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Summary 
Adhesion-mediated cell sorting has long been considered an organizing principle in 
developmental biology. While most computational models have emphasized the 
dynamics of segregation to fully sorted structures, cell sorting can also generate a 
plethora of transient, incompletely sorted states. The time scale of such states in 
experimental systems is unclear: if they are long lived, they can be harnessed by 
development or engineered in synthetic tissues. Here we use experiments and 
computational modeling to demonstrate how such structures can be systematically 
designed by quantitative control of cell composition. By varying the number of highly 
adhesive and less adhesive cells in multicellular aggregates, we find the cell type ratio 
and total cell count control pattern formation, with resulting structures maintained for 
several days. Our work takes a step towards mapping the design space of self-
assembling structures in development, and provides guidance to the emerging field of 
shape engineering with synthetic biology. 
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Introduction 

In 1907, H. V. Wilson reported a remarkable phenomenon: when sponges were 
pushed through a fine cloth and completely dissociated, they could re-assemble 
themselves back into complete living organisms1. Steinberg proposed that a simple 
physical mechanism - differences in cell-cell adhesion - could account for this behavior2. 
Since then, there has been a large body of work that addresses the molecular 
mechanisms of self-assembling biological structures3,4, culminating in a recent drive to 
direct self-organizing shape formation synthetically with the goal of engineering artificial 
living structures for materials engineering and organ regeneration5,6,7,8,9. 

Although self-organization has been studied extensively, the general question of 
what can be constructed through multicellular self-organization remains unsolved. Here 
we present a systematic study of a range of structures that can be constructed using a 
ubiquitous tool for self-organization in animal development: cell sorting. Cell sorting, or 
the process by which mixtures of cell types can physically rearrange themselves into 
distinct populations, is driven by differences in tissue surface tension between 
populations of cells. Tissue surface tension is determined primarily by an interplay 
between cell-cell adhesion and cell cortex tension10,11. Complete cell sorting can result 
in a range of structure types, including an engulfed cluster of one cell type surrounded 
by another cell type, or total separation of two cell types to distinct sections. Partial or 
incomplete cell sorting was discussed in the seminal work by Glazier and Graner12 in 
which they developed a Cellular Potts Model for simulating differential adhesion. They 
demonstrated computationally that when partially sorted clusters have limited diffusion, 
they can be stable over long periods without significant merging. Most other theoretical 
work on cell-sorting-based structure formation has been primarily focused on studying 
segregation dynamics and the resulting fully segregated steady-state patterns13,14,15,16,17 
, with some recent exceptions that examined the periodic Turing-like patterns that can 
emerge as a result of cell adhesion combined with phenotypic switching18.  

Although many computational models and experimental systems exist for cell 
sorting-based pattern formation3,11,12,19,20, they lack a precise set of design rules for 
controlling the features of the resulting patterns and structures, especially of 
incompletely sorted forms. Here we address this issue and establish several design 
rules by systematic exploration of two features of the design space: total number of cells 
and relative composition of highly adhesive and less adhesive cells. We find a set of 
self-organizing structures that are distinct from fully sorted steady-state structures, and 
are maintained over the course of multiple days. In aggregates with highly adhesive and 
less adhesive cells mixtures, we find that the ratio of cell types precisely controls a 
transition between a completely sorted structure and the formation of many semi-regular 
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clusters that are robustly tunable. Due to the finite time scale of cell rearrangement, we 
argue that these states may be more relevant for tissue design than the 
thermodynamically stable fully-sorted states. In our system, we predicted that steady 
state sorted behavior would emerge in some aggregates on a time scale that is typically 
longer than stages of development in a developing organism. Although incompletely 
sorted, patterns with multiple clusters persist over the course of many days and have 
predictable, controllable features. These structures are designable and stable over 
biologically relevant time scales, paving the way for synthetic multicellular shape 
engineering. 
 
Results 
 
Ratio of highly adhesive to less adhesive cells precisely controls pattern features 

