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Abstract. Recent work in the area of coordination models and col-
lective adaptive systems promotes a view of distributed computations
as functions manipulating computational fields (data structures spread
over space and evolving over time), and introduces the field calculus
as a formal foundation for field computations. In field calculus, evolu-
tion (time) and neighbor interaction (space) are handled by separate
functional operators: however, this intrinsically limits the speed of in-
formation propagation that can be achieved by their combined use. In
this paper, we propose a new field-based coordination operator called
share, which captures the space-time nature of field computations in a
single operator that declaratively achieves: (i) observation of neighbors’
values; (ii) reduction to a single local value; and (iii) update and con-
verse sharing to neighbors of a local variable. In addition to conceptual
economy, use of the share operator also allows many prior field calcu-
lus algorithms to be greatly accelerated, which we validate empirically
with simulations of a number of frequently used network propagation
and collection algorithms.

Keywords: Aggregate Programming · Computational Field · Informa-
tion Propagation Speed · Spatial Computing

1 Introduction

The number and density of networking computing devices distributed through-
out our environment is continuing to increase rapidly. In order to manage and
make effective use of such systems, there is likewise an increasing need for soft-
ware engineering paradigms that simplify the engineering of resilient distributed
systems. Aggregate programming [8] is one promising such approach, providing
a layered architecture in which programmers can describe computations in terms
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resilient operations on “aggregate” data structures with values spread over space
and evolving in time.

The foundation of this approach is field computation, formalised by the field
calculus [32], a terse mathematical model of distributed computation that si-
multaneously describes both collective system behavior and the independent,
unsynchronized actions of individual devices that will produce that collective
behavior [5]. Traditionally, in this approach each construct and reusable com-
ponent is a pure function from fields to fields—a fields is a map from a set of
space-time computational events to a set of values—and each primitive construct
handles just one key aspect of computation: hence, one construct deals with time
(i.e, rep, providing field evolution) and one with space (i.e., nbr, handling neigh-
bor interaction). However, in recent work on the universality of field calculus,
we have identified that the combination of time evolution and neighbor interac-
tion operators in the original field calculus induces a delay, limiting the speed of
information propagation that can be achieved efficiently [2].

In this paper, we address this limitation by extending field calculus with the
share construct, combining time evolution and neighbor interaction into a single
new coordination operator that simultaneously implements: (i) observation of
neighbors’ values; (ii) reduction to a single local value; and (iii) update and
converse sharing to neighbors of a local variable.

Following a review of field calculus and its motivating context in Section 2,
we introduce the share construct in Section 3, empirically validate the predicted
acceleration of speed in frequently used network propagation and collection al-
gorithms in Section 4, and conclude with a summary and discussion of future
work in Section 5.

2 Background and Motivation

Programming collective adaptive systems is a challenge that has been recognized
and addressed in a wide variety of different contexts. Despite the wide variety
of goals and starting points, however, the commonalities in underlying chal-
lenges have tended to shape the resulting aggregate programming approaches
into several clusters of common approaches, as enumerated in [7]: 1) “device-
abstraction” methods that abstract and simplify the programming of individ-
ual devices and interactions (e.g., TOTA [25], Hood [34], chemical models [33],
“paintable computing” [9], Meld [1]) or entirely abstract away the network (e.g.,
BSP [31], MapReduce [14], Kairos [18]). 2) spatial patterning languages that
focus on geometric or topological constructs (e.g., Growing Point Language [12],
Origami Shape Language [27], self-healing geometries [11,22], cellular automata
patterning [35]), 3) information summarization languages that focus on collec-
tion and routing of information (e.g., TinyDB [24], Cougar [36], TinyLime [13],
and Regiment [28]), and 4) general purpose space-time computing models (e.g.,
StarLisp [23], MGS [16,17], Proto [6], aggregate programming [8]).

The field calculus [32,5] belongs to the last of these classes, the general pur-
pose models. Like other core calculi, such as λ-calculus [10] or π-calculus [26],
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the field calculus was designed to provide a minimal, mathematically tractable
model of computation—in this case with the goal of unifying across a broad
class of aggregate programming approaches and providing a principled basis for
integration and composition. Indeed, recent analysis [2] has determined that the
current formulation of field calculus is space-time universal, meaning that it is
able to capture every possible computation over collections of devices sending
messages).

That work also, however, identified a key limitation of the current formula-
tion of field calculus: the operators for time evolution and neighbor interaction
in field calculus interact such that for most programs either message size grows
with the distance that information must travel or else information must travel
significantly slower than the maximum potential speed. The remainder of this
section provides a brief review of these key results from [2]: Section 2.1 intro-
duces the underlying space-time computational model used by field calculus,
Section 2.2 provides a review of field calculus itself, and Section 2.3 explains
and illustrates the problematic interaction between time evolution and neighbor
interaction operators that will be addressed by the share operator in the next
section.

2.1 Space-Time Computation

Field calculus considers a computational model in which a program P is periodi-
cally and asynchronously executed on every device δ. In every round of execution,
each device:

1. collects information from sensors, local memory, and the most recent mes-
sages from neighbors,5 the latter in the form of a neighboring value map
φ : δ → v from neighbors to values,

2. evaluates program P with the information collected as its input,

3. stores the results of the computation locally, as well as broadcasting it to
neighbors and possibly feeding it to actuators, and

4. sleeps until it is awaken at the next activation.

