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Through field calculus constructs and building-block APIs, 

aggregate programming could help unlock the IoT’s true 

potential by allowing complex distributed services to be 

specified succinctly and by enabling such services to be safely 

encapsulated, modulated, and composed with one another.

The Internet of Things (IoT) is ushering in a dra-
matic increase in the number and variety of 
networked objects. Personal smart devices, 
vehicular control systems, intelligent public 

displays, drones, electronic tags, and all types of sen-
sors pervade our everyday working and living envi-
ronments. As Figure 1 shows, proximity-based interac-
tions between neighboring devices play a major role in 
IoT visions, whether intermediated by fixed networks1 
or using peer-to-peer communications,2 which lower 
latency and increase resilience to inadequate infrastruc-
ture during, for example, mass public events or civic 
emergencies. But are software development methods 
ready to support such complex and large-scale interac-
tions in an open and ever-changing environment?

Traditionally, the basic unit of computing has been an 
individual device, only incidentally connected to the phys-
ical world through inputs and outputs. This legacy con-
tinues to inform development tools and methodologies, 

causing many aspects of device interaction—efficient 
and reliable communication, robust coordination, com-
position of capabilities, search for appropriate cooper-
ating peers, and so on—to become closely entangled in 
the implementation of distributed applications. When 
such applications grow in complexity, they tend to suffer 
from design problems, lack of modularity and reusability, 
deployment difficulties, and test and maintenance issues.

Aggregate programming provides an alternative that 
dramatically simplifies the design, creation, and main-
tenance of complex IoT software systems. With this 
technique, the basic unit of computing is no longer a 
single device but instead a cooperating collection of 
devices: details of their behavior, position, and number 
are largely abstracted away, replaced with a space- filling 
computational environment. Hence, the IoT paradigm of 
many heterogeneous devices becomes less a concern and 
more an opportunity to increase the quality— for exam-
ple, soundness, stability, and efficacy—of application 
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services. This is accomplished through 
a layered approach to programming 
complex services that builds on foun-
dational work on the composition of 
distributed systems as well as on gen-
eral mechanisms to provide robust and 
adaptive coordination, ultimately pro-
viding engineers with a relatively sim-
ple programming API that still implic-
itly guarantees safety and resilience.

Such a framework is particularly 
useful for large-scale scenarios with 
inadequate fixed network infrastruc-
ture, such as crowd management 
at large public gatherings. In these 
environments, opportunistic interac-
tions between devices such as people’s 
smartphones can smoothly support 
services including crowd detection, 
dispersal advice, and crowd-aware 
navigation. To illustrate the power 
of aggregate computing, we provide 
examples of how these crowd safety 
services can be implemented and com-
posed, empirically demonstrating 
the resulting services’ resilience and 
adaptivity using data gathered from 
an actual mass public event.

AGGREGATE PROGRAMMING
The widely recognized single-device 
viewpoint’s limits have motivated 
work on aggregate programming in 
many domains.3 Generally, the main 
strategies are making device inter-
action implicit (for example, TOTA4), 
composing geometric and topological 
constructions (for example, the Ori-
gami Shape Language5), automatically 
splitting computations for cloud-style 
execution (for example, MapReduce6), 
summarizing data over space–time 
regions and streaming it to other 
regions (for example, TinyDB7), and 
providing generalizable constructs for 
space–time computing (for example, 
Protelis8). The last two approaches are 

particularly well suited for the IoT, as 
they are explicitly designed for distrib-
uted operation in a physical environ-
ment with embedded devices.

The successes and pitfalls of these 
many prior efforts suggest some key 
observations about programming 
large-scale situated systems. First, 
mechanisms for robust coordination 
should be hidden “under the hood,” 
where programmers are not required 
to interact with them. Second, com-
position of modules and subsystems 
must be simple and transparent. 
Third, different subsystems need dif-
ferent coordination mechanisms for 
different regions and times.

Aggregate programming aims to 
address these issues using the follow-
ing three principles:

 › the “machine” being pro-
grammed is a region of the com-
putational environment whose 
specific details are abstracted 
away—perhaps even to a pure 
spatial continuum;

 › the program is specified as 
manipulation of data constructs 
with spatial and temporal extent 
across that region; and

 › these manipulations are 

actually executed by the individ-
ual devices in the region, using 
resilient coordination mech-
anisms and proximity-based 
interactions.

To illustrate the advantages of 
aggregate versus device-centric pro-
gramming, consider a service that 
leverages interactions among users’ 
smartphones to estimate crowd den-
sity and distribution. One compo-
nent service warns people of nearby 
regions where there is risk of panic or 
trampling, another provides advice on 
dispersing from such regions, and a 
third helps users navigate through the 
crowd while avoiding dangerous areas. 

