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Abstract

According to the cognitive substrate hypothesis, human intel-
ligence arises from the integration of specialist parts that are
mostly shared with other mammals. In order for such special-
ists to cooperate in novel situations, however, they must agree
on a system of signals that can describe aspects of the new sit-
uation using relations between familiar elements. This poses
a problem because many signals can only be learned from ex-
perience, yet different specialists may experience the world in
very different ways. This paper demonstrates that distributed
learning of such signals is possible, and also that the apparent
problem is actually a benefit, using a vision specialist and a
hearing specialist that together observe a simulated four-way
intersection. Using a heuristic method based on Allen’s time
relations, these two specialists agree on a set of composable
signals, and some dynamics of the simulation are captured in
the differences in how the two specialists interpret signals.

Introduction
The cognitive substrate hypothesis asserts that our uniquehu-
man intelligence arises from the integration of specialistparts
that are mostly shared with other mammals. If we are to ac-
cept this hypothesis, then we must explain how such a team of
specialists might cope with the novelty that arises in everyday
activities. Even an apparently simple activity, like crossing
the street, often involves many different cognitive faculties
and a particular arrangement of elements that has never before
encountered. The scene in Figure 1, for example, requires
vision and hearing sensory data, social reasoning to decide
whether the bus will yield, spatial reasoning to know which
crosswalk leads toward an unseen destination, language to in-
terpret the construction signs, and so forth. The situationis
complex enough that, although all of the elements are famil-
iar, this particular arrangement has likely never before been
encountered.

Humans show remarkable competence and flexibility in
coping with such situations. If a cognitive substrate model
is to do the same, then the specialists must share a system of
signals that can describe aspects of a novel situation usingre-
lations between familiar elements. Since stoplights and buses
are not built into our DNA, many of the signals likely need to
be invented and agreed upon by the specialists as they learn
about the world.

Agreeing on signals may be challenging because differ-
ent specialists experience the world in qualitatively different
ways: the times when a bus is seen and the times when a bus
is heard are related, but not at all the same. Distributed agree-
ment on a signal is an unsupervised learning problem with no
clear distributional assumptions to lean on. Moreover, many
different potentially distracting elements are present atonce
and change on time scales spanning several orders of mag-
nitude, from seconds (honking) to minutes (lights) to hours
(traffic jams) or even weeks (construction).

Figure 1: Everyday activities, like crossing the street, often
involve many different cognitive faculties and particularar-
rangements of elements that have never before been seen.

Surprisingly, not only is distributed learning of such com-
posable signals possible, but the differences between special-
ist’s observations is actually a benefit. This is demonstrated
using a vision specialist and a hearing specialist that together
observe a simulated four-way intersection. Using a heuristic
method based on Allen’s time relations(Allen, 1983), the two
specialists agree on a set of composable signals, and dynam-
ics of the simulation (e.g. hearing an engine predicts a car
will soon be seen) are captured in the differences in how the
two specialists interpret signals.

Related Work
The cognitive substrate hypothesis is based on recent work
in cognitive science. Infant studies show that humans are
born with essentially the same cognitive faculties as other
mammals—language emerges later (Spelke, 2003). As we
mature, these faculties are integrated to produce uniquelyhu-
man capabilities. For example, children develop the con-
cept of number by combining three faculties—analog magni-
tude, parallel individuation, and sequence memorization—in
a standard developmental sequence (Carey, 2004). In another
example, human adults can reorient themselves to find a loca-
tion specified as a combination of two types of feature, color
and geometry, while children less than five years old and rats
only use geometry, a single feature, to reorient (Hermer &
Spelke, 1996). An explicit statement of the hypothesis, along
with one proposal for a set of specialists, can be found in
(Cassimatis, 2006).

Much research on cognitive architectures is compatible
with the cognitive substrate hypothesis. Architectures such
as SOAR (Wang & Laird, 2006), ACT-R (Anderson et al.,
2004), ICARUS (Langley & Choi, 2006), and EPIC (Kieras
& Meyer, 1997), to name only a few, are constructed from a
set of specialists that cooperate to carry out cognitive tasks.
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Figure 2: Experimental design: a simulated four-way inter-
section generates two streams of observations, one for vision
and one for hearing. Each stream is filtered to produce a
stream of messages. A relation map in each specialist com-
pares the two message streams to discover predictive relations
between its observations and message elements used by the
other specialist.