If we take every such execution as an event ε, then the collection of such
executions across space (i.e., across devices) and time (i.e., over multiple rounds)
may be considered as the execution of a single aggregate machine with a topology
based on information exchanges . The causal relationship between events may
then be formalized as defined in [2]:

Definition 1 (Event Structure). An event structure E = 〈E, , <〉 is a
countable set of events E together with a neighboring relation  ⊆ E × E and
a causality relation <⊆ E × E, such that the transitive closure of  forms the
irreflexive partial order < and the set {ε′ ∈ E|ε′ < ε} is finite for all ε (i.e., <
is locally finite).

5 Stale messages may expire after some timeout.
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Fig. 1. Example of a space-time event structure, comprising events (circles) and neigh-
bor relations (arrows). Colors indicate causal structure with respect to event ε, split-
ting events into causal past (red), causal future (green) and concurrent (non-ordered,
in black). Figure adapted from [2].

Figure 1 shows an example of such an event structure, showing how these
relations partition events into “causal past”, “causal future”, and non-ordered
“concurrent” subspaces with respect to any given event ε. Interpreting this in
terms of physical devices and message passing, a physical device is instantiated
as a chain of events connected by  relations (representing evolution of state
over time with the device carrying state from one event to the next), and any 
relation between devices represents information exchange from the tail neighbor
to the head neighbor. Notice that this is a very flexible and permissive model:
there are no assumptions about synchronization, shared identifiers or clocks,
or even regularity of events (though of course these things are not prohibited
either).

In principle, an execution at ε can depend on information from any event in
its past and its results can influence any event in its future. As we will see in
Section 2.3, however, this is problematic in field calculus as it has been previously
defined.

Our aggregate constructs are then space-time data values that map an event
structure to a value for each event:

Definition 2 (Space-Time Value). Let V be any domain of computational
values and E be a given event structure. A space-time value Φ = 〈E, f〉 is a pair
comprising the space and a function f : E → V that maps the events E of E to
values.
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ f(e)
∣∣ if(e){e}{e}

∣∣ nbr{e}
∣∣ rep(e){(x) => e} expression

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighboring field value

Fig. 2. Abstract syntax of the field calculus, adapted from [32]

We can then understand an aggregate computer as a “collective” device manip-
ulating such space-time values, and field calculus as a definition of operations
defined both on individual events and simultaneously on aggregate computers.

2.2 Field Calculus

Field calculus is a tiny universal language for computation of space-time values.
Figure 2 gives an abstract syntax for field calculus based on the presentation
in [32] (covering a subset of the higher-order field calculus in [5], but including
all of the issues addressed by the share construct). In this syntax, the overbar
notation e indicates a sequences of elements (e.g., e stands for e1, e2, . . . , en), and
multiple overbars are expanded together (e.g., δ 7→ ` stands for δ1 7→ `1, δ2 7→
`2, . . . , δn 7→ `n). There are four keywords in this syntax: def and if respectively
correspond to the standard function definition and the branching expression
constructs, while rep and nbr correspond to the two peculiar constructs of field
calculus that are the focus of this paper, respectively responsible for evolution
of state over time and for sharing information between neighbors.

A field calculus program P is a set of function declarations F and the main
expression e. This main expression e simultaneously defines both the aggregate
computation executed on the overall event structure of an aggregate computer
and the local computation executed at each of the individual events therein. An
expression e can be:

– A variable x, e.g. a function parameter.
– A value v, which can be of the following two kinds:

• a local value `, defined via data constructor c and arguments `), such as
a Boolean, number, string, pair, tuple, etc;

• A neighboring (field) value φ that associates neighbor devices δ to local
values `, e.g., a map of neighbors to the distances to those neighbors.

– A function call f(e) to either a user-declared function d (declared with the
def keyword) or a built-in function b, such as a mathematical or logical
operator, a data structure operation, or a function returning the value of a
sensor.

5



– A branching expression if(e1){e2} else {e3}, used to split a computation
into operations on two isolated event structures, where/when e1 evaluates
to true or false: the result is computation of e2 in the former area, and e3
in the latter.

– The nbr{e} construct, which creates a neighboring field value mapping
neighbors to their latest available result of evaluating e. In particular, each
device δ:
1. shares its value of e with its neighbors, and
2. evaluates the expression into a neighboring field value φ associating to

each neighbor δ′ of δ the latest evaluation of e shared from δ′.
Note that within an if branch, sharing is restricted to being between device
events within the subspace of the branch.

– The rep(e1){(x) => e2} construct, which models state evolution over time,
initializing the value of x to e1 and evolving that value in every execution
through evaluation of expression e2.

Thus, for example, distance to the closest member of a set of “source” devices
can be computed with the following simple function:

def distanceTo(source) {
rep (infinity) { (d) =>

if(source) { 0 } { minHood(nbr{d}+nbrRange()) }
}

}

Here, we use the def construct to define a distanceTo function that takes a
Boolean source variable as input. The rep construct defines a distance estimate
d that starts at infinity, then decreases in one of two ways. If the source variable
is true, then the device is currently a source, and its distance to itself is zero.
Otherwise, distance is estimated via the triangle inequality, taking the minimum
of a neighbor field value (built-in function minHood) of the distance to each
neighbor (built-in function nbrRange) plus that neighbor’s distance estimate
nbr{d}

Additional illustrative examples and full mathematical details of these con-
structs and the formal semantics of their evaluation can be found in [32].