As Figure 2a shows, a device- 
centric programmer must focus 
on the protocol for device interac-
tions while simultaneously reason-
ing about how local interactions 
will produce the desired complex 
global behavior. In contrast, as Fig-
ure 2b shows, an aggregate program-
mer naturally reasons in terms of 
incremental construction from 
continuum- like data structures and 
services. Crowd estimation outputs 
a distributed data structure—a com-
putational field4,9—mapping from 

FIGURE 1. In a world filled with smart networked objects, every device has the oppor-
tunity to wirelessly interact with other nearby devices, both mobile and stationary. Some 
of these interactions exploit fixed network infrastructure, but the vast majority involve a 
heterogeneous mixture of peers.



24 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

location to crowd density. This serves 
as an input for crowd-aware naviga-
tion, which outputs vectors of rec-
ommended travel, and for the warn-
ing function, which produces a map 
of warnings that are in turn an input 
for producing dispersal advice. From 
this composition of data structures 
and services, the protocol specifics 
can be generated automatically. By 
thus separating service composition 
from details of coordination and 
interaction protocols, aggregate pro-
gramming promotes the construc-
tion of more complex, reusable, and 
composable distributed services.

TOWARD AGGREGATE APIs
Aggregate programming hides the 
complexity of distributed coordina-
tion in IoT network environments 
using several layers of abstraction, 
as Figure 3 shows. The foundation of 
aggregate programming is field calcu-
lus,9 a core set of constructs modeling 

computation and interaction among 
large numbers of spatially embedded 
devices (in particular, we use Prote-
lis,8 a Java-based field calculus imple-
mentation with support for first-class 
aggregate functions). Upon this foun-
dation, we can identify key building 
blocks for resilient coordination, and 
then combine these to produce APIs 
for common application needs like 
sensing, decision, and action, creating 
a collective behavior API for transpar-
ent implementation of complex net-
worked services and applications.10

This framework enables the sim-
ple specification of complex, resil-
ient distributed systems. As this 
specification is realized, implicit 
details are made explicit: first, which 
resilient coordination operators are 
used; then, how those operators are 
implemented— how aggregate spec-
ification maps to actions by indi-
vidual IoT devices; and finally, how 
those devices actually implement 

capabilities like sensing, communi-
cation, and localization.

Field calculus constructs
Certain interaction patterns appear 
across many aggregate programming 
approaches. Field calculus9 captures 
these essential features in a tiny uni-
versal language suitable for mathe-
matical analysis. This layer (second 
lowest in Figure 3) is also where aggre-
gate programming interfaces with the 
open world of device infrastructure 
and nonaggregate software services 
(together comprising the lowest layer). 

The unifying abstraction of field cal-
culus is a field, inspired by physical con-
cepts like magnetic fields, which maps 
each networked device to some local 
value. In field calculus every expression, 
value, or variable is a field: for example, 
a collection of temperature sensors pro-
duces a field of ambient temperatures, 
smartphone accelerome ters produces 
a field of movement directions, and a 
notification application produces a field 
of messages displayed on phones.

Fields are built and manipulated 
using four program constructs:

 › Functions—b(e1,...en) applies 
function b to arguments e1...en. 
Such “built-in” functions are 
stateless mathematical, logical, 
or algorithmic functions, sen-
sors or actuators, or user-defined 
or imported library methods.

 › Dynamics—rep(x<-v) {s1;...;sn} 
defines a local state variable x 
initialized with value v and peri-
odically updated with the result 
of executing its body statements 
{s1;...;sn}, thereby defining a 
field that evolves over time.

 › Interaction—nbr(s) gathers a 
map at each device (actually, a 
field) from all neighbors as well 

(a)

(b)

Dispersal advice

Congestion-aware navigation

Dangerous density warning

Crowd estimation

Congestion-aware navigation

Dangerous density warning

Dispersal advice

Crowd estimation

FIGURE 2. Two approaches to programming for the Internet of Things (IoT)—in this case, 
a smartphone-hosted crowd safety service. (a) Traditional device-centric programming of 
distributed algorithms. (b) Aggregate programming, which enables algorithmic building 
blocks to be scoped and composed directly for the aggregate.
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as from itself to the latest value 
of s. Built-in “under the hood” 
functions then summarize such 
maps—for example, minHood(m) 
finds the minimum value in 
map m.

 › Restriction—if(e){s1;...;sn} 

else {s1';...;sm'} parti-
tions the network into two 
regions: where e is true, 
s1;...;sn is computed; else-
where, s1';...;sm' is computed 
instead. Importantly, partition 
implies that branches are encap-
sulated and cannot have effects 
outside their subspace.