PolyScheme (Cassimatis, 2002) is notable for its explicit use
of the cognitive substrate hypothesis, and has been used to
demonstrate that simple cognitive faculties can be integrated
to perform computationally sophisticated reasoning (Cassi-
matis, Bugajska, Dugas, Murugesan, & Bello, 2007). These
systems, however, investigate what integrated specialists can
accomplish, rather than how they might learn to communicate
or to integrate.

Integration of different modes of input has also been a ma-
jor subject of study. Kohonen maps (Kohonen, 1989), for
example, can be used to organize multiple streams of input
into a low-dimensional similarity map. Coen’s slices (Coen,
2006) and Roy’s cross-modal approach (Roy, 1999) both ex-
tract symbols from similarities across a pair of input streams.
These approaches focus on identifying and segmenting in-
put, however, and do not produce representations that can be
directly used for communicating relations between modes.
A notable exception is Minsky’s “Emotion Machine” pro-
posal (Minsky, 2006), which is partially implemented in EM-
ONE (Singh, 2005) using stories as a basis for integration.

The problem of agreeing on signals has been studied for
homogeneous agents by the synthetic languages commu-
nity (Kirby, 2002b), generally on systems with small vocab-
ularies and slow convergence rates. Particularly notable is
Kirby’s model of language invention through iterated learning
and accumulation of coincidence (Kirby, 1998, 2002a). This
is closely related to work by Steels on grounded language ac-
quisition (Steels, 1996), by Yanco on self-configuring com-
munication for mobile robots (Yanco, 1994), and Batali on
learning grammar in recurrent neural networks (Batali, 2002).
Finally, I have applied these ideas to the cognitive substrate
domain for specialists with very similar inputs (Beal, 2002b,
2002a).

Experimental Design
A series of two-specialist experiments provides evidence that
distributed agreement on signals is possible despite lack of
supervision, differences in observations, and varying time

Figure 3: Screenshot of the four-way intersection simulation

scales. Furthermore, some dynamics of the observed envi-
ronment are captured as differences in how the two specialists
interpret a signal.

These experiments use a simple system consisting of a sim-
ulated four-way intersection observed by a vision specialist
and a hearing specialist (Figure 2). Within each specialist, a
filter turns each observation into a message describing partof
the observation. The specialists exchange messages, which
are sets of token pairs, on a full-duplex channel. Finally, a
relation map uses heuristic methods to detect predictive rela-
tions pairwise between elements in the incoming and outgo-
ing streams of messages.

We stress that the details of the simulation or the special-
ists should not be regarded as particularly important to the
design of this experiment. The simulation is simply a domain
that is both readily familiar and exhibits complex behaviorat
multiple time-scales in two senses. As for the designs of the
specialists: it is quite likely that more justifiable and better
performing designs could be developed and applied to this
question. As yet, however, they have not, and the relatively
ad hocdesigns used here are the result of exploration to de-
termine that the problem is solvable.

Simulated Environment

The experiments use data generated from a simulated four-
way intersection. We attempt to obtain realistic enough dy-
namics and sensory input by building the simulation with
well-established tools: dynamics are provided by the Open
Dynamics Engine, a well-established open source physics en-
gine, and rendering is done with OpenGL and OpenAL, a
standard 3D graphics library and its companion 3D sound li-
brary.