Given enough time to sort out, a mixture of motile highly self-adhesive and less 
adhesive cells is theoretically expected to assemble into the lowest energy 
arrangement: a single central sphere of the more adhesive cells engulfed by a shell of 
less adhesive cells 2,11. To establish whether other biologically relevant patterns can be 
created using cell sorting between highly adhesive cells and less adhesive cells, we 
created aggregates composed of two cell types with different adhesive properties: 
HEK293FT (HEK) cells and CHO K1 (CHO) cells. CHO cells express low levels of 
cadherin21, are minimally self-adhesive, and form loose aggregates in 3D cell culture. 
HEK293 cells express E-cadherin and N-cadherin and are more self-adhesive, forming 
compacted spheroids in 3D cell culture22. To make CHO and HEK 3D aggregates, cells 
were first maintained in adherent 2D cell culture, trypsinized to make single-cell 
suspensions, and added in precise numbers to low-adherent U-bottom plates using 
fluorescence activated cell sorting (FACS) (Figure 1a). After seeding, plates were 
mixed with pipetting and centrifuged at a low speed to encourage cells to fall to the 
center of the U-bottom. To distinguish cell types with microscopy, CHO and HEK cells 
were engineered with genomically integrated expression of fluorescent proteins tagBFP 
and eYFP, respectively, both driven by a constitutive human EF1a promoter. 

Using this method to create co-cultured aggregates, we systematically varied the 
ratio of HEK and CHO cells and imaged pattern formation after an initial sorting period 
of approximately 24 hours. We analyzed ten technical replicates of nine different HEK to 
CHO ratios, seeded at 7000 cells in total. Pattern formation was found to be consistent 
across replicates and highly dependent on HEK to CHO ratio, showing different modes 
of behavior at ratios around a critical 50% threshold (Figure 1b). At high HEK to CHO 
ratios, aggregates self-organized into the predicted form, with a compact HEK spheroid 
engulfed by non-adherent diffuse CHO cells (Figure 1b, rows 6-9). With 40% or fewer 
HEK cells, aggregates assembled into a different pattern: instead of coalescing into a 
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central sphere, the HEK cells grouped into many distinct clusters, separated by CHO 
cells (Figure 1b, rows 1-4). Aggregates with intermediate numbers of HEK and CHO 
cells (Figure 1b, row 5) had more variable patterning, with some replicates forming a 
complete engulfed sphere and others with several merging central clusters surrounded 
by multiple smaller clusters. Supplemental Videos 1-6 show 3D Z-stacks of 
representative aggregates. Although clusters have a Z height greater than one cell, the 
aggregates are flattened, and are wider across than in height. Further, clusters appear 
to contact the plate and do not lie on top of each other. The central Z-slice captures 
almost all clusters, and we therefore use only this slice and not the whole Z-stack in 
further analysis.  

To quantify the aggregate’s behavior, we analyzed the central Z-slice microscopy 
images with a custom image analysis pipeline that measures cluster number and area.  
Figure 1c and Figure S1 shows the sizes of each cluster in the images from Figure 1b 
combined across replicates and grouped by the HEK:CHO ratio of the aggregate. 
Cluster size abruptly transitions at 40-50% HEK from exclusively small (less than 0.03 
mm2) to a mixture of large (0.03 mm2 to 0.12 mm2) and small clusters. The images 
show that the few small clusters in the >50% HEK wells primarily exist either on the 
border of the aggregates or apart from the aggregate itself. The plates are coated with a 
cell-resistant coating, and therefore all cells should not be able to stick to the plate and 
should fall to the bottom of the U-shaped well due to gravity. The individual clusters that 
are not in contact with the rest of the aggregate are therefore likely due to small 
imperfections in the cell-resistance coating on the U-bottom plate, and can fall down to 
the outside of the aggregate over the course of hours. To exclude these flaws, we 
filtered out any cluster that was smaller than 5% of the largest cluster in the aggregate. 
It would be ideal to set an absolute size filter to remove small clusters created from 
flaws in the plate, but the sizes of these external clusters are comparable to the small 
clusters formed through sorting in the 10% and 20% HEK aggregates. Figure S1 shows 
the same data without this percent filtering.  

Figure 1d shows the number of clusters in each aggregate, grouped by percent 
HEK composition. The number of clusters in an aggregate of a specific HEK:CHO ratio 
was tightly distributed, especially between replicates with more than 50% HEK cells 
when a single central cluster forms (Figure 1d).  

Although incompletely sorted, these aggregates assemble into structures with 
reliable and tunable features. The size and number of clusters are consistent and the 
type of patterning - whether a single central cluster or many distinct clusters - is 
dependent on a precise ratio of highly adhesive to less adhesive cell populations. 

 
A particle-based model predicts scaling behavior 
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To explore how aggregate patterns can be further systematically designed, we 
employed a two-dimensional particle-based model of cell sorting, based on a 
generalized Vicsek model of interacting self-propelled particles 12,23. Although our 
experimental system uses 3D cell culture in which cells are not constricted to a 
monolayer, we chose to create a 2D model because we found that experimentally the 
aggregates are flattened and clusters exist in the same plane even though cells 
themselves can pile on top of each other (Supplementary videos 1-6), and because it 
is significantly more efficient to simulate than a 3D model.  