Each construct can be interpreted 
as aggregate-level field manipulation 
or used by protocols for individual 
devices implementing such manipula-
tions. Field calculus is also universal,11 
supporting any causal, approximable 
space–time computation. As we will 
see, field calculus can express distrib-
uted services that are safely and pre-
dictably composed and modulated.

These constructs also support por-
tability, infrastructure independence, 
and interaction with nonaggregate 
services. In fact, aggregate program-
ming can incorporate any device or 
infrastructure implementing the con-
structs, including heterogeneous mix-
tures of devices with different sensor, 
actuator, computation, and commu-
nication capabilities. Likewise, com-
plementary nonaggregate software 
services, whether local or cloud based, 
can be integrated simply by importing 
their APIs into the aggregate program-
ming environment.8

Building blocks for 
resilient coordination
The next level of abstraction in the 
aggregate programming framework 

adds resilience, identifying a collec-
tion of general building-block opera-
tors for resilient coordination appli-
cations. This layer (middle in Figure 
3) consists of coordination mecha-
nisms that are self-stabilizing, mean-
ing they reactively adjust to changes 
in network structure or input values; 
are scalable to large networks; and 
preserve these resilience properties 
when composed with one another. 
Any service constructed from these 
building blocks is thus implicitly 
resilient as well.

One such collection of building 
blocks10 contains three generalized 
coordination operators plus field cal-
culus’ if and built-ins. The three oper-
ators are

 › G(source, init, metric, 

accumulate)—a “spreading” 

operation generalizing distance 
measurement, broadcast, and 
projection that executes two 
tasks: it first computes a field 
of shortest-path distances from 
a source region (indicated as a 
Boolean field) using the supplied 
metric, then propagates values 
up the distance gradient, begin-
ning with value initial and 
accumulating along the gradient 
with accumulate.

 › C(potential, accumulate, 

local, null)—accumulates 
information to the source down 
the gradient of a potential field. 
Beginning with an idempotent 
null, the local value is combined 
with “uphill” values using a 
commutative and associative 
function accumulate, producing 
a cumulative value at the source.

Built-ins

Sensors

Local functions Communication State Restriction
Actuators

Built-ins

summarize
average
regionMax
…

collectivePerception
collectiveSummary
managementRegions
 …

dangerousDensity
crowdWarning

crowdTracking
safeDispersal

Crowd management

distanceTo
broadcast
partition
…

timer
lowpass
recentTrue
…

Application 
code

Developer
APIs

Resilient 
coordination 

operators

Field
calculus

constructs

Device
capabilities

StateActionPerception

Collective behavior

C TG if

nbr rep if

FIGURE 3. Aggregate programming abstraction layers. The software and hardware 
capabilities of particular devices are used to implement aggregate-level field calcu-
lus constructs. These constructs are used to implement a limited set of building-block 
coordination operations with provable resilience properties, which are then wrapped and 
combined together to produce a user-friendly API for developing situated IoT systems.
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 › T(initial, floor, decay)—
flexible countdown with a poten-
tially time-varying rate: the 
function decay strictly decreases 
its input value, starting at 
 initial and stopping at floor.

These few operators are general 
enough to cover, individually or in 
combination, many of the common 
coordination patterns used in large-
scale systems. Implemented in field 
calculus (see, for example, Figure 4), 
these operators provide an expres-
sive programming environment with 
strong guarantees of resilience and 
scalability. Furthermore, the com-
posability proof is modular, allowing 
expansion of the operator collection by 
proving a new candidate operator that 
satisfies the same resilience properties 
as those already in the collection.

Pragmatic general-purpose APIs
To better meet day-to-day program-
ming needs, libraries developed using 
building-block operators can apply and 
combine the operators to form a prag-
matic, user-friendly API that retains 
the same properties. Such libraries 
form the penultimate layer in Figure 3, 
upon which application code is written. 

For example, many distributed 
action and information diffusion 
functions can be based on G. One such 
common computation estimates dis-
tance to one or more designated source 
devices, which can be implemented 
using G initialized to zero and a metric 

(nbrRange) of estimated device-to- 
device distance:

def distanceTo(source) {

  G(source, 0, () -> {nbrRange},  

        (v) -> {v + nbrRange})

}

Another common pattern, broad-
casting a value from a source, can be 
implemented:

def broadcast(source, value) {

  G(source, value, () ->  

        {nbrRange}, (v) -> {v})

}

Other G-based operations include 
Voronoi partition and a path forecast 
marking paths that cross an obstacle 
or region of interest.

