
22 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

COVER FEATURE ACTIVATING THE INTERNET OF THINGS

Jacob Beal, Raytheon BBN Technologies

Danilo Pianini and Mirko Viroli, University of Bologna

Through field calculus constructs and building-block APIs,

aggregate programming could help unlock the IoT’s true

potential by allowing complex distributed services to be

specified succinctly and by enabling such services to be safely

encapsulated, modulated, and composed with one another.

The Internet of Things (IoT) is ushering in a dra-
matic increase in the number and variety of
networked objects. Personal smart devices,
vehicular control systems, intelligent public

displays, drones, electronic tags, and all types of sen-
sors pervade our everyday working and living envi-
ronments. As Figure 1 shows, proximity-based interac-
tions between neighboring devices play a major role in
IoT visions, whether intermediated by fixed networks1
or using peer-to-peer communications,2 which lower
latency and increase resilience to inadequate infrastruc-
ture during, for example, mass public events or civic
emergencies. But are software development methods
ready to support such complex and large-scale interac-
tions in an open and ever-changing environment?

Traditionally, the basic unit of computing has been an
individual device, only incidentally connected to the phys-
ical world through inputs and outputs. This legacy con-
tinues to inform development tools and methodologies,

causing many aspects of device interaction—efficient
and reliable communication, robust coordination, com-
position of capabilities, search for appropriate cooper-
ating peers, and so on—to become closely entangled in
the implementation of distributed applications. When
such applications grow in complexity, they tend to suffer
from design problems, lack of modularity and reusability,
deployment difficulties, and test and maintenance issues.

Aggregate programming provides an alternative that
dramatically simplifies the design, creation, and main-
tenance of complex IoT software systems. With this
technique, the basic unit of computing is no longer a
single device but instead a cooperating collection of
devices: details of their behavior, position, and number
are largely abstracted away, replaced with a space- filling
computational environment. Hence, the IoT paradigm of
many heterogeneous devices becomes less a concern and
more an opportunity to increase the quality— for exam-
ple, soundness, stability, and efficacy—of application

Aggregate
Programming
for the Internet of Things

 S E P T E M B E R 2 0 1 5 23

services. This is accomplished through
a layered approach to programming
complex services that builds on foun-
dational work on the composition of
distributed systems as well as on gen-
eral mechanisms to provide robust and
adaptive coordination, ultimately pro-
viding engineers with a relatively sim-
ple programming API that still implic-
itly guarantees safety and resilience.

Such a framework is particularly
useful for large-scale scenarios with
inadequate fixed network infrastruc-
ture, such as crowd management
at large public gatherings. In these
environments, opportunistic interac-
tions between devices such as people’s
smartphones can smoothly support
services including crowd detection,
dispersal advice, and crowd-aware
navigation. To illustrate the power
of aggregate computing, we provide
examples of how these crowd safety
services can be implemented and com-
posed, empirically demonstrating
the resulting services’ resilience and
adaptivity using data gathered from
an actual mass public event.

AGGREGATE PROGRAMMING
The widely recognized single-device
viewpoint’s limits have motivated
work on aggregate programming in
many domains.3 Generally, the main
strategies are making device inter-
action implicit (for example, TOTA4),
composing geometric and topological
constructions (for example, the Ori-
gami Shape Language5), automatically
splitting computations for cloud-style
execution (for example, MapReduce6),
summarizing data over space–time
regions and streaming it to other
regions (for example, TinyDB7), and
providing generalizable constructs for
space–time computing (for example,
Protelis8). The last two approaches are

particularly well suited for the IoT, as
they are explicitly designed for distrib-
uted operation in a physical environ-
ment with embedded devices.

The successes and pitfalls of these
many prior efforts suggest some key
observations about programming
large-scale situated systems. First,
mechanisms for robust coordination
should be hidden “under the hood,”
where programmers are not required
to interact with them. Second, com-
position of modules and subsystems
must be simple and transparent.
Third, different subsystems need dif-
ferent coordination mechanisms for
different regions and times.

Aggregate programming aims to
address these issues using the follow-
ing three principles:

 › the “machine” being pro-
grammed is a region of the com-
putational environment whose
specific details are abstracted
away—perhaps even to a pure
spatial continuum;

 › the program is specified as
manipulation of data constructs
with spatial and temporal extent
across that region; and

 › these manipulations are

actually executed by the individ-
ual devices in the region, using
resilient coordination mech-
anisms and proximity-based
interactions.

To illustrate the advantages of
aggregate versus device-centric pro-
gramming, consider a service that
leverages interactions among users’
smartphones to estimate crowd den-
sity and distribution. One compo-
nent service warns people of nearby
regions where there is risk of panic or
trampling, another provides advice on
dispersing from such regions, and a
third helps users navigate through the
crowd while avoiding dangerous areas.