The model describes collective behavior of cells within the aggregate assuming 
simple rules for local interactions. In particular, cells are assumed to move with constant 
magnitude of velocity, !", in a direction given by a polar angle #$ (Figure 2a), which is 
aligned at all times with the net force acting on the cell, %$ = ∑()$ *$( + *$

(-./)(Refs. 
24,25). Here the pairwise intercellular force *$( describes the excluded-volume repulsion 
at cell-cell distances shorter than the cell diameter 1, mid-range attraction due to cell-
cell adhesion, and random forces at the cell-cortex level (Figure 2a, full equation 
described in methods). The adhesion term is associated with three parameters: 233, 
244, and 234, which represent cell-type-dependent adhesion strengths between cells of 
the same type (11 and 22) and cells of different types (12). The external force (*$

(-./)) 
describes the effect of gravity (g) and the curved bottom of the underlying surface, 
preventing cells from escaping the aggregate (Figure 2a). In our model, cells move by 
0.051 during a unit time, set by cell size and velocity as 1/!".  

 
To systematically search for incompletely sorted configurations, we first 

considered a two-component cell aggregate of 1000 cells with an initially well-mixed 
mixture of 20% type-1 cells and 80% type-2 cells, in which the adhesion between type-1 
cells was assumed the strongest (233 = 30:; and 234, 244 < 233). We explored 
configurations at time > = 10@1/!" after the beginning of sorting, which roughly 
corresponds to the time scale at which the configurations at low values of 234 and 244 
fully segregate. By measuring the final number of type-1-cell clusters, we were able to 
identify regions in the parameter space (234, 244) with incomplete sorting, displaying 
patterns with multiple clusters (Figure 2b-f).  

We next check whether the model captures the transition from the single- to 
many-cluster patterns at a critical composition ratio, as found experimentally (Figure 
1c). To do so we performed a parameter scan, varying the ratio at fixed values of 
adhesion strengths to find at least one simulation parameter combination that produces 
a phase transition at a similar ratio to the observed data.  We measured the final 
number of clusters and their mean size and found that for 233=30, 234=1, 244=5 the 
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simulation indeed approximated the behavior observed experimentally, with the critical 
ratio being at about 40% (Figure 2g).  

Next, we used the model to predict how the patterns change upon varying both 
the composition ratio and the total cell number at seeding. We found that a given 
composition ratio had a characteristic mean cluster size that was approximately 
constant in any aggregate above a certain number of cells (Figure 3a). The 
characteristic cluster size varied according to the ratio, with high-fraction type-1 cell 
aggregates sorting into larger clusters than low-fraction type-1 cell aggregates. The 
inflection point from linear to constant rising as the density of strongly adherent cells 
rises. This behavior is expected, based on the theoretical results of prior studies12,13. 
For 70% density and higher, no inflection point is observed, and at some point above 
this level we may expect a phase transition to a percolating state in which the inflection 
point rises to infinity and thus cluster size will always rise linearly. The number of 
clusters followed a similarly consistent rule, remaining at one below a density-
dependent cell-count threshold, and approximately linearly increased according to 
number of cells above that threshold (Figure 3B). For 30% density and lower, obtaining 
a single cluster becomes unreliable and at some point below this level, we may expect 
that the threshold drops to a level where it cannot be expected to be obtained with more 
than one strongly adherent cell. 

To investigate this prediction experimentally, we repeated the ratio sweep while 
seeding at varying total cell numbers (Figure 3C,D). As predicted by the model, the 
average cluster size at a given ratio is approximately constant after an inflection point 
that rises with the density of HEK cells, with no inflection point in range for 70% and 
higher. Likewise, for each ratio, there is a linear relationship between the number of 
clusters and total number of cells beyond a certain threshold. In effect, we see that each 
HEK ratio has its own characteristic maximum cluster size. If there are too few cells to 
achieve this cluster size, then one central cluster forms (though not reliably for 40% 
HEK and below). If there are more than enough cells to achieve this size, then multiple 
clusters can form, and the number of clusters scales with the total aggregate size. 
Correspondingly, at cell ratios that transition from one cluster to multiple clusters (40, 
50, and 60% HEK aggregates), the aggregate size at which multiple clusters form 
corresponds to the aggregate size at which average cluster size levels out to a 
consistent value (Figure 3D). These relations can be to a large extent explained using 
dimensional analysis (Note S1), which further confirms the robustness of pattern 
manipulation via easily controllable parameters. It is important to note that the trends for 
the mean cluster size between the model and experiment do not match exactly. In the 
model, we see a decrease in the mean cluster size with an increasing cell number, 
whereas in experiments cluster sizes appear to stabilize. It is hard to say which of the 
simplifications of physical mechanisms considered by our model contribute to this 
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discrepancy. The decrease here is much weaker than the inverse of the number of cell, 
1/N, so in this respect the relation is closer to being independent on the number of cells 
N than it is to having a significant dependency on N. This is in close agreement with the 
predicted scaling relations obtained by simple geometric scaling arguments (Note S1; 
note that geometric scaling provides only an extremely abstract model, which thus 
serves as a check on results but cannot explain other phenomena). The geometry itself 
is therefore likely the main determinant of how cluster size and number of clusters scale 
with total cell count. This suggests that we should see similar overall trends for the two 
plots regardless the underlying source of fluctuations that give rise to fluid-like behavior 
of tissues (e.g., active cell motility, proliferation and death, or tension fluctuations in the 
cell cortex). 
 