Similarly, C supports functions re-
lated to information perception, such 
as accumulating the sum of all values 
of a variable in a region:

def summarize(sink, accumulate, 

local, null) {

  C(distanceTo(sink), accumulate,  

        local, null)

}

or, alternately, computing the vari-
able’s average or maximum.

Likewise, T enables functions of 
state and memory, such as remember-
ing a value until a specified timeout 
(relying on the dt built-in to track pas-
sage of time):

def limitedMemory(value, timeout) { 

  T([timeout, value], [0, false],

    (t) -> {[t.get(0) - dt,  

          t.get(1)]}).get(1)

}

or implementing a timer or a low-pass 
filter.

As with any other software library, 
these API functions can be further 
combined to create higher-level librar-
ies. For example, a summary shared 
throughout a region can be imple-
mented by applying broadcast to sum-
marize, and state and partition func-
tions can be combined to organize 
space into management regions by 
balanced partition into clusters.

These developer APIs form a prac-
tical interface for a typical engineer to 
develop IoT services using distributed 
coordination. Building APIs atop resil-
ient operators and field calculus con-
structs ensures that these services are 
also resilient and safely composable. 
In parallel, development at lower lay-
ers of the framework can improve and 
extend available coordination mecha-
nisms, improve efficiency of field cal-
culus abstractions, and improve inter-
face efficacy with particular device 
hardware or with nonaggregate appli-
cations and services. Layered aggre-
gate programming thus offers the 
prospect of an efficient software eco-
system for engineering distributed IoT 
services, analogous to existing ecosys-
tems for Web or cloud development.

EXAMPLE:  
ENGINEERING LARGE-SCALE, 
OPPORTUNISTIC CROWD 
SAFETY SERVICES
Field calculus and reusable building- 
block APIs can greatly simplify the 
construction and composition of resil-
ient applications for IoT scenarios. 

def G(source, initial, metric, accumulate) {

  rep(dv <- [Infinity, initial]) {

    mux(source) {

      [0, initial]

    } else {

      minHood([nbr(dv.get(0)) + metric.apply(),

               accumulate.apply(nbr(dv.get(1)))])

    }

  }.get(1)

}

FIGURE 4. Protelis implementation of operator G.
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On one hand, individual distributed 
services can be built simply by com-
posing API functions; on the other 
hand, the mathematical foundations 
of aggregate programming, particu-
larly restriction and distributed first-
class functions (the ability to pass 
and call functions just as any other 
kind of data), enable such services to 
be dynamically deployed, safely com-
posed, and preemptively modulated, 
similar to how threads and virtual-
ization enable the composition and 
modulation of services in individual 
machines and datacenters.

For example, consider how an IoT 
environment might provide crowd 
safety services at mass public events 
such as civic festivals, outdoor con-
certs, or marathons. The high con-
centration of people in constrained 
areas often creates emergent zones of 
dangerous overcrowding where even 
a small incident can create a panic 
or stampede that leads to injuries or 
deaths.12,13 Moreover, the large num-
ber of people and spatial extent often 
overwhelm the available local infra-
structure: cellphone networks drop 
calls, data communications become 
unreliable, public safety personnel 
cannot quickly attend to every inci-
dent, and so on. In an IoT environ-
ment, however, more people means 
more personal smart devices, which 
might coordinate with one another 
and other IoT devices embedded in 
their environment, requiring nei-
ther cloud services nor centrally 
deployed infrastructure.

Figure 5a shows an Alchemist14 
 simulation of such a crowd safety service 
running on 1,000  embedded station-
ary devices plus 1,479 mobile personal 
devices, each following a smartphone 
position trace collected at the 2013 
Vienna City Marathon.15 The devices 

(a)

(b)

(c)

FIGURE 5. Snapshots from an Alchemist simulation of a crowd safety service in an IoT 
environment on approximately 2,500 personal and embedded devices. (a) Restricted to 
run on personal devices (colored), the service detects regions of dangerous crowd density 
(red) and disseminates warnings to nearby devices (yellow). (b) Nondisruptive upgrade 
of the running service disseminates replacement code from injection points: devices 
running the old version only (pink) receive the new version and run encapsulated versions 
of both (purple) until the new version is ready to take over entirely (green). Note the spatial 
correlations in color, caused by the progressive spread of the new version outward from 
several points of injection (now centers of green regions). (c) An external policy composed 
with the running service prioritizes network resources (hotter colors are higher priority) 
near potential emergency situations for all devices, not just those running the service. 
Note the correspondence of hot regions in (c) with those in (a).
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communicate via  once- per-second 
asynchronous local broadcasts with a 
range of 100 meters.13,16

Our example uses a simple conser-
vative estimate of dangerous crowd-
ing via level of service (LoS) ratings,17 
with LoS D (>1.08 people/m2) indicat-
ing a crowd and LoS E (>2.17 people/
m2) in a group of at least 300 people 
indicating potentially dangerous den-
sity. Density is estimated as ρ = |nbrs|/
pπr2w, where |nbrs| counts neighbors 
within range r, p estimates the propor-
tion of people with a device running 
the app (about 0.5 percent of mara-
thon attendees), and w estimates the 
fraction of walkable space in the local 
urban environment.