The simulator produces scenes containing dozens of ob-
jects: streets, sidewalks, buildings, the stoplight and associ-
ated poles and walk signals, cars, and people. These objects
all interact in many different ways at different time scales
and frequencies. For example, the stoplight follows an or-
dinary cycle, with a walk light and audible walk signal that
pedestrians push a button to request. Pedestrians have vary-
ing temperaments, clothing, builds and ages, come singly or
in groups, often jaywalk, have conversations, meet friends
and change their plans, and flee from oncoming cars. Cars
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Figure 4: A fragment of visual observation containing the six
lights of the stoplight (shown in close-up in (a)). This portion
contains 6 objects, 20 features, and 44 relations (b). A full
observation contains many more.

have varying colors, models, driving skill and personality,
make right turns on red, yield on left turns, run some yel-
low and occasional red lights, negotiate right of way, honk
when frustrated, and usually drive defensively. The simula-
tor also includes accidents, emergency vehicles, a daily cycle,
and more. Screenshots from the simulation are shown in Fig-
ure 3.

Observations

Each specialist receives a stream of observations from the
same fixed position and orientation, scraped from the sim-
ulator at some fixed sampling rate. Each observation is a list
of things with properties and relations to one another. For
example, a car may be reported to the vision specialist as a
thing that looks like a car, occupies a small part of the visual
field, is approximately red, is moving to the right, is above
something that looks like a road, and so on.

A hearing observation is a list of sources with binary fea-
tures describing their type, direction, and loudness. A visual
observation is a graph of visible objects and their relations
(above/below, left/right, forward/back, and contact), plus bi-
nary features for each object that describe its type, color,size,
and motion. Figure 4 shows an example fragment of a visual
observation. For both senses, segmentation and categoriza-
tion is short-circuited using rendering information from the
simulator.

Filter

Each specialist contains a filter that turns observations
into messages, where a message is an unordered set of
( f eature,marker) ordered pairs. Such messages can encode
a relation between two objects by pairing each object’s fea-
tures with a marker for its role in the relation. The messages
produced by the filter are then transmitted to the other spe-
cialist, remapping features and markers consistently to a set
of arbitrary tokens in order to prevent anya priori structure
from affecting interpretation.

Experiments use either a flat filter or a shared-focus
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Figure 5: Allen’s 13 time relations (Allen, 1983) compare
intervals by comparing their start and end times.

Name Time Relations
BMOSDFEfdsomb

EQUAL - +++++++++ -
SUBCLASS +++ + -
SEQUENCE -++ ---
CAUSE -++ + - --
ENABLE ++++++--+--
DISABLE ++ - ---

Figure 6: A specialist’s relation map heuristically interprets
the 13 time relations (identified by their first letters, inverses
in lower case) as positive, negative, or neutral evidence re-
garding 11 predictive relations: the 6 above and the inverses
of all but symmetricEQUAL .

filter. The flat filter takes an observation and turns it
into a list of the elements it contains, each marked with
the same placeholder marker. Thus the existence of re-
lations is reported but their content is not. For ex-
ample, a blue sky above a red car would be encoded
as{(above,•),(blue,•),(car,•),(red,•),(sky,•)}, losing the
information about which object is above which.

The focus filter designatesf simulator objects as foci
of attention, shifting these foci with a heuristic mechanism
that balances reflexive tracking and joint attention (described
fully in (Beal, 2007)). The filter then sends messages con-
taining the parts of an observation that directly connect to
foci shared by both specialists. Features of a focus are
marked f ocusn and a relationr between a focus and an-
other object is encoded by marking features of the other ob-
ject with rn. For example, a red car beneath a blue sky,
with the red car as focus number two, would be encoded as
{(blue,above2),(car, f ocus2),(red, f ocus2),(sky,above2)}.

Relation Map

Each specialist’s relation map compares incoming and out-
going message sequences to find a set of pairwise predictive
relations between features in the specialist’s observations and
tokens in the signals it receives. We produce agreement be-
tween specialists trivially by having the relation maps treat
the two sequences symmetrically.

The relation map uses heuristic methods (detailed fully in
(Beal, 2007)) to search for 11 feature/token relations, con-



sidering every possible pairing and relation in parallel. The
streams are interpreted in a time-scale invariant manner by
using Allen’s time relations(Allen, 1983) (shown in Figure5)
to compare intervals when a feature or token is present in
consecutive messages. These time relations are then inter-
preted heuristically as evidence for or against predictiverela-
tions (Figure 6) and independence of evidence increased by
only considering the first time relation following aBEFORE
time relation, which indicates an interval where neither fea-
ture nor token is present. Evidence is accumulated using a
simple incremental strength measure: starting at zero, posi-
tive evidence shifts strength up 1, negative shifts it down 2,
rails at +50 and -50 prevent over-saturation, and the relation
is considered true whenever the strength is at least 10.