Incomplete sorting between highly adhesive cells and less adhesive cells creates 
long-term stable clusters 

We have established that incompletely sorted structures can have precise 
engineerable features controllable by cell ratio and total number of cells. To determine 
whether these structures are relevant for shape engineering and biological 
development, we next sought to determine their persistence after the initial sorting 
period. At steady state, it is expected that clusters of highly adhesive, moving cells will 
merge with each other to form one single cluster. This prediction comes from the fluid 
nature of tissues: by random cell movement, clusters should eventually meet and 
merge.26  

To predict the timescale of cluster merging across different cell ratios, we 
simulated cluster formation with the particle-based model and tracked the number and 
size of clusters over time. This data shows there is an initial sorting period after which 
the number of clusters remains relatively stable, with slow decreases in cluster numbers 
thereafter (Figure 4a). We found that while the aggregates with large percentages of 
strongly adhering cells (>60%) reach completely sorted states on experimental time 
scales, aggregates with small percentages (<60%) undergo consistent but slow sorting. 
Extrapolating the observed kinetics predicts time scale of complete sorting on the order 
of years (Figure S4). 

To evaluate this time scale of merging in our experimental system, we tracked 
structure formation over the course of many days. Surprisingly, most of the multi-cluster 
aggregates were stable after the initial sorting period and retained a consistent number 
of clusters for several days, at which point CHO cells began to lose fluorescence 
(Figure S2a). Structure stability was found to vary based on cell type ratio. For higher 
HEK to CHO ratios, the number of clusters at the end of the experiment, 66 hours, was 
similar to the number of clusters after an initial sorting period of 10 hours (Figure S2b). 
The number of clusters in aggregates with lower HEK percentages (10-30%) declined at 
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a steeper and steadier rate, especially as CHO cells began to lose fluorescence at 45 
hours. We observed that after 35 hours, aggregates of the lower HEK ratios (10-30%) 
were large enough that clusters expanded out of the region of view. Figure 4b shows 
clusters up to this time point, and the full 65 hour time course is shown in Figure S2b). 
As expected, the experimental and simulation results show very similar dynamics, 
though the exact transition point and number of clusters varies for intermediate ratios 
(40%-60%) because we are not adjusting the simulation parameters for a post-facto fit. 

One potential explanation of stability could be that clusters, although motile, 
simply diffuse too slowly to merge in a reasonable time frame. Glazier and Graner12 
simulated some partially sorted aggregates that were stable over long term, and found 
that strong surface energy between two cell types can block the diffusion of small 
clusters, which prevented cluster merging over a long timescale after an initial sorting 
period. To evaluate the speed of cluster diffusion in our system, we tracked the position 
and velocity of each cluster in incompletely sorted aggregates over time and measured 
their mean squared displacement (MSD). Figure S3 shows the average of these 
displacement values over time for each cluster across five replicate aggregates. This 
analysis tracked only clusters that did not merge with another cluster over the examined 
time period, with the reasoning that this would simplify velocity calculations and the 
minority of clusters that did merge in a specific time period would not significantly 
change the average velocity overall. The timescale for cluster merging was estimated 
by first measuring the average smallest distance to the nearest cluster (Figure 4c), and 
the effective diffusion coefficient, Deff, (Figure 4d, from the slopes of Figure S3). The 
ratio of Dmin2 to Deff (Figure 4e) represents the expected time scale on which a cluster 
could cover the distance to its nearest neighbor and come into contact and merge, 
based on their diffusion speed. Aggregates with 10%, 20%, and 30% HEK cells had an 
expected merging time of 5-10 hours, and aggregates with 40% and 50% were higher, 
between 15 hours and 40. This is consistent with the cluster tracking in Figure 4B and 
Figure S2b, which shows slow decreases in the number of clusters in 10%, 20%, and 
30% HEK aggregates and approximately constant numbers of clusters of 40% and 50% 
HEK aggregates over the time course. The stability of the incompletely sorted 
aggregates could therefore be explained by the slow speed of cluster diffusion relative 
to the distance between clusters.  

