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Abstract

According to the cognitive substrate hypothesis, humagl-int
ligence arises from the integration of specialist parts &na
mostly shared with other mammals. In order for such special-
ists to cooperate in novel situations, however, they musteag

on a system of signals that can describe aspects of the new sit
uation using relations between familiar elements. Thiepos

a problem because many signals can only be learned from ex-
perience, yet different specialists may experience thédamor
very different ways. This paper demonstrates that dideithu
learning of such signals is possible, and also that the appar
problem is actually a benefit, using a vision specialist and a
hearing specialist that together observe a simulatedviayr-
intersection. Using a heuristic method based on Allen’stim
relations, these two specialists agree on a set of composabl Figure 1: Everyday activities, like crossing the streeteof

signals, and some dynamics of the simulation are captured in jnqlve many different cognitive faculties and particutar
the differences in how the two specialists interpret signal
rangements of elements that have never before been seen.

Introduction

The cognitive substrate hypothesis asserts that our uhigue ~ Surprisingly, not only is distributed learning of such com-
man intelligence arises from the integration of speciglists ~ posable signals possible, but the differences betweeriedpec
that are mostly shared with other mammals. If we are to acist’s observations is actually a benefit. This is demonstrat
cept this hypothesis, then we must explain how such a team fsing a vision specialist and a hearing specialist thatthege
specialists might cope with the novelty that arises in edayy ~ observe a simulated four-way intersection. Using a hearist
activities. Even an apparently simple activity, like ciags method based on Allen’s time relations(Allen, 1983), the tw
the street, often involves many different cognitive faimslt ~Specialists agree on a set of composable signals, and dynam-
and a particular arrangement of elements that has nevenebefoics of the simulation (e.g. hearing an engine predicts a car
encountered. The scene in Figure 1, for example, requiregill soon be seen) are captured in the differences in how the
vision and hearing sensory data, social reasoning to decid#o specialists interpret signals.
whether the bus will yield, spatial reasoning to know which
crosswalk leads toward an unseen destination, language to i Related Work
terpret the construction signs, and so forth. The situaon The cognitive substrate hypothesis is based on recent work
complex enough that, although all of the elements are familin cognitive science. Infant studies show that humans are
iar, this particular arrangement has likely never beforenbe born with essentially the same cognitive faculties as other
encountered. mammals—language emerges later (Spelke, 2003). As we
Humans show remarkable competence and flexibility inmature, these faculties are integrated to produce uniduely
coping with such situations. If a cognitive substrate modeiman capabilities. For example, children develop the con-
is to do the same, then the specialists must share a system a#pt of number by combining three faculties—analog magni-
signals that can describe aspects of a novel situation using tude, parallel individuation, and sequence memorization—
lations between familiar elements. Since stoplights arsttbu  a standard developmental sequence (Carey, 2004). In anothe
are not built into our DNA, many of the signals likely need to example, human adults can reorient themselves to find a loca-
be invented and agreed upon by the specialists as they leation specified as a combination of two types of feature, color
about the world. and geometry, while children less than five years old and rats
Agreeing on signals may be challenging because differonly use geometry, a single feature, to reorient (Hermer &
ent specialists experience the world in qualitativelyatiéint ~ Spelke, 1996). An explicit statement of the hypothesisyglo
ways: the times when a bus is seen and the times when a bugth one proposal for a set of specialists, can be found in
is heard are related, but not at all the same. Distributegleagr (Cassimatis, 2006).
ment on a signal is an unsupervised learning problem with no Much research on cognitive architectures is compatible
clear distributional assumptions to lean on. Moreover,ynan with the cognitive substrate hypothesis. Architectureshsu
different potentially distracting elements are preserdrate = as SOAR (Wang & Laird, 2006), ACT-R (Anderson et al.,
and change on time scales spanning several orders of mago04), ICARUS (Langley & Choi, 2006), and EPIC (Kieras
nitude, from seconds (honking) to minutes (lights) to hours& Meyer, 1997), to name only a few, are constructed from a
(traffic jams) or even weeks (construction). set of specialists that cooperate to carry out cognitiviestas
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Figure 2: Experimental design: a simulated four-way inter-
section generates two streams of observations, one famnvisi
and one for hearing. Each stream is filtered to produce
stream of messages. A relation map in each specialist com-

pares the two message streams to discover predictiveomsati scales. Furthermore, some dynamics of the observed envi-
between its observations and message elements used by f@ment are captured as differences in how the two spesialis
other specialist. interpret a signal.