2.3 Problematic interaction between rep and nbr constructs

Unfortunately, the apparently straight-forward combination of state evolution
with nbr and state sharing with rep turns out to contain a hidden delay, which
was identified and explained in [2]. This problem may be illustrated by attempt-
ing to construct a simple function that spreads information from an event as
quickly as possible. Let us say there is a Boolean space-time value condition,
and we wish to compute a space-time function ever that returns true precisely
at events where condition is true and in the causal future of those events—
i.e., spreading out at the maximum theoretical speed throughout the network of
devices.

One might expect this could be implemented as follows in field calculus:
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def ever1(condition) {
rep (false) { (old) => anyHoodPlusSelf(nbr{old}) || condition }

}

where anyHoodPlusSelf is a built-in function that returns true if any value is
true in its neighboring field input (including the value old held for the current
device). Walking through the evaluation of this function, however, reveals that
there is a hidden delay. In each round, the old variable is updated, and will
become true if either condition is true now for the current device or if old was
true in the previous round for the current device or for any of its neighbors. Once
old becomes true, it stays true for the rest of the computation. Notice, however,
that a neighboring device does not actually learn that condition is true, but
that old is true. In an event where condition first becomes true, the value of
old that is shared is still false, since the rep does not update its value until after
the nbr has already been evaluated. Only in the next round do neighbors see
an updated value of old, meaning that ever1 is not spreading information fast
enough to be a correct implementation of ever.

We might try to improve this routine by directly sharing the value of condition:

def ever2(condition) {
rep (false) { (old) => anyHoodPlusSelf(nbr{old || condition}) }

}

This solves the problem for immediate neighbors, but does not solve the
problem for neighbors of neighbors, which still have to wait an additional round
before old is updated.

In fact, it appears that the only way to avoid delays at some depth of neighbor
relations is by using unbounded recursion, as previously outlined in [2]:

def ever3(condition) {
rep (false) { (old) =>

if (countHood() == 0) { old || condition } {
ever3(anyHoodPlusSelf(nbr{old || condition}))

} } }

where countHood counts the number of neighbors, i.e., determining whether
any neighbor has reached the same depth of recursion in the branch. Thus, in
ever3, neighbors’ values of cond are fed to a nested call to ever3 (if there
are any); and this process is iterated until no more values to be considered
are present. This function therefore has a recursion depth equal to the longest
sequence of events ε0  . . .  ε ending in the current event ε, inducing a
linearly increasing computational time and message size and making the routine
effectively infeasible for long-running systems.

This case study illustrates the more general problem of delays induced by the
interaction of rep and nbr constructs in field calculus, as identified in [2]. With
these constructs, it is never possible to build computations involving long-range
communication that are as fast as possible and also lightweight in the amount
of communication required.
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3 The Share Construct

In order to overcome the problematic interaction between rep and nbr, we pro-
pose a new construct that combines aspects of both:

share(e1){(x) => e2}

While the syntax of this new share construct is identical to that of rep, the two
constructs differ in the way the construct variable x is interpreted each round:

– in rep, the value of x is the value produced by evaluating the construct in
the previous round, or the result of evaluating e1 if there is no prior-round
value;

– in share, on the other hand, x is a neighboring field comprising that same
value for the current device plus any values of the construct produced by
neighbors in their most recent evaluation.

Notice that since x is a neighboring field rather than a local value, e2 is respon-
sible for processing it into a local value that can be shared with neighbors at the
end of the evaluation. Furthermore, notice that the value for δ in the field x cor-
responds exactly to the value that would be substituted in x for a corresponding
rep construct. Thus, a rep construct may as well be equivalently rewritten as a
share construct as follows:

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x)]}

where localHood is a built-in operator that given a neighboring field φ returns
the value φ(δ) for the current device.

Whenever a field calculus program used x only as nbr{x} inside the e2 expres-
sion of a rep, however, the share construct can improve over rep. In this case,
the following non-equivalent rewriting improves the communication speed of an
algorithm, while preserving its computational efficiency and overall meaning:

rep(e1){(x) => e2[nbr{x}]} −→ share(e1){(x) => e2[x]}

In other words, the share construct can be used to automatically improve com-
munication speeds of algorithms. Many algorithms with more varied uses of x
(e.g., using both x and nbr{x} in e2) can be similarly transformed into improved
versions.

3.1 Typing and Operational Semantics

Formal typing and operational semantics for the share construct is presented
in Figure 3 (bottom frame), as an extension to the type system and semantics
given in [5]. The typing judgement A ` e : T is to be read “expression e has
type T under the set of assumptions A”. The typing rule [T-SHARE] requires both
e1 and e2 to have a same local (i.e. non-field) type L, assuming x to have the
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Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

φ0[φ1] = φ2 where φ2(δ) =

{
φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n πi(θ) = • otherwise

For aux ∈ ρ, πi :


aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

Rules for typing and expression evaluation:
[T-SHARE] A ` e1 : L A, x : field(L) ` e2 : L

A ` share(e1){(x) => e2} : L

[E-SHARE]
δ;π1(Θ);σ ` e1 ⇓ θ1 φ′ = ρ(π2(Θ))
δ;π2(Θ);σ ` e2[x := φ] ⇓ θ2 φ = (δ 7→ ρ(θ1))[φ′]

δ;Θ;σ ` share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

Fig. 3. Typing and operational semantics for the share construct.

corresponding field type field(L), and assigns the same type L to the whole
construct.