Together, these results demonstrate that on the time scale of days, the sorting 
dynamics that follow the initial sorting period are slow enough to not be observable in 
many cases. This property gives rise to structures that are stable over the course of 
biologically relevant time scales, and can therefore be relevant for establishing structure 
during development and in synthetic shape engineering.  
 
Discussion 
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We have shown that incomplete cell sorting can result in an array of different, 
engineerable structures with dynamic properties that are relevant on experimental and 
developmental time scales. We demonstrated both experimentally and computationally 
that the features of these structures can be precisely manipulated by tuning the ratio 
and total number of cells in the aggregate, and remain mostly stable for several days. 
This represents a step towards mapping the design space of stable self-assembling 
structures in developmental biology and in synthetic living structures. Although the 
stability of the structures on longer time scales is not certain, their persistence over the 
course of days suggests that other mechanisms could be used during such times to 
solidify transient patterned states so that they would become trapped and could no 
longer change their architecture. In particular, one could at the right time and amplitude 
increase cell-cell adhesion strength for both cell populations, decrease cell motility, or 
increase cortical contractility after the initial pattern formation. Predictable design might 
then be supported by extraction of an inverse model from results such as we have 
presented here. 

Further work is needed to access the full space of structures and features that 
can be made with cell sorting-based self-organization. Local spatial control of cell 
sorting, for example using optogenetics, would allow for more controllable heterogeneity 
in structures with specifically targeted regions of cell-cell adhesion. Additionally, our 
results suggest that controlling other features in addition to cell-cell adhesion, including 
tensile forces and surface tension, which influence sorting in vivo27, would likely also 
allow for control over sorted structures. Finer temporal control of cell sorting might allow 
for multi-step assembly where one feature builds on another, for example by 
establishing multiple adhesive layers of cells, potentially using synthetic adhesion 
toolboxes like those developed in the recent work of Glass and Riedel-Kruse9. 
Ultimately, with multiple cell types and spatiotemporally controlled self-assembly, it may 
be possible to recreate and control the robustness and complexity of cell-sorting-
influenced biological patterns, like the patterning of zebrafish stripes28 or generation of 
regular hair follicles29. Controlled pattern formation is then likely to be useful in a range 
of tissue engineering applications, such as construction of organoids or culturing of 
patient-derived grafts, in which the ratio of cell types being combined can be controlled. 

As we demonstrated, the protocols for the design of synthetic tissues can 
successfully be informed by computational simulations, which often provide simple and 
robust rules for the control of relevant parameters. Moreover, the coherence between 
simulation and experiments and the conclusions of prior theoretical work12,14,16,17 both 
suggest that these results are likely to be transferrable to any other mixture of strains 
with highly differentiated adhesion levels, given characterization of the relevant 
adhesion parameters. It is therefore expected that these protocols will continue to be 
complemented by computational models, which will need to be improved by including 
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more realistic and detailed descriptions of cell-cell interactions. This could be done by 
employing models that describe tissues at the level of individual-cell shapes, e.g., the 
vertex model30,31. In particular, using such an approach would address the role of cell-
scale activity that could give rise to a variety of cell behaviors, e.g., cell motility, cell 
proliferation and death, and active cell-shape changes. These phenomena are known to 
influence overall tissue fluidity32,33,34,35 and could therefore be used as additional 
mechanisms contributing to the guided design of shapes. 

 
 
Experimental Procedures 
 
Resource Availability 
 
Lead Contact  
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by the Lead Contact, Jesse Tordoff (jessetordoff@gmail.com).  
 
Materials Availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
The software generated during this study is available at our github repository, 
https://github.com/TASBE/TASBEImageAnalytics.  
 