These experiments use a simple system consisting of a sim-

PolyScheme (Cassimatis, 2002) is notable for its expligit u Ulated four-way intersection observed by a vision spestiali

of the cognitive substrate hypothesis, and has been used &d @ hearing specialist (Figure 2). Within each specjaist
demonstrate that simple cognitive faculties can be integra filter turns each observation into a message describingpart
to perform computationally sophisticated reasoning (Eass the observation. Thg specialists exchange messages, which
matis, Bugajska, Dugas, Murugesan, & Bello, 2007). Thesé'® sets of token pairs, on a full-duplex channel. Finally, a
systems, however, investigate what integrated speciaiést relation map uses heuristic methods to detect predictiee re

accomplish, rather than how they might learn to communicatdons pairwise between elements in the incoming and outgo-
or to integrate. ing streams of messages.

Integration of different modes of input has also been ama- We stress that the details of the simulation or the special-
jor subject of study. Kohonen maps (Kohonen, 1989), forists should not be regarded as particularly important to the
example, can be used to organize multiple streams of inpufesign of this experiment. The simulation is simply a domain
into a low-dimensional similarity map. Coen’s slices (Cpen that is both readily familiar and exhibits complex behawbr
2006) and Roy's cross-modal approach (Roy, 1999) both exnultiple time-scales in two senses. As for the designs of the
tract symbols from similarities across a pair of input stiea  SPecialists: it is quite likely that more justifiable and teet
These approaches focus on identifying and segmenting irfR€rforming designs could be developed and applied to this
put, however, and do not produce representations that can ilestion. As yet, however, they have not, and the relatively
directly used for communicating relations between modesad hocdesigns used here are the result of exploration to de-
A notable exception is Minsky’s “Emotion Machine” pro- termine that the problem is solvable.
posal (Minsky, 2006), which is partially implemented in EM-
ONE (Singh, 2005) using stories as a basis for integration.

The problem of agreeing on signals has been studied fofFhe experiments use data generated from a simulated four-
homogeneous agents by the synthetic languages commuway intersection. We attempt to obtain realistic enough dy-
nity (Kirby, 2002b), generally on systems with small vocab-namics and sensory input by building the simulation with
ularies and slow convergence rates. Particularly notable iwell-established tools: dynamics are provided by the Open
Kirby’'s model of language invention through iterated léagh ~ Dynamics Engine, a well-established open source physics en
and accumulation of coincidence (Kirby, 1998, 2002a). Thisgine, and rendering is done with OpenGL and OpenAL, a
is closely related to work by Steels on grounded language astandard 3D graphics library and its companion 3D sound li-
quisition (Steels, 1996), by Yanco on self-configuring com-brary.
munication for mobile robots (Yanco, 1994), and Batali on The simulator produces scenes containing dozens of ob-
learning grammar in recurrent neural networks (Batali,200 jects: streets, sidewalks, buildings, the stoplight armbeis
Finally, | have applied these ideas to the cognitive sutestra ated poles and walk signals, cars, and people. These objects
domain for specialists with very similar inputs (Beal, 2602 all interact in many different ways at different time scales
2002a). and frequencies. For example, the stoplight follows an or-