The evaluation rule is based on the auxiliary functions given in Figure 3
(middle frame). Function ρ(θ) extracts the root from a given value-tree, while
function πi(θ) selects the i-th sub-tree of the given value-tree. Both of them
can be applied to value-tree environments Θ as well, obtaining a neighboring
field (for ρ) or another value-tree environment (for πi). Furthermore, we use the
notation φ0[φ1] to represent “field update”, so that its result φ2 has dom(φ2) =
dom(φ0)∪dom(φ1) and coincides with φ1 on its domain, or with φ0 otherwise.

The evaluation rule [E-SHARE] produces a value-tree with two branches (for
e1 and e2 respectively). First, it evaluates e1 with respect to the corresponding
branches of neighbors π1(Θ) obtaining θ1. Then, it collects the results for the
construct from neighbors into the neighboring field φ′ = ρ(π2(Θ)). In case φ′ does
not have an entry for δ, ρ(θ1) is used obtaining φ = (δ 7→ ρ(θ1))[φ′]. Finally, φ
is substituted for x in the evaluation of e2 (with respect to the corresponding
branches of neighbors π2(Θ)) obtaining θ2, setting ρ(θ2) to be the overall value
for the construct.

3.2 The share Construct Improves Communication Speed

To illustrate how the share construct solves the problem illustrated in Sec-
tion 2.3, let us once again consider the ever function discussed in that section,
for propagating when a condition Boolean has ever become true. With the
share construct, we can finally write a fully functional implementation of ever
as follows:
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def ever(condition) {
share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Function ever is simultaneously (i) compact and readable, even more so than
ever1 and ever2 (note that we no longer need to include the nbr construct);
(ii) lightweight, as it involves the communication of a single Boolean value each
round and few operations; and (iii) optimally efficient in communication speed,
since it is true for any event ε with a causal predecessor ε′ ≤ ε where condition

was true. In particular

– in such an event ε′ the overall share construct is true, since it does so
anyHoodPlusSelf(old) || true regardless of the values in old;

– in any subsequent event ε′′ (i.e. ε′  ε′′) the share construct is true since
old contains a true value (the one coming from ε′), and

– the same holds for further following events ε by inductive arguments.

In field calculus alone, such optimal communication speed can be achieved only
through unbounded recursion, as argued in [2] and reviewed above in Section 2.3.

The average improvement in communication speed of a routine being con-
verted from the usage of rep+nbr to share according to the rewriting proposed
at the beginning of this section can also be statistically estimated, depending on
the communication pattern used by the routine.

An algorithm follows a single-path communication pattern if its outcome in an
event depends essentially on the value of a single selected neighbor: prototypical
examples of such algorithms are distance estimations [4], which are computed out
of the value of the single neighbor on the optimal path to the source. In this case,
letting T be the average interval between subsequent rounds, the communication
delay of an hop is T/2 with share (since it can randomly vary from 0 to T ) and
T/2+T = 3/2T with rep+nbr (since a full additional round T is wasted in this
case). Thus, the usage of share allows for an expected three-fold improvement
in communication speed for these algorithms.

An algorithm follows a multi-path communication pattern if its outcome in
an event is obtained from the values of all neighbors: prototypical examples of
such algorithms are data collections [3], especially when they are idempotent
(e.g. minimums or maximums). In this case, the existence of a single commu-
nication path ε0  . . .  ε is sufficient for the value in ε0 to be taken into
account in ε. Even though the delay of any one of such paths follows the same
distribution as for single-path algorithms (0 to T per step with share, T to 2T
per step with rep + nbr), the overall delay is minimized among each existing
path. It follows that for sufficiently large numbers of paths, the delay is closer
to the minimum of a single hop (0 with share, T with rep + nbr) resulting in
an even larger improvement.

4 Application and Empirical Validation

Having developed the share construct and shown that it should be able to sig-
nificantly improve the performance of field calculus programs, we have also ap-
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plied this development by extending the Protelis [30] implementation of field
calculus to support share. We have further upgraded every function in the
protelis-lang library [15] with an applicable rep/nbr combination to use the
share construct instead, thereby also improving every program that makes use
of these libraries of resilient functions. To validate the efficacy of both our anal-
ysis and its applied implementation, we empirically validate the improvements
in performance for a number of these upgraded functions in simulation.

4.1 Evaluation setup

We experimentally validate the improvements of the share construct through
two simulation examples. In both, we deploy a number of mobile devices, com-
puting rounds asynchronously at a frequency of 1 ±0.1 Hz, and communicating
within a range of 75 meters. All aggregate programs have been written in Pro-
telis [30] and simulations performed using Alchemist [29]. All the results reported
in this paper are the average of 200 simulations with different seeds, which lead
to different initial device locations, different waypoint generation, and different
round frequency. Data generated by the simulator has been processed with Xar-
ray [20] and matplotlib [21]. For the sake of brevity, we do not report the actual
code in this paper; however, to guarantee the complete reproducibility of the
experiments, the execution of the experiment has been entirely automated, and
all the resources have been made publicly available along with instructions.6

In the first scenario, we position 2000 mobile devices into a corridor room
with sides of, respectively, 200m and 2000m. All but two of the devices are free to
move within the corridor randomly, while the remaining two are “sources” that
are fixed and located at opposite ends of the corridor. At every point of time,
only one of the two sources is active, switching at 80 seconds and 200 seconds
(i.e., the active one gets disabled, the disabled one is re-enabled). Devices are
programmed to compute a field yielding everywhere the farthest distance from
any device to the current active source. In order to do so, they execute the
following commonly used coordination algorithms:

1. they compute a potential field measuring the distance from the active source
through BIS [4] (bisGradient routine in protelis:coord:spreading);

2. they accumulate the maximum distance value descending the potential to-
wards the source, through Parametric Weighted Multi-Path C [3] (an opti-
mized version of C in protelis:coord:accumulation);

3. they broadcast the information along the potential, from the source to every
other device in the system (an optimized version of the broadcast algorithm
found in protelis:coord:spreading, which tags values from the source
with a timestamp and propagates them by selecting more recent values).