Cell Lines and Culturing 
CHO (sex: female) and HEK (sex: female) cells referred to in this work are CHO K1 
cells genomically integrated with expression of eYFP and a Bxb1 integration site at the 
AAVS1 locus and HEK293FT genomically integrated with expression of eYFP and a 
Bxb1 integration site at the Rosa B1 locus, obtained from Duportet et al36. Cells were 
cultured at 37˚C and 5% CO2 in Dulbecco’s Modified Eagle Media supplemented with 
10% fetal bovine serum and 1% non-essential amino acids. To make them fluoresce 
blue, Bxb1 CHO cells were co-transfected with 300ng of a pHef1a-tagBFP plasmid with 
a Bxb1 recognition site and puromycin resistance gene and 300ng of Bxb1 expression 
vector. Puromycin was added 3 days after transfection and puro selection continued for 
approximately two weeks, during which media was changed and cells were passaged 
as needed. The HEK cells obtained from Duportet et alError! Bookmark not defined. expressed 
eYFP, and were used without further modification. 
 
Self-propelled particle model 
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Our model is a two dimensional model based on the Vicsek model of self-
propelled disk-like particles23. Within this description, the collective cellular behavior is 
described by simple rules of local interaction between neighboring cells. In particular, 
cells are assumed to move with velocity  !$ = !"(ABC #$	,CEF #$	), where !" is the constant 
magnitude of velocity, and #$ is the polar angle defining the direction of motion. 
Following previously proposed extensions of the original Vicsek model, we assume that 
the direction of motion of cell i, #$, instantaneously aligns with the net force %$ acting on 
the cell12,13,24 such that #$(>) = GH;	[%$(>)]. Positions of cells H$ are then updated as  

H$(> + ∆>) = H$(>) + !$(>)∆>, 
where with no loss of generality, we set ∆> = 1. Per time step, cells are allowed to move 
only by a small fraction of their size, which constrains the magnitude of velocity !"; here 
!" = 0.05. 

Cells, modeled as disks with unit diameter and experience the overall force 

%$ =L
()$

*$( + *$
(-./), 

where *$(  is the pairwise intercellular force between cells i and j, whereas *$
(-./) is the 

external force that captures combined effects of the gravity and curvature of the 
underlying surface. The force *$( depends on the intercellular pairwise distance MH$(M, 
where H$( = H( − H$, whereas *$

(-./) depends only on the position of the cell in question (i). 
All forces are measured in units of mg, where m and g are the cell mass and the 
gravitational acceleration, respectively.  

At cell-cell distances shorter than the cell diameter (MH$(M < 1), *$( 	describes short-
range hard-core repulsion due to excluded volume. In particular, *$( = −2OPH$(/MH$(M, 
where 2OP = 10Q. Next, mid-range attraction due to cell-cell adhesion is described by 
cell-type-dependent adhesion strength 2$( ∈ {233, 244, 234}, such that within the 
adhesion range (1 < MH$(M < H"), 

*$( = 2$(UMH$(M − H-V
WXY

MWXYM
+ Z[\$(, 

where H" = 1.6 and H- = 1.01 are the adhesion range and the equilibrium intercellular 
distance, respectively. The random pairwise force Z[\$(  acts due to noise at the cell 
cortex level; here [\$(  is a random unit vector and Z is the magnitude of the noise. 
Pairwise forces obey Newton's III law of motion and therefore [\$( = −[\$( . 

A static two-dimensional force field *$
(-./)drives cells towards the center of the 

simulation domain, mimicking the experimentally observed persistent cellular 
movements toward the bottom of the plate. In particular, *$

(-./) = −Ĥ$ℎ`/[1 + (ℎ`)4], 
where ℎ(r) is the height profile of the plate, Ĥ$ = H$/|H$| and ℎ′ = cℎ/cH. In our model, the 
profile is approximated by a hemispherical well with the radius d = 325 such that 
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*$
(-./) = −(H$/d)f1 − (|H$|/d)4. The model was implemented in C++. Typical simulations 

ran for about half a day in real time. 
 

Parameter Value Units 

instantaneous 
cell velocity !" 

0.05 1/∆> 

strength of 
hard-core 

repulsion 2OP 

104 mg 

adhesion 
range H" 

1.6 1 

equilibrium 
cell-cell 
distance 

1.01 1 

radius of the 
plate 

325 1 

magnitude of 
the noise 

10 mg 

Table 1: Values of model (fixed) parameters used in simulations. These values were 
determined by varying them manually so as to minimize the mismatch with the 
experimental results.    
 