. . dinary cycle, with a walk light and audible walk signal that
Experimental Design pedestrians push a button to request. Pedestrians have vary
A series of two-specialist experiments provides evidehaet ing temperaments, clothing, builds and ages, come singly or
distributed agreement on signals is possible despite lack an groups, often jaywalk, have conversations, meet friends
supervision, differences in observations, and varyingetim and change their plans, and flee from oncoming cars. Cars

gigure 3: Screenshot of the four-way intersection simatati

Simulated Environment
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Figure 5: Allen’s 13 time relations (Allen, 1983) compare
Figure 4: A fragment of visual observation containing the si intervals by comparing their start and end times.
lights of the stoplight (shown in close-up in (a)). This pont

contains 6 objects, 20 features, and 44 relations (b). A full Name Time Relations
bservation contains many more BVOSDFEF dsorb
0 y . EQUAL R
SUBCLASS +++ + -
SEQUENCE St -
have varying colors, models, driving skill and personality CAUSE Sttt - -
make right turns on red, yield on left turns, run some yel- ENABLE IR
g Y , y DISABLE e

low and occasional red lights, negotiate right of way, honk
when frustrated, and usually drive defensively. The simulaFigure 6: A specialist’s relation map heuristically intes{s

tor also includes accidents, emergency vehicles, a dadlecy the 13 time relations (identified by their first letters, irses
and more. Screenshots from the simulation are shown in Fign lower case) as positive, negative, or neutral evidenee re
ure 3. garding 11 predictive relations: the 6 above and the ingerse
Observations of all but symmetricEQUAL .

Each specialist receives a stream of observations from the

same fixed position and orientation, Scraped from the S|mtllter The flat filter takes an observation and turns it
ulator at some fixed sampling rate. Each observation is a lidhto @ list of the elements it contains, each marked with
of things with properties and relations to one another. Fothe same placeholder marker. Thus the existence of re-
example, a car may be reported to the vision specialist as lations is reported but their content is not.  For ex-
thing that looks like a car, occupies a small part of the visua@mple, a blue sky above a red car would be encoded
field, is approximately red, is moving to the right, is aboveas{(aboves), (bluge),(car,e), (red,s), (skye)}, losing the
something that looks like a road, and so on. information about which object is above which.

A hearing observation is a list of sources with binary fea- The focus filter designate$ simulator objects as foci
tures describing their type, direction, and loudness. Aalis Of attention, shifting these foci with a heuristic mechamis
observation is a graph of visible objects and their relation that balances reflexive tracking and joint attention (descr
(above/below, left/right, forward/back, and contactygpbi-  fully in (Beal, 2007)). The filter then sends messages con-
nary features for each object that describe its type, csipe, ~ taining the parts of an observation that directly connect to
and motion. Figure 4 shows an example fragment of a visudoCi shared by both specialists. Features of a focus are
observation. For both senses, segmentation and categoriZz&arked focus, and a relationr between a focus and an-
tion is short-circuited using rendering information frohet ~ other object is encoded by marking features of the other ob-

simulator. ject with ry. For example, a red car beneath a blue sky,
_ with the red car as focus number two, would be encoded as
Filter {(blue above), (car, focus), (red, focus), (skyabove)}.

Each specialist contains a filter that turns observationﬁ

into messages, where a message is an unordered set o

(featuremarker) ordered pairs. Such messages can encodEach specialist's relation map compares incoming and out-

a relation between two objects by pairing each object’s feagoing message sequences to find a set of pairwise predictive

tures with a marker for its role in the relation. The messageselations between features in the specialist’'s obsematnd

produced by the filter are then transmitted to the other spetokens in the signals it receives. We produce agreement be-

cialist, remapping features and markers consistently teta stween specialists trivially by having the relation mapsatre

of arbitrary tokens in order to prevent aaypriori structure  the two sequences symmetrically.

from affecting interpretation. The relation map uses heuristic methods (detailed fully in
Experiments use either a flat filter or a shared-focugBeal, 2007)) to search for 11 feature/token relations,- con

leation Map



sidering every possible pairing and relation in paralleheT steps<adun

streams are interpreted in a time-scale invariant manner by person
using Allen’s time relations(Allen, 1983) (shown in Figuie ~70db———————mid-sized
to compare intervals when a feature or token is present in ~60d small
consecutive messages. These time relations are then inter- driving car
preted heuristically as evidence for or against predictia- engin dark

tions (Figure 6) and independence of evidence increased by n—front sedan
only considering the first time relation followinggEFORE very small

