (11) under Assump-
tion 1, U(t) and d̂

min

(t) defined in Definition 5 and (17),
respectively, for all initialization as in (10). The following
holds while the set U(t) ”= ?:

d̂i(t) Ø d̂

min

(t
0

) + min{e

min

, ”}(t ≠ t

0

), ’i œ U(t). (18)
A direct consequence of these lemmas is the fact

that all nodes are eventually rooted to the source set.



We now assert that no estimates of nodes in R(t) are
underestimates.

Lemma 4: Consider (7), (9) and (11) under Assump-
tion 1, with A(t), E(t), R(t) and di defined in Definition
1, 5 and (2), respectively. Then for all initialization as in
(10) and i œ R(t), d̂i(t) obeys

d̂i(t) Ø di (19)
Define:

d

max

= max
kœV

{dk} (20)

and
T

ú =
9

d

max

min{”, e

min

}

:
. (21)

Then from Lemma 3, we have that

d̂i(t) Ø di, ’i œ U(t), ’t Ø t

0

+ T

ú
.

Thus, as U(·) and R(·) partition V, from Lemma 4,

d̂i(t) Ø di, ’i œ V, ’t Ø t

0

+ T

ú
. (22)

Thus underestimates are eliminated at T

ú
. We now define

the smallest distance in Fi as

di min

= min
jœFi

{dj}. (23)

Observe d

0 min

= 0, as F
0

= S. Define a sequence

Ti = max
;

0,

9
M ≠ di min

≠ D

”

:<
+ 1. (24)

Then we have the following Lemma.
Lemma 5: Consider (7), (9) and (11) under Assump-

tion 1, and Fi defined in Assumption 4. Suppose at a time
tL > T

ú, defined in (22) and L œ {0, 1, · · · , D(G) ≠ 2}

d̂i(t) = di, ’i œ
L€

i=0

Fi, ’t Ø tL, (25)

i.e. all distance estimates of nodes in F
0

, · · · , FL have
converged by tL. Then with Ti defined in (24), there
holds:

d̂i(t) = di, ’i œ
L+1€

i=0

Fi, ’t Ø tL + TL+1

. (26)

Then the main theorem below proves GUAS and
furnishes an upper bound on the convergence time.

Theorem 1: Consider (7), (9) and (11) under Assump-
tion 1, with Ti defined in (24) and T

ú in (21) define

T

ú = max{T

ú
, T

0

≠ 1}. (27)

Then for all initialization as in (10), for all i œ V ,

d̂i(t) = di, ’t > t

0

+ T

ú +
D(G)≠1ÿ

i=1

Ti. (28)

Several comments are in order. Convergence is uniform
as T

ú and Ti are independent of the initial time t

0

.

The time to converge is very conservative. In particular
T

ú can be large for small e

min

which appears in T

ú as
our analysis allows that even if ” and or M is large,
underestimates are persistently in E(·), i.e. the first bullet

of (11) is invoked repeatedly. In practice, unless D is
large, large M and ” induce the second bullet to be
invoked far more often than the first. In such a case,
especially with M = ” > d

max

, T

ú = 1 and Ti = 2 and
convergence occurs in an e�ective diameter time.

Yet as in all dynamical systems, this must be bal-
anced against response to perturbation. Systems with
fast dynamics tend not to smooth perturbations. Indeed
as explained in Section III, with D = 0, any persis-
tent perturbation in the edges will cause estimates to
persistently rise to M. Simulations confirm that this is
prevented if perturbations are less than D in magnitude,
improving GABF’s response to noise. Large D on the
other hand makes GABF closer to ABF and increases the
time to converge. This trade o� between convergence rate
and perturbation response pervades most algorithms. To

summarize for an unperturbed graph choose a large M = ”

and D = 0. If you expect perturbations, raise D to exceed

the perturbation bound.

VI. Simulations

We now compare the relative performance of ABF
and GABF. In the simulations 500 nodes, one of which
is a source, are randomly distributed in a 4◊1 km2

field, communicating over a 0.25 km radius, running
synchronously. The initial distance estimates are picked
as d̂i(0) œ U(0,

Ô
17)km. Each simulation is run 10 times.

In the sequel �i, �≠ and �+ are as in (4) and below
(4). Thus, �+(t) = �≠(t) = 0 indicates convergence at
time t. The simulations show that unlike ABF, �≠ and
�+ need not be non-increasing in GABF.

A. Comparison between GABF and ABF

(a) �+(t)(ABF) (b) �≠(t)(ABF)

Fig. 1. Convergence time in ABF for (a) the greatest overestimate
�+(t) and (b) the least underestimate �≠(t) for 10 runs without
perturbations.

Figure 1 depicts the performance of ABF: While �+(t)
converges within D(G) rounds, �≠(t) constrained by the
“rising value problem” takes much longer to converge.
Figure 2 concerns GABF with M = ” = 2

Ô
17km, D = 0,

i.e. with M > d

max

: �≠(t) is rid of the “rising value
problem” and converges in 2 rounds; �+(t), takes slightly
longer than ABF. Yet the overall convergence is much
faster than ABF.

In Figure 3 with D = 0.06, GABF converges slower
than with D = 0. However, compared with ABF in
Figure 1, the convergence of GABF is still much faster.



(a) �+(t)(GABF) (b) �≠(t)(GABF)

Fig. 2. With M = ” = 2
Ô

17, D = 0, convergence time for (a) the
greatest overestimate �+(t) and (b) the least underestimate �≠(t)
for 10 runs without perturbations.

(a) �+(t)(GABF) (b) �≠(t)(GABF)

Fig. 3. With M = ” = 2
Ô

17, D = 0.06, convergence time for (a)
the greatest overestimate �+(t) and (b) the least underestimate
�≠(t) for 10 runs without perturbations.