The choice of the algorithms to be used in validation revealed to be critical.
The usage of share is able to directly improve the performance of algorithms
with solid theoretical guarantees, however, it may also exacerbate errors and

6 https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/
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Fig. 4. Performance in the corridor scenario, for both individual algorithms (top) and
the composite computation (bottom). Vertical axis is linear in [0, 1] and logarithmic
above. Charts on the left column show distance error, while the right column shows time
error. The versions of the algorithms implemented with share (warm colors) produce
significantly less error and converge significantly faster in case of large disruptions than
with rep (cold colors).

instabilities for more ad-hoc algorithms, by allowing them to propagate quicker
and more freely. We thus had to select the most reliable algorithms: optimal
single-path distance estimation, optimal multi-path broadcast, and fine tune the
latest state-of-the-art version of data collection.

We are interested in measuring the error of each step (namely, in distance vs.
the true values), together with the lag through which these values were generated
(namely, by propagating a time-stamp together with values, and computing the
difference with the current time). Moreover, we want to inspect how the improve-
ments introduced by share accumulate across the composition of algorithms. To
do so, we measure the error in two conditions:

1. composite behavior, in which each step is fed the result computed by the
previous step, and

2. individual behavior, in which each step is fed an ideal result for the previous
step, as provided by an oracle.

Figure 4 shows the results from this scenario. Observing the behavior of the
individual computations, it is immediately clear how the share-based version
of the algorithm provides faster recovery from network input discontinuities and
lower errors at the limit. These effects are exacerbated when multiple algorithms
are composed to build aggregate applications. The only counterexample is the
limit of distance estimations, for which rep is marginally better, with a relative
error less than 1% lower than that of share.
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Fig. 5. Snapshots of the Voronoi partitioning scenario using share (left) or rep (right).
Colored dots are simulated devices, with each region having a different color. Faster
communication with share leads to a higher accuracy distance estimation, allowing the
share implementation to perform a better division into regions and preventing regions
from expanding beyond their limits.

Moreover, notice that the collection algorithm with rep was not able to
recover from changes at all, as shown by the linearly increasing delay in time
(and the absence of spikes in distance error). The known weakness of multi-path
collection strategies, that is, failing to react to changes due to the creation of
information loops, proved to be much more relevant and invalidating with rep

than with share.

In the second example, we deploy 500 devices in the city center of a Eu-
ropean city, and let them move as though being carried by pedestrians, mov-
ing at walking speed (1.4ms ) towards random waypoints along roads open to
pedestrian traffic (using map data from OpenStreetMaps [19]). In this sce-
nario, devices must self-organise service management regions with a radius of
at most 200 meters, creating a Voronoi partition as shown in Figure 5 (functions
S and voronoiPatitioningWithMetric from protelis:coord:sparsechoice).
We evaluate performance by measuring the number of partitions generated by
the algorithm, and the average and maximum node distance error, where the
error for a node n measures how far a node is beyond of the maximum boundary
for its cluster. This is computed as εn = max(0, d(n, ln)− r), where d computes
the distance between two devices, ln is the leader for the cluster n belongs to,
and r is the maximum allowed radius of the cluster.

Figure 6 shows the results from this scenario, which also confirm the benefits
of faster communication with share. The algorithm implemented with share has
much lower error, mainly due to faster convergence of the distance estimates, and
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Fig. 6. Performance in the Voronoi partition scenario: error in distance on the left,
leaders count with time on the right. Vertical axis is linear in [0, 0.1] and logarithmic
elsewhere. The version implemented with share has much lower error: the mean error
is negligible, and the most incorrect value, after an initial convergence phase, is close
to two orders of magnitude lower than with rep, as faster communication leads to
more accurate distance estimates. The leader count shows that the systems create a
comparable number of partitions, with the share-based featuring faster convergence.

consequent higher accuracy in measuring the distance from the partition leader.
Simultaneously, it creates a marginally lower number of partitions, by reducing
the amount of occasional single-device regions which arise during convergence
and re-organization.

5 Contributions and Future Work

In this work, we have introduced a novel share construct whose introduction al-
lows a significant acceleration of field calculus programs. We have also made this
construct available for use in applications though an extension of the Protelis
field calculus implementation and its accompanying libraries, and have empiri-
cally validated the expected improvements in performance through experiments
in simulation.

In future work, we plan to study for which algorithms the usage of share
may lead to increased instability, thus fine-tuning the choice of rep and nbr over
share in the Protelis library. Furthermore, we intend to fully analyze the conse-
quences of share for improvement of the space-time universality of field calculus.
It also appears likely that field calculus can be simplified by the elimination of
both rep and nbr by finding a mapping by which share can also be used to
implement any usage of nbr. Finally, we also anticipate that the improvements
in performance will also have positive consequences for nearly all current and
future applications that are making use of field calculus.
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A Appendix: Field Calculus Operational Semantics

This appendix is not part of the submission,
and it is included for referees’ convenience only.