Only EQUAL relations represent a direct translation be-
tween specialists. Any other predictive relation is a dis-
tributed representation of a cross-specialist relation between
features: although each specialist acquires the relation,within
a specialist it connects the feature to a token with no inherent
semantics. When a message containing such tokens is sent
between specialists, its interpretation is thus effectively a step
of rule-based reasoning using these cross-specialist relations.
For example, if the predictive relationCAUSE connects en-
gine sounds to seeing a car, then a message from the hearing
specialist saying “An engine is to the left of the intersection”
is interpreted by the vision specialist as “A car will appearat
the left of the intersection.”

Experiments
Four sets of experimental data were collected. Collected pre-
dictive relations are listed in full in (Beal, 2007).

Content of Relations: To test whether meaningful rela-
tions are learned, two simulations were run, each starting at
noon, running for 5,000 simulated seconds, and taking obser-
vations every 0.5 seconds. For the first run, messages were
exchanged using the flat filter; for the second run, messages
were exchanged using the focus filter. The number of predic-
tive relations acquired by each specialist was recorded every
100 observations; after each run, each specialist’s final set of
predictive relations was recorded.

Variation in Sampling Rate: To test whether the results
are dependent on sampling rate, ten simulations were run,
each starting at noon and running for 5,000 simulated sec-
onds. Each run was observed at four different rates—0.5, 1.0,
1.5, and 2.0 seconds—and messages exchanged using the flat
filter. After each observation was processed, the set of re-
lations was used to predict which features would appear or
disappear in the next observation, and the cumulative number
of unpredicted transitions recorded every 1,000 observations.
Predictive relations were recorded as before, and for the first
run at each rate, each specialist’s final set of predictive rela-
tions was recorded.

Variation in Extrinsic Activity: To test whether the re-
sults are dependent on extrinsic activity, ten simulationswere
run for each of three different start times: midnight (1/10 car
and pedestrian activity), 8am (double car activity), and 3pm
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Figure 7: The focus filter produces three clusters of strongly
associated features.

(double pedestrian activity). Each of the 30 runs lasted 5,000
simulated seconds, taking observations once every 0.5 sec-
onds and exchanging messages using the flat filter. Prediction
and relations were recorded as for the sampling rate data-set.

Convergence:To test that the set of relations does even-
tually converge, a simulation was run starting at noon and
continuing for 20,000 simulated seconds, taking observations
once every 0.5 seconds and exchanging messages using the
flat filter. Prediction and relations were recorded as for the
sampling rate data-set.

Results and Analysis
Analysis shows that the experimental data is consistent with
the desired result: rapid agreement on a set of signals that
can describe aspects of a new situation using relations be-
tween familiar elements. Furthermore, the differences in in-
terpretation between the two specialists (relations otherthan
EQUAL ) capture some dynamics of the simulation.

Meaningful relations are acquired even when using the fo-
cus filter, which discards a large, shifting portion of the ob-
servations. The relations describe phenomena occurring at
variable lengths over a wide variety of time scales. Finally,
neither sampling rate nor activity level makes a significant
difference in the speed of acquisition or the type or useful-
ness of relations acquired.

Content of Relations: In the flat filter content run, the
specialists learn identical sets of 156 relations on 91 fea-
ture/token pairs, out of a possible 15576 relations on 1416
pairs. All six types of relation are represented among the 156
learned: there are 78ENABLE relations, 47SUBCLASS
relations, 18EQUAL relations, 9DISABLE relations, 2
CAUSE and 2SEQUENCE relations. Of these, only 6 are
of dubious correctness, while the rest capture valid simulator
structure and dynamics, including:

• The walk light is equivalent to the audible walk signal.

• The “don’t walk” light is followed by the audible walk sig-
nal, then disappears.