B. E�ect of M and ”

We first investigate the e�ect of a small M . In this
case, we choose M = ” = 0.1km and D = 0, thus M is
smaller than true distances of most nodes.

Figure 4 shows that with M = ” = 0.1km, i.e. both
smaller than the di, and D = 0, the behavior of �+(t)
and �≠(t) are very close to that in ABF. Evidently with
small M , most nodes use the first bullet of (11) and the
rising value problem persists. Also the use of the second
bullet in (11), may cause �+(t) not to converge in D(G)
rounds. Figure 5 shows the simulation results with M =
” = 2km, D = 0. In this case, M is slightly below d

max

,
and GABF converges faster.

Figure 6 involves M = 2
Ô

17km, ” = 0.1km and D = 0.
In this case, �≠(t) still converges faster than in ABF.
However �+(t) needs a much longer time than with a
larger ” as estimates take longer to rise to M .

C. Comparison under perturbations

Consider static nodes with asymmetric noise in the
estimated eij , then edge lengths used in (7) e�ectively

(a) �+(t)(GABF) (b) �≠(t)(GABF)

Fig. 4. With M = ” = 0.1, D = 0, convergence time for (a) the
greatest overestimate �+(t) and (b) the least underestimate �≠(t)
for 10 runs without perturbations.

(a) �+(t)(GABF) (b) �≠(t)(GABF)

Fig. 5. With M = ” = 2, D = 0, convergence time for (a) the
greatest overestimate �+(t) and (b) the least underestimate �≠(t)
for 10 runs without perturbations.

(a) �+(t)(GABF) (b) �≠(t)(GABF)

Fig. 6. With M = 2
Ô

17, ” = 0.1, D = 0, convergence time for (a)
the greatest overestimate �+(t) and (b) the least underestimate
�≠(t) for 10 runs without perturbations.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
M+

(a) �+(t)(GABF)
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6
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(b) �≠(t)(GABF)

Fig. 7. With M =
Ô

17, ” = 1, D = 0, comparison between (a)
the greatest overestimate �+(t) and M + ”, and (b) comparison
between the least underestimate �≠(t) and M +” for 10 runs under
perturbations. ‘ = emin, and emin is ranging from 1.2 ◊ 10≠4 to
4.0 ◊ 10≠3 for 10 trials.
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(a) �+(t)(GABF)
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(b) �≠(t)(GABF)

Fig. 8. With M = ” =
Ô

17, D = 0.06, (a) the greatest
overestimate �+(t) and (b) the least underestimate �≠(t) for 10
runs under perturbations. ‘ = emin, and emin is ranging from
1.2 ◊ 10≠4 to 4.0 ◊ 10≠3 for 10 trials.
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(a) �+(t)(ABF)
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(b) �≠(t)(ABF)

Fig. 9. Comparison between (a) the greatest overestimate �+(t)
and (D(G) ≠ 1)‘, and (b) between the least underestimate �≠(t)
and (D(G≠) ≠ 1)‘ under perturbations. ‘ = emin = 3.7 ◊ 10≠3.



change from their nominal value eij as ēij(t) = eij +
‘ij(t). For some ‘

|‘ij(t)| < ‘ < e

min

, (29)

ensuring no edge length is negative. The noise is asym-
metric i.e. eij(t) ”= eji(t). Without asymmetry this also
models persistent perturbations in eij .

In all simulations below, ‘ij(t) œ U(≠‘, ‘), with ‘ =
e

min

, and e

min

= 1.2 ◊ 10≠4

, 3.7 ◊ 10≠3

, 1.3 ◊ 10≠3

, 3.4 ◊
10≠3

, 3.7 ◊ 10≠3

, 3.7 ◊ 10≠3

, 2.1 ◊ 10≠3

, 2.6 ◊ 10≠3

, 3.9 ◊
10≠3 and 4.0 ◊ 10≠3 for the 10 trials.

Figure 7 is for GABF with M =
Ô

17km > d

max

, D = 0
and ” = 1. In this case, �+(t) is orders of magnitude
bigger than the perturbations. Predictably both �+ and
�≠ are upper bounded by M+”. Figure 7 (a) particularly
confirms the persistent use of the second bullet in (11).

In Figure 8, D = 0.06: �+(t) and �≠(t) are both
ultimately upper bounded by (D(G) ≠ 1)‘ and (D(G≠) ≠
1)‘, respectively, with G≠ the graph obtained by reducing
the edges to the smallest values. These are also the
tight ultimate bounds for ABF given in [25]. Though
the actual bounds for ABF are smaller (see Figure 9),
estimates given by GABF with D = .06 still falls below
the ultimate bounds for ABF derived in [25].

VII. Conclusion

We have enunciated a new generalization of the ABF
(GABF) with three parameters M, ” and D. For D = 0
it is a special case of the most general G-block in [17]. For
suitably chosen M, ” and D, GABF removes a weakness
of ABF: the slow rise of underestimates in face of small
edge lengths. Unlike [17], we do not assume that the
states of GABF are a priori bounded. Nor do we assume
that the parameter M exceeds the largest distance in the
network. Instead, we prove that the algorithm is GUAS
as long as ” > 0, M > 0 and D Ø 0, the graph is
connected, and the source set is nonempty.

We argue and numerically confirm that with D = 0,
GABF is not robust to bounded perturbations, and that
robustness obtains if D exceeds the bound on these
perturbations. This comes at the expense of slower con-
vergence that is still faster than ABF. Deriving ultimate
bounds under persistent perturbations as done for ABF
in [25], is an area of future work.
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