A.1 Device Semantics

The computation that takes place on a single device is formalised by a big-
step semantics, expressed by the judgement δ;Θ;σ ` emain ⇓ θ, to be read
“expression emain evaluates to θ on device δ with respect to environment Θ and
sensor state σ”. The result of evaluation is a value-tree θ, which is an ordered
tree of values that tracks the results of all evaluated subexpressions of emain. Such
a result is made available to δ’s neighbors for their subsequent firing (including δ
itself, so as to support a form of state across computation rounds). The recently-
received value-trees of neighbors are then collected into a value-tree environment
Θ, implemented as a map from device identifiers to value-trees (written δ 7→ θ as
short for δ1 7→ θ1, . . . , δn 7→ θn). Intuitively, the outcome of the evaluation will
depend on those value-trees. Figure 7 (top) defines value-trees and value-tree
environments.

Example 1. The graphical representation of the value trees 5〈2〈〉, 3〈〉〉 and
5〈2〈〉, 3〈7〈〉, 1〈〉, 4〈〉〉〉 is as follows:

5 5

/ \ / \

2 3 2 3

/|\

7 1 4

In the following, for sake of readability, we sometimes write the value v as
short for the value-tree v〈〉. Following this convention, the value-tree 5〈2〈〉, 3〈〉〉
is shortened to 5〈2, 3〉, and the value-tree 5〈2〈〉, 3〈7〈〉, 4〈〉, 4〈〉〉〉 is shortened to
5〈2, 3〈7, 1, 4〉〉.

Figure 7 (bottom) defines the judgement δ;Θ;σ ` e ⇓ θ, where: (i) δ is the
identifier of the current device; (ii) Θ is the neighboring field of the value-trees
produced by the most recent evaluation of (an expression corresponding to) e

on δ’s neighbors; (iii) e is a closed run-time expression (i.e., a closed expression
that may contain neighboring field values); (iv) the value-tree θ represents the
values computed for all the expressions encountered during the evaluation of e—
in particular the root of the value tree θ, denoted by ρ(θ), is the value computed
for expression e. The auxiliary function ρ is defined in Figure 7 (second frame).

The operational semantics rules are based on rather standard rules for func-
tional languages, extended so as to be able to evaluate a subexpression e′ of e
with respect to the value-tree environment Θ′ obtained from Θ by extracting
the corresponding subtree (when present) in the value-trees in the range of Θ.
This process, called alignment, is modelled by the auxiliary function π defined
in Figure 7 (second frame). This function has two different behaviors (specified
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Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n π`(v〈θ1, θ2〉) = θ2 if ρ(θ1) = `

πi(θ) = • otherwise π`(θ) = • otherwise

For aux ∈ ρ, πi, π` :


aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
Syntactic shorthands:

δ;π(Θ);σ ` e ⇓ θ where |e| = n for δ;π1(Θ);σ ` e1 ⇓ θ1 · · · δ;πn(Θ);σ ` en ⇓ θn
ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ;Θ;σ ` e ⇓ θ

[E-LOC]

δ;Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ;Θ;σ ` φ ⇓ φ′〈〉

[E-B-APP] δ;π(Θ);σ ` e ⇓ θ v = LbMδσΘ(ρ(θ))

δ;Θ;σ ` b(e) ⇓ v〈θ〉

[E-D-APP] δ;π(Θ);σ ` e ⇓ θ δ;Θ;σ ` body(d)[args(d) := ρ(θ)] ⇓ θ′

δ;Θ;σ ` d(e) ⇓ ρ(θ′)〈θ, θ′〉

[E-NBR] δ;π1(Θ);σ ` e ⇓ θ φ = ρ(π1(Θ))[δ 7→ ρ(θ)]

δ;Θ;σ ` nbr{e} ⇓ φ〈θ〉

[E-REP]
δ;π1(Θ);σ ` e1 ⇓ θ1
δ;π2(Θ);σ ` e2[x := `0] ⇓ θ2

`0 =

{
ρ(π2(Θ))(δ) if δ ∈ dom(Θ)
ρ(θ1) otherwise

δ;Θ;σ ` rep(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

[E-IF] δ;π1(Θ);σ ` e ⇓ θ1 ρ(θ1) ∈ {true, false} δ;πρ(θ1)(Θ);σ ` eρ(θ1) ⇓ θ
δ;Θ;σ ` if(e){etrue}{efalse} ⇓ ρ(θ)〈θ1, θ〉

Fig. 7. Big-step operational semantics for expression evaluation.

by its subscript or superscript): πi(θ) extracts the i-th subtree of θ; while π`(θ)
extracts the last subtree of θ, if the root of the first subtree of θ is equal to
the local (boolean) value ` (thus implementing a filter specifically designed for
the if construct). Auxiliary functions ρ and π apply pointwise on value-tree
environments, as defined in Figure 7 (second frame).

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either
a local value or a neighboring field value, respectively: note that in [E-FLD] we
take care of restricting the domain of a neighboring field value to the only set of
neighbor devices as reported in Θ.
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Rule [E-B-APP] models the application of built-in functions. It is used to eval-
uate expressions of the form b(e1 · · · en), where n ≥ 0. It produces the value-tree
v〈θ1, . . . , θn〉, where θ1, . . . , θn are the value-trees produced by the evaluation of
the actual parameters e1, . . . , en and v is the value returned by the function.
The rule exploits the special auxiliary function LbMΘδ , whose actual definition
is abstracted away. This is such that LbMΘδ (v) computes the result of applying
built-in function b to values v in the current environment of the device δ. In
particular: the built-in 0-ary function self gets evaluated to the current device
identifier (i.e., LselfMΘδ () = δ), and mathematical operators have their standard
meaning, which is independent from δ and Θ (e.g., L+MΘδ (2, 3) = 5).