Structure formation assays 
To make 3D aggregates, adherent cells growing in tissue-culture-treated 10cm dishes 
were trypsinized with 2.5 mL trypsin for 5 minutes. Cells were sorted into ultra-low 
attachment 96-well plates with a BD FACSAria II flow cytometer at the Swanson 
Biotechnology Center Flow Cytometry Core Facility at MIT. Cells were gated on for 
positive eYFP or tagBFP expression. Immediately after FACS sorting, cells were mixed 
with gentle pipetting and spun with a centrifuge at 300rcf for 4 minutes. All cells were 
grown and assayed in DMEM supplemented with 10% FBS and 1% non-essential 
amino acids, with 200uL media per well.  
 
Microscopy and Image Analysis  
Aggregates were imaged with a Leica TCS SP5 II Confocal Laser Scanning Microscope 
in an incubation chamber at 37˚C at 5% CO2. Each image represents one Z slice 
through the approximate center of the aggregate, as measured by where the edges of 



13 
 

clusters were most crisply in focus. For the time lapse experiment, images were taken 
every 20 minutes over the course of 66 hours. At approximately hour 13, microscopy 
was stopped for 68 minutes to refocus on each well and restarted immediately. The 
image processing program FIJI was used to adjust image brightness and merge 
fluorescent channels. In order to quantify the cell clusters, we developed an image 
processing pipeline, described in37, which leverages FIJI38, a distribution of ImageJ39. 
The pipeline is built around the Particle Analyzer40 plugin for FIJI which is able to 
perform connected components on a binary image, grouping adjacent pixels into a 
single cluster. These clusters are filtered based on size, excluding anything smaller than 
350 um2. This was chosen as a threshold because it is much smaller than the area of a 
single cell and excluded small pixel-level noise. In order to create the binary mask that 
is input into the Particle Analyzer Plugin, the fluorescent images are thresholded. The 
thresholds are computed on the pixel intensity values for image channel corresponding 
to the fluorescent channel (i.e. for blue fluorescent images, only the blue intensity 
channel is used, for yellow the intensity channel is created by averaging the red and 
green intensity channels). In order to make this analysis easily repeatable, a processing 
script was created in Jython. This script allows the user to specify various configuration 
parameters, and is able to read Leica metadata to help setup the experiment. The 
cluster detection method was also developed into a custom TrackMate detector plugin 
to track the clusters over time to allow for diffusion analysis 
 
Diffusion-based estimation of merging time scale 
The effective diffusion coefficient of the clusters was calculated by finding the slope of 
the best fit line of the mean squared displacement across a sweep of cell ratios. To 
estimate the average distance a cluster would need to cover before hitting another 
cluster, we iterated through every pair of clusters in an aggregate and calculated their 
edge distance, as measured by the distance between their XY centers minus the 
lengths of their radii. We identified the smallest edge distance for each cluster and 
averaged it with all clusters of a given cell type ratio across 5 technical replicates.   
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Figure Titles and Legends 
 
Figure 1: Ratio of highly adhesive to less adhesive cells precisely controls pattern 
features. (A) Setup of 3D structure formation workflow. HEK and CHO cells were grown 
in 2D culture, trypsinized to a single cell suspension, and sorted with fluorescent 
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activated cell sorting (FACS) into round bottom ultra-low adherent plates. HEK cells are 
shown in yellow and CHO cells are shown in blue. (B) A ratio sweep of HEK cells 
(yellow) and CHO cells (blue). Aggregates were seeded at 7000 cells total and imaged 
after approximately 24 hours. Images show a confocal 2D central Z-slice of the 
aggregates. Columns represent technical replicates. (C) Quantification of all clusters 
across replicates in (B), with each point representing the area of a single cluster. The 
percent HEK label indicates the percent of HEK cells at t=0 when aggregates were 
seeded. Clusters less than 5% the area of the largest cluster in each aggregate are 
filtered out. (D) Quantification of the number of clusters in each aggregate in (B) 
according to the percent HEK cells. 
 
Figure 2: Phenomenological model of cell sorting captures structural behaviors.  
(A) Schematic of the model. Cells, represented by disks of two types (yellow and blue 
circles), move with velocity !$ along a direction defined by a polar angle #$. Cell-cell 
interactions are described by pairwise forces due to steric repulsion, adhesion, and 
random noise at the cell-cortex level. Additionally, cells experience an external force 
due to an effective 2D gravitational field (red arrow). (B) Heatmap showing number of 
clusters in 20:80 mixtures, > = 10@ after the beginning of sorting in adhesion strength 
parameter space (234,244) at fixed 233=30. Each box in the phase diagram represents a 
single simulation result. (C-F) Representative simulation snapshots of basic types of 
patterns found within the range of parameters explored in (B). (G) Mean cluster size and 
number of clusters of type-1 cells vs. fraction of type-2 cells at 233=30, 234=1, 244=5. 
Transition from single- to many-cluster regime occurs at fraction ≈0.4. Panel G shows 
results from a single representative set of runs. 
 