time relation, which indicates an interval where neither-fe
ture nor token is present. Evidence is accumulated using Bigure 7: The focus filter produces three clusters of strpng|
simple incremental strength measure: starting at zerad; posassociated features.
tive evidence shifts strength up 1, negative shifts it down 2
rails at +50 and -50 prevent over-saturation, and the oglati
is considered true whenever the strength is at least 10.
Only EQUAL relations represent a direct translation be-
tween specialists. Any other predictive relation is a dis-
tributed representation of a cross-specialist relatiawéen
features: although each specialist acquires the relatiibmin
a specialist it connects the feature to a token with no initere
semantics. When a message containing such tokens is s
between specialists, its interpretation is thus effefigestep
of rule-based reasoning using these cross-specialisiometa
For example, if the predictive relatidbAUSE connects en-
gine sounds to seeing a car, then a message from the hearing

o . o _ ; Results and Analysis
specialist saying “An engine is to the left of the intersewti ) } y ) ) _
is interpreted by the vision specialist as “A car will appatr Analysis shows that the experimental data is consisteft wit

(double pedestrian activity). Each of the 30 runs laste@®,0
simulated seconds, taking observations once every 0.5 sec-
onds and exchanging messages using the flat filter. Predlictio
and relations were recorded as for the sampling rate data-se

Convergence:To test that the set of relations does even-
tually converge, a simulation was run starting at noon and
e(}ﬂntinuing for 20,000 simulated seconds, taking obseraati
once every 0.5 seconds and exchanging messages using the
flat filter. Prediction and relations were recorded as for the
sampling rate data-set.

the left of the intersection.” the desired result: rapid agreement on a set of signals that

can describe aspects of a new situation using relations be-
Experiments tween familiar elements. Furthermore, the differencesin i
Four sets of experimental data were collected. Collected pr terpretation between the two specialists (relations affiem
dictive relations are listed in full in (Beal, 2007). EQUAL) capture some dynamics of the simulation.

Content of Relations: To test whether meaningful rela- ~ Meaningful relations are acquired even when using the fo-
tions are learned, two simulations were run, each starting &Us filter, which discards a large, shifting portion of the ob
noon, running for 5,000 simulated seconds, and taking ebsefervations. The relations describe phenomena occurring at
vations every 0.5 seconds. For the first run, messages wek@riable lengths over a wide variety of time scales. Finally
exchanged using the flat filter; for the second run, messagé¥ither sampling rate nor activity level makes a significant
were exchanged using the focus filter. The number of predicdifference in the speed of acquisition or the type or useful-
tive relations acquired by each specialist was recorderyeve ness of relations acquired.

100 observations; after each run, each specialist’s finaifse ~ Content of Relations: In the flat filter content run, the
predictive relations was recorded. specialists learn identical sets of 156 relations on 91 fea-

Variation in Sampling Rate: To test whether the results ture/token pairs, out of a possible 15576 relations on 1416
are dependent on sampling rate, ten simulations were ruairs. All six types of relation are represented among thée 15
each starting at noon and running for 5,000 simulated sedearned: there are 7BNABLE relations, 47SUBCLASS
onds. Each run was observed at four different rates—0.5, 1.@elations, 18EQUAL relations, 9DISABLE relations, 2
1.5, and 2.0 seconds—and messages exchanged using the fffUSE and 2SEQUENCE relations. Of these, only 6 are
filter. After each observation was processed, the set of reof dubious correctness, while the rest capture valid sitoula
lations was used to predict which features would appear ostructure and dynamics, including:
disappear in the next observation, and the cumulative numbe _— . . .
of unpredicted transitions recorded every 1,000 obsemsti e The walk light is equivalent to the audible walk signal.
Predictive relations were reqor_ded as before, and f_or_tb’e fir ¢ The “don’t walk” light is followed by the audible walk sig-
run at each rate, each specialist’s final set of predictilze re nal, then disappears.
tions was recorded.