• A moderately loud sound is always followed by the appear-
ance of a car, and sometimes the car subclasses truck, van,
or SUV. The sound often leads to motion away from the
observer (the car crossing the intersection).
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Figure 8: Over time, the number of unpredicted transitions trends downwards, as shown by the linear regression on each data
set. Neither sampling rate nor extrinsic activity has a significant effect on percentage rate of improvement.

• Cars are always moderately loud.

• When the walk light is visible, engine idling is heard.

• Engine idling is only heard when there are are cars visible.

• Sounds directly in front come from a car.

We can thus see that the relations learned involve many
time spans, some short like the passage of a car through the
intersection, some moderate like stoplight signals, and some
fairly long like all the times when some car is audible. The
relations also involve both common features like hearing a
car idle, which happens in 72.5% of the samples, and rare
ones like hearing the audible walk signal, which happens in
only 5.5% of the samples. Moreover, these results are not
qualitatively affected by changes in sampling rate or extrin-
sic activity: although the size of the final set varies (from a
minimum of 97 to a maximum of 176) and the particulars of
the relations captured vary as well, all runs capture some im-
portant simulator structure and dynamics and acquire only a
handful of dubious relations.

In the focus filter content run, both specialists acquire an
identical set of 448 relations. The greater number is largely
due to breaking up the intervals when extremely common
phenomena, like the sound of people walking, are present.
The focus filter relations capture no cross-object dynamics,
consistent with the much reduced coverage of the messages,
but do capture a set of strongly associated features (connected
by at least four relations) that form the three clusters shown
in Figure 7. These clusters correspond roughly to cars, peo-
ple, and things passing close to the observer, and offer a base
that a more sophisticated filter might use to guide cross-object
relation discovery.

Prediction Quality: The ability of relations to capture
simulator dynamics is also illustrated by their ability to pre-
dict changes in a specialist’s observations. Figure 8 showsthe
rate of unpredicted transitions over time for each specialist
under the various sampling and extrinsic activity conditions,
plus a linear regression for each data set to measure the trend
of improvement. Note that the measure is extremely noisy,
due to the long-duration variations in simulator behavior.The

number of unpredicted transitions trends downward in every
case, and although the trend lines are different, the noise in
the measure means that there is no significant difference ob-
served in the percentage rate of improvement, either between
specialists or between different conditions.

Learning Rate: During each run, there is an initial pause
while example begin to accumulate, followed by a rapid
climb. Sampling rate has no significant impact on the learning
rate (Figure 9(a)). Extrinsic activity has a small effect (Fig-
ure 9(b)): the noon runs finish slightly larger than the mid-
night and 8am runs. This may hint that an intermediate rate
of activity is best for learning, but the significant difference
between the conditions is to small to base such a conclusion
on these results. The number of relations does not appear
to grow indefinitely: the long recording plateaus at around
14,000 seconds (Figure 9(c)), though another late set of weak
or rare relations might still be building up strength.

Conclusions
Differences between specialists in a cognitive substrate need
not make it hard for them to agree on expressive, compos-
able signals. We have seen such learning demonstrated using
heuristic methods based on Allen’s time relation and a vision
specialist and hearing specialist observing a simulated four-
way intersection. Furthermore, the differences between the
two specialists may be beneficial, as the predictive relations
acquired to connect their signals turn out to capture interest-
ing structure and dynamics from the simulation.

These experiments show that this apparently difficult prob-
lem is quite tractable. With more careful study—particularly
of how joint attention and signal agreement can build off one
another—we may expect to see great improvement in the
quality of cross-specialist relations discovered. These dis-
tributed representations are perhaps the most important direc-
tion for future exploration, as they may allow the automation
of routine integration, dramatically simplifying the construc-
tion of systems and models containing many specialist com-
ponents. If so, further study of this capability is important not
only for the cognitive substrate hypothesis, which dependsin-
timately on integration, but for the broader field of cognitive
architectures and perhaps software engineering in general.
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Figure 9: Relations are acquired rapidly following an initial pause. The rate is not affected significantly by sampling rate (a)
and minimally by extrinsic activity (b). After long training, the number of relations plateaus, appearing to converge (c).
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