Figure 3: Adhesive subpopulation ratio and total cell number precisely control cluster 
features  
(A,B) Simulated results of the mean cluster size (A) and mean number of clusters (B) of 
aggregates at 233=30, 234=1, 244=5 and various cell-type ratios across different number 
of cells. Lines represent the average values of 5 simulations at > = 10@ and error bars 
represent the standard deviation between these values. (C,D) Experimental 
quantification of the cluster size (C) and mean number of clusters (D) of aggregates with 
various HEK to CHO ratios across different total cell numbers, as counted and seeded 
at t=0 and imaged at 24 hours across three technical replicates. Clusters less than 5% 
the area of the largest cluster in an aggregate are excluded. (C) Violin plots of each 
cluster across all replicates. Black bars represent the mean. (D) Total number of 
clusters in an aggregate at a given ratio for three technical replicates.  
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Figure 4: Incomplete sorting of highly adhesive cells and less adhesive cells creates 
long-term stable clusters. (A) A particle-based model simulation of cluster formation 
over time with parameters 233=30, 234=1, 244=5 in 1000 cells. Lines represent the 
mean number of clusters at various highly adhesive to less adhesive cell population 
ratios, averaged over 5 simulations. The shaded region indicates the standard deviation 
between these simulations. The x axis represents the number of hours in the simulation, 
scaled to time steps by a factor of 28,571-1 and starting at time step 5x105. This scaling 
was determined by calibrating by eye the time axis in panel A with that in panel B.  (B) 
Image analysis of experimental data of cluster formation over 35 hours. Lines represent 
the average over 5 replicates of the specified HEK:CHO ratio with 8000 cells in total, 
with the shaded region representing the standard deviations between replicates. 
Clusters less than 5% of the maximum cluster in an aggregate are excluded. (C) The 
average distance, Dmin, between a cluster and its nearest neighbor at different ratios of 
strongly to weakly adhesive cells. (D) The effective diffusion coefficient Deff of clusters 
across three time ranges. (E) The time predicted for a cluster to cover the average 
distance between itself and its nearest cluster neighbor, calculated as the ratio of Dmin2 
to Deff.  
 
 
Supplementary Videos 
 
Video 1: VID_0_perc_HEK 
Video 2: VID_10_perc_HEK 
Video 3: VID_30_perc_HEK 
Video 4: VID_60_perc_HEK 
Video 5: VID_90_perc_HEK 
Video 6: VID_100_perc_HEK 
 
Supplemental Video 1: 3D Z-Stacks of representative aggregate with 100% CHO cells, 
related to Figure 1. The aggregate was imaged approximately 24 hours after seeding 
using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells were 
seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings by 
first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
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Supplemental Video 2: 3D Z-Stacks of representative aggregate with approximately 
10% HEK cells, related to Figure 1. The aggregate was imaged approximately 24 hours 
after seeding using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells 
were seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings 
by first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
 
Supplemental Video 3: 3D Z-Stacks of representative aggregate with approximately 
30% HEK cells, related to Figure 1. The aggregate was imaged approximately 24 hours 
after seeding using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells 
were seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings 
by first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
 
Supplemental Video 4: 3D Z-Stacks of representative aggregate with approximately 
60% HEK cells, related to Figure 1. The aggregate was imaged approximately 24 hours 
after seeding using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells 
were seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings 
by first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
 
Supplemental Video 5: 3D Z-Stacks of representative aggregate with approximately 
90% HEK cells, related to Figure 1. The aggregate was imaged approximately 24 hours 
after seeding using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells 
were seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings 
by first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
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depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
 
Supplemental Video 6: 3D Z-Stacks of representative aggregate with 100% HEK cells, 
related to Figure 1. The aggregate was imaged approximately 24 hours after seeding 
using a Leica SP5 confocal microscope. In total, 7000 CHO and HEK cells were 
seeded. Z-slices were taken 5µm apart. Z-stacks were converted to 3D renderings by 
first converting them to point clouds, which were created by turning each pixel in the 
image into a 3D point. Using the microscope parameters to get the physical size and 
depth of a pixel, the X,Y,Z coordinates of each pixel in the image were transformed into 
microns. To remove background fluorescence, a manual color intensity threshold of 120 
was used (with colors being in the range of 0-255). Points were saved in a PLY file and 
visualized using CloudCompare41. Images are 1.55mm in width and 1.55 in length.  
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