Example 2. Evaluating the expression +(2, 3) produces the value-tree 5〈2, 3〉.
The value of the whole expression, 5, has been computed by using rule [E-B-APP]

to evaluate the application of the sum operator + to the values 2 (the root of
the first subtree of the value-tree) and 3 (the root of the second subtree of the
value-tree).

The LbMΘδ function also encapsulates measurement variables such as nbrRange
and interactions with the external world via sensors and actuators.

Rule [E-D-APP] models the application of a user-defined function. It is used to
evaluate expressions of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-

B-APP] while producing a value-tree with one more subtree θ′, which is produced
by evaluating the body of the function d (denoted by body(d)) substituting the
formal parameters of the function (denoted by args(d)) with the values obtained
evaluating e1, . . . en.

Rule [E-REP] implements internal state evolution through computational rounds:
rep(e1){(x) => e2} evaluates to e2[x := v] where v is obtained from e1 on the
first firing of a device, from the previous value of the whole rep-expression oth-
erwise.

Example 3. To illustrate rule [E-REP], as well as computational rounds, we con-
sider program rep(0){(x) => +(x, 1)}. The first firing of a device δ is per-
formed against the empty tree environment. Therefore, according to rule [E-

REP], to evaluate rep(0){(x) => +(x, 1)} means to evaluate the subexpres-
sion +(0, 1), obtained from +(x, 1) by replacing x with 0. This produces the
value-tree θ = 1〈0, 1〈0, 1〉〉, where root 1 is the overall result as usual, while its
sub-trees are the result of evaluating the first and second argument respectively.
Any subsequent firing of the device δ is performed with respect to a tree en-
vironment Θ that associates to δ the outcome θ of the most recent firing of δ.
Therefore, evaluating rep(0){(x) => +(x, 1)} at the second firing means to
evaluate the subexpression +(1, 1), obtained from +(x, 1) by replacing x with
1, which is the root of θ. Hence the results of computation are 1, 2, 3, and so on.

Rule [E-NBR] models device interaction. It first collects neighbor’s values for
expressions e as φ = ρ(π1(Θ)), then evaluates e in δ and updates the corre-
sponding entry in φ.
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Example 4. To illustrate rule [E-NBR], consider e′ = minHood(nbr{snsNum()}),
where the 1-ary built-in function minHood returns the lower limit of values in the
range of its neighboring field argument, and the 0-ary built-in function snsNum

returns the numeric value measured by a sensor. Suppose that the program runs
on a network of three devices δA, δB , and δC where:

– δB and δA are mutually connected, δB and δC are mutually connected, while
δA and δC are not connected;

– snsNum returns 1 on δA, 2 on δB , and 3 on δC ; and
– all devices have an initial empty tree-environment ∅.

Suppose that device δA is the first device that fires: the evaluation of snsNum()
on δA yields 1 (by rules [E-LOC] and [E-B-APP], since LsnsNumM∅δA() = 1); the
evaluation of nbr{snsNum()} on δA yields (δA 7→ 1)〈2〉 (by rule [E-NBR]); and the
evaluation of e′ on δA yields

θA = 1〈(δA 7→ 1)〈1〉〉

(by rule [E-B-APP], since LminHoodM∅δA(δA 7→ 1) = 1). Therefore, at its first fire,
device δA produces the value-tree θA. Similarly, if device δC is the second device
that fires, it produces the value-tree

θC = 3〈(δC 7→ 3)〈3〉〉

Suppose that device δB is the third device that fires. Then the evaluation of e′ on
δB is performed with respect to the environment ΘB = (δA 7→ θA, δC 7→ θC) and
the evaluation of its subexpressions nbr{snsNum()} and snsNum() is performed,
respectively, with respect to the following value-tree environments obtained from
ΘB by alignment:

Θ′
B = π1(ΘB) = (δA 7→ (δA 7→ 1)〈1〉, δC 7→ (δC 7→ 3)〈3〉)

Θ′′
B = π1(Θ′

B) = (δA 7→ 1, δC 7→ 3)

We thus have that LsnsNumMΘ
′′
B

δB
() = 2; the evaluation of nbr{snsNum()} on δB

with respect to Θ′
B produces the value-tree φ〈2〉 where φ = (δA 7→ 1, δB 7→

2, δC 7→ 3); and LminHoodMΘB

δB
(φ) = 1. Therefore the evaluation of e′ on δB

produces the value-tree θB = 1〈φ〈2〉〉. Note that, if the network topology and
the values of the sensors will not change, then: any subsequent fire of device δB
will yield a value-tree with root 1 (which is the minimum of snsNum across δA,
δB and δC); any subsequent fire of device δA will yield a value-tree with root 1
(which is the minimum of snsNum across δA and δB); and any subsequent fire of
device δC will yield a value-tree with root 2 (which is the minimum of snsNum
across δB and δC).

Rule [E-IF] is almost standard, except that it performs domain restriction
πtrue(Θ) (resp. πfalse(Θ)) in order to guarantee that subexpression etrue is not
matched against value-trees obtained from efalse (and vice-versa).
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System configurations and action labels:

Ψ ::= δ 7→ Θ status field

τ ::= δ 7→ I topology

Σ ::= δ 7→ σ sensors-map
Env ::= τ,Σ environment
N ::= 〈Env;Ψ〉 network configuration
act ::= δ

∣∣ env action label

Environment well-formedness:
WFE(τ,Σ) holds iff dom(τ) = dom(Σ) and τ(δ) ⊆ dom(Σ) for all δ ∈ dom(Σ).