Given this estimate, potential 
crowding danger can be detected 
and warnings disseminated robustly 
with just a few lines of Protelis code 
dynamically deployed and executed 
on individual devices by a middle-
ware app.8,9 The coordination code 
is realized using aggregate program-
ming API elements as shown in Fig-
ure 6. This short program is resilient 
and adaptive, enabling it to effectively 
estimate crowding (none, low, high) 
and distribute warnings while execut-
ing on numerous mobile devices. Fig-
ures 7a and 7b compare the number of 
crowded and warned devices against 

ideal values across a 15-minute simula-
tion: crowding level estimations track 
very closely to the true level of crowd-
ing, while warnings have a small 
overestimate, primarily due to brief 
persistence of warnings after devices 
leave a warned region.

Beyond resilience, aggregate pro-
gramming also supports the unantici-
pated composition of processes, a crit-
ical need in IoT environments. With 
our approach, a complex distributed 
service can be encapsulated and man-
aged as a single aggregate object that 
can be modulated and composed with 
other services.9 For example, crowd 
estimation can be wrapped with 
another service for nondisruptive 
distributed upgrades, which spreads 
a new version peer to peer from one 
or more devices where it is injected. 
The new version runs alongside the 
old version for some period of time, 
each safely encapsulated using field 
calculus’s restriction and alignment 
semantics, and switching over when 
some criterion is met—for example, 
a specified elapsed time. Figure 5b 
shows such an upgrade in progress. 
This allows a switchover from one 
version to another without disrupting 
services, as Figure 7c shows, and with-
out building any upgrade capability 
into the services.

Similarly, encapsulation allows 
management of service composition 
with dynamically specified policies. 
For example, Figure 5c shows the effect 
of a policy prioritizing crowd safety 
services near dangerously crowded 
situations. Again, the policy has been 
wrapped around distributed services 
not designed to support it, and further-
more acts not just on devices running 
crowd estimation but also on other 
nearby embedded devices, ensur-
ing that unrelated services on those 
devices do not interfere with emer-
gency communication requirements. 
Just as with upgrades and resilience, 
adopting an aggregate programming 
model simplifies the engineering and 
complex coordination of services in an 
open and dynamic IoT environment.

Through field calculus con-
structs and building-block 
APIs, aggregate programming 

could help unlock the IoT’s true poten-
tial by allowing complex distributed 
services to be specified succinctly, as 
well as by enabling such services to be 
safely encapsulated, modulated, and 
composed with one another.

Aggregate programming thus 
invites a fundamental change in how 
we think about engineering IoT sys-
tems, as well as a plethora of new 
investigations. First, hybrid models 
that take advantage of the comple-
mentary capabilities of aggregate pro-
gramming and cloud-based architec-
tures are needed. Security must also 
be considered, as IoT environments 
are open and dynamic, and involve 
many actors with different motiva-
tions and capabilities. In addition, 
building-block APIs need to be fur-
ther developed against real applica-
tions to ensure that they support a 

def dangerousDensity(p, r) {

  let mr = managementRegions(r*2, () -> { nbrRange });

  let danger = average(mr, densityEst(p, r)) > 2.17 &&

               summarize(mr, sum, 1 / p, 0) > 300;

  if(danger) { high } else { low }

}

def crowdTracking(p, r, t) {

  let crowdRgn = recentTrue(densityEst(p, r)>1.08, t);

   if(crowdRgn) { dangerousDensity(p, r) } else { none };

}

def crowdWarning(p, r, warn, t) {

  distanceTo(crowdTracking(p,r,t) == high) < warn

}

FIGURE 6. Protelis implementation of crowd estimation and warning dissemination.
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sufficiently wide range of IoT services. 
Finally, mechanisms for composition 
and modulation must be expanded 
into a general IoT “operating system,” 
including support on various devices 
and encapsulation methods created 
for integrating legacy applications. 
Together, these could lead toward a 
future where complex distributed sys-
tems are just as simple to engineer as 
individual computers. 
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