Variation in Extrinsic Activity: To test whether the re- e A moderately loud sound is always followed by the appear-
sults are dependent on extrinsic activity, ten simulativese ance of a car, and sometimes the car subclasses truck, van,
run for each of three different start times: midnight (1/80 c or SUV. The sound often leads to motion away from the
and pedestrian activity), 8am (double car activity), anth3p  observer (the car crossing the intersection).
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Figure 8: Over time, the number of unpredicted transitisesds downwards, as shown by the linear regression on eégh da
set. Neither sampling rate nor extrinsic activity has aiicemt effect on percentage rate of improvement.

e Cars are always moderately loud. number of unpredicted transitions trends downward in every
S S case, and although the trend lines are different, the naise i
e When the walk light is visible, engine idling is heard. the measure means that there is no significant difference ob-

L ... served in the percentage rate of improvement, either betwee
Engine idling is only heard when there are are cars visible, L . o
Specialists or between different conditions.
Learning Rate: During each run, there is an initial pause
while example begin to accumulate, followed by a rapid
We can thus see that the relations learned involve manglimb. Sampling rate has no significantimpact on the leanin
time spans, some short like the passage of a car through thiate (Figure 9(a)). Extrinsic activity has a small effecigtF
intersection, some moderate like stoplight signals, amieso ure 9(b)): the noon runs finish slightly larger than the mid-
fairly long like all the times when some car is audible. Thenight and 8am runs. This may hint that an intermediate rate
relations also involve both common features like hearing af activity is best for learning, but the significant diffece
car idle, which happens in 72.5% of the samples, and rarbetween the conditions is to small to base such a conclusion
ones like hearing the audible walk signal, which happens iron these results. The number of relations does not appear
only 5.5% of the samples. Moreover, these results are ndb grow indefinitely: the long recording plateaus at around
qualitatively affected by changes in sampling rate or extri 14,000 seconds (Figure 9(c)), though another late set df wea
sic activity: although the size of the final set varies (from aor rare relations might still be building up strength.
minimum of 97 to a maximum of 176) and the particulars of

Sounds directly in front come from a car.

the relations captured vary as well, all runs capture some im Conclusions
portant simulator structure and dynamics and acquire only ®ifferences between specialists in a cognitive substragein
handful of dubious relations. not make it hard for them to agree on expressive, compos-

In the focus filter content run, both specialists acquire arable signals. We have seen such learning demonstrated using
identical set of 448 relations. The greater number is lgrgel heuristic methods based on Allen’s time relation and a misio
due to breaking up the intervals when extremely commorspecialist and hearing specialist observing a simulatad fo
phenomena, like the sound of people walking, are presentvay intersection. Furthermore, the differences between th
The focus filter relations capture no cross-object dynamicswo specialists may be beneficial, as the predictive raiatio
consistent with the much reduced coverage of the messagessquired to connect their signals turn out to capture istere
but do capture a set of strongly associated features (ctethec ing structure and dynamics from the simulation.
by at least four relations) that form the three clusters show These experiments show that this apparently difficult prob-
in Figure 7. These clusters correspond roughly to cars, pedem is quite tractable. With more careful study—patrticlylar
ple, and things passing close to the observer, and offerea basf how joint attention and signal agreement can build off one
that a more sophisticated filter might use to guide croseaibj another—we may expect to see great improvement in the
relation discovery. quality of cross-specialist relations discovered. Theise d

Prediction Quality: The ability of relations to capture tributed representations are perhaps the most importat-di
simulator dynamics is also illustrated by their ability teep  tion for future exploration, as they may allow the automatio
dict changes in a specialist’s observations. Figure 8 stiovs of routine integration, dramatically simplifying the cans-
rate of unpredicted transitions over time for each spestiali tion of systems and models containing many specialist com-
under the various sampling and extrinsic activity condisio  ponents. If so, further study of this capability is impottaat
plus a linear regression for each data set to measure the treonly for the cognitive substrate hypothesis, which depémds
of improvement. Note that the measure is extremely noisytimately on integration, but for the broader field of cogreti
due to the long-duration variations in simulator behavidre  architectures and perhaps software engineering in general



Example of Relation Learning Convergence
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Figure 9: Relations are acquired rapidly following an alifpause. The rate is not affected significantly by samplaig (a)
and minimally by extrinsic activity (b). After long traingn the number of relations plateaus, appearing to convejge (
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