Transition rules for network evolution: N
act−−→ N

[N-FIR] Env = τ,Σ τ(δ) = δ δ;F (Ψ)(δ);Σ(δ) ` emain ⇓ θ Ψ1 = δ 7→ {δ 7→ θ}
〈Env;Ψ〉 δ−→ 〈Env;F (Ψ)[Ψ1]〉

[N-ENV] WFE(Env′) Env′ = τ, δ 7→ σ Ψ0 = δ 7→ ∅
〈Env;Ψ〉 env−−→ 〈Env′;Ψ0[Ψ ]〉

Fig. 8. Small-step operational semantics for network evolution.

A.2 Network Semantics

The overall network evolution is formalised by the small-step operational seman-
tics given in Figure 8 as a transition system on network configurations N . Figure
8 (top) defines key syntactic elements to this end. Ψ models the overall status
of the devices in the network at a given time, as a map from device identifiers
to value-tree environments. From it, we can define the state of the field at that
time by summarising the current values held by devices. τ models network topol-
ogy, namely, a directed neighboring graph, as a map from device identifiers to
set of identifiers (denoted as I). Σ models sensor (distributed) state, as a map
from device identifiers to (local) sensors (i.e., sensor name/value maps denoted
as σ). Then, Env (a couple of topology and sensor state) models the system’s
environment. So, a whole network configuration N is a couple of a status field
and environment.

We use the following notation for status fields. Let δ 7→ Θ denote a map from
device identifiers δ to the same value-tree environment Θ. Let Θ0[Θ1] denote the
value-tree environment with domain dom(Θ0) ∪ dom(Θ1) coinciding with Θ1

in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1] denote the status field
with the same domain as Ψ0 made of δ 7→ Ψ0(δ)[Ψ1(δ)] for all δ in the domain
of Ψ1, δ 7→ Ψ0(δ) otherwise.

We consider transitions N
act−−→ N ′ of two kinds: firings, where act is the

corresponding device identifier, and environment changes, where act is the spe-
cial label env. This is formalised in Figure 8 (bottom). Rule [N-FIR] models a
computation round (firing) at device δ: it takes the local value-tree environment
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filtered out of old values F (Ψ)(δ);7 then by the single device semantics it obtains
the device’s value-tree θ,8 which is used to update the system configuration of δ
and of δ’s neighbors.

Rule [N-ENV] takes into account the change of the environment to a new
well-formed environment Env′—environment well-formedness is specified by the
predicate WFE(Env) in Figure 8 (middle). Let δ be the domain of Env′. We
first construct a status field Ψ0 associating to all the devices of Env′ the empty
context ∅. Then, we adapt the existing status field Ψ to the new set of devices:
Ψ0[Ψ ] automatically handles removal of devices, map of new devices to the empty
context, and retention of existing contexts in the other devices.

Example 5. Consider a network of devices with e′ = minHood(nbr{snsNum()}) as
introduced in Example 4. The network configuration illustrated at the beginning
of Example 4 can be generated by applying rule [N-ENV] to the empty network
configuration. I.e., we have

〈∅, ∅; ∅〉 env−−→ 〈Env0;Ψ0〉

where

– Env0 = τ0, Σ0,
– τ0 = (δA 7→ {δB}, δB 7→ {δA, δC}, δC 7→ {δB}),
– Σ0 = (δA 7→ (snsNum 7→ 1), δB 7→ (snsNum 7→ 2), δC 7→ (snsNum 7→ 3)), and
– Ψ0 = (δA 7→ ∅, δB 7→ ∅, δC 7→ ∅).

Then, the tree fires of devices δA, δC and δB illustrated in Example 4 correspond
to the following transitions, respectively.

1. 〈Env0;Ψ0〉
δA−−→ 〈Env0;Ψ ′〉, where

– Ψ ′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA), δC 7→ ∅), and
– θA = 1〈(δA 7→ 1)〈1〉〉;

2. 〈Env0;Ψ ′〉 δC−−→ 〈Env0;Ψ ′′〉, where
– Ψ ′′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA, δC 7→ θC), δC 7→ (δC 7→ θC)),

and
– θC = 1〈(δC 7→ 3)〈3〉〉;

3. 〈Env0;Ψ ′′〉 δB−−→ 〈Env0;Ψ ′′′〉, where
– Ψ ′′′ = (δA 7→ (δA 7→ θA, δB 7→ θB),

δB 7→ (δA 7→ θA, δB 7→ θB , δC 7→ θC),
δC 7→ (δB 7→ θB , δC 7→ θC)),

– θB = 1〈φ〈2〉〉, and
– φ = (δA 7→ 1, δB 7→ 2, δC 7→ 3).

7 Function F (Ψ) in rule [N-FIR] models a filtering operation that clears out old stored
values from the value-tree environments in Ψ , implicitly based on space/time tags.

8 We shall assume that any device firing is guaranteed to terminate in any environ-
mental condition. Termination of a device firing is clearly not decidable, but we shall
assume—without loss of generality for the results of this paper—that a decidable
subset of the termination fragment can be identified (e.g., by ruling out recursive
user-defined functions or by applying standard static analysis techniques for termi-
nation).
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