As Figure 2a shows, a device-
centric programmer must focus
on the protocol for device interac-
tions while simultaneously reason-
ing about how local interactions
will produce the desired complex
global behavior. In contrast, as Fig-
ure 2b shows, an aggregate program-
mer naturally reasons in terms of
incremental construction from
continuum- like data structures and
services. Crowd estimation outputs
a distributed data structure—a com-
putational field4,9—mapping from

FIGURE 1. In a world filled with smart networked objects, every device has the oppor-
tunity to wirelessly interact with other nearby devices, both mobile and stationary. Some
of these interactions exploit fixed network infrastructure, but the vast majority involve a
heterogeneous mixture of peers.

24 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

location to crowd density. This serves
as an input for crowd-aware naviga-
tion, which outputs vectors of rec-
ommended travel, and for the warn-
ing function, which produces a map
of warnings that are in turn an input
for producing dispersal advice. From
this composition of data structures
and services, the protocol specifics
can be generated automatically. By
thus separating service composition
from details of coordination and
interaction protocols, aggregate pro-
gramming promotes the construc-
tion of more complex, reusable, and
composable distributed services.

TOWARD AGGREGATE APIs
Aggregate programming hides the
complexity of distributed coordina-
tion in IoT network environments
using several layers of abstraction,
as Figure 3 shows. The foundation of
aggregate programming is field calcu-
lus,9 a core set of constructs modeling

computation and interaction among
large numbers of spatially embedded
devices (in particular, we use Prote-
lis,8 a Java-based field calculus imple-
mentation with support for first-class
aggregate functions). Upon this foun-
dation, we can identify key building
blocks for resilient coordination, and
then combine these to produce APIs
for common application needs like
sensing, decision, and action, creating
a collective behavior API for transpar-
ent implementation of complex net-
worked services and applications.10

This framework enables the sim-
ple specification of complex, resil-
ient distributed systems. As this
specification is realized, implicit
details are made explicit: first, which
resilient coordination operators are
used; then, how those operators are
implemented— how aggregate spec-
ification maps to actions by indi-
vidual IoT devices; and finally, how
those devices actually implement

capabilities like sensing, communi-
cation, and localization.

Field calculus constructs
Certain interaction patterns appear
across many aggregate programming
approaches. Field calculus9 captures
these essential features in a tiny uni-
versal language suitable for mathe-
matical analysis. This layer (second
lowest in Figure 3) is also where aggre-
gate programming interfaces with the
open world of device infrastructure
and nonaggregate software services
(together comprising the lowest layer).

The unifying abstraction of field cal-
culus is a field, inspired by physical con-
cepts like magnetic fields, which maps
each networked device to some local
value. In field calculus every expression,
value, or variable is a field: for example,
a collection of temperature sensors pro-
duces a field of ambient temperatures,
smartphone accelerome ters produces
a field of movement directions, and a
notification application produces a field
of messages displayed on phones.

Fields are built and manipulated
using four program constructs:

 › Functions—b(e1,...en) applies
function b to arguments e1...en.
Such “built-in” functions are
stateless mathematical, logical,
or algorithmic functions, sen-
sors or actuators, or user-defined
or imported library methods.

 › Dynamics—rep(x<-v) {s1;...;sn}
defines a local state variable x
initialized with value v and peri-
odically updated with the result
of executing its body statements
{s1;...;sn}, thereby defining a
field that evolves over time.

 › Interaction—nbr(s) gathers a
map at each device (actually, a
field) from all neighbors as well

(a)

(b)

Dispersal advice

Congestion-aware navigation

Dangerous density warning

Crowd estimation

Congestion-aware navigation

Dangerous density warning

Dispersal advice

Crowd estimation

FIGURE 2. Two approaches to programming for the Internet of Things (IoT)—in this case,
a smartphone-hosted crowd safety service. (a) Traditional device-centric programming of
distributed algorithms. (b) Aggregate programming, which enables algorithmic building
blocks to be scoped and composed directly for the aggregate.

 S E P T E M B E R 2 0 1 5 25

as from itself to the latest value
of s. Built-in “under the hood”
functions then summarize such
maps—for example, minHood(m)
finds the minimum value in
map m.

 › Restriction—if(e){s1;...;sn}

else {s1';...;sm'} parti-
tions the network into two
regions: where e is true,
s1;...;sn is computed; else-
where, s1';...;sm' is computed
instead. Importantly, partition
implies that branches are encap-
sulated and cannot have effects
outside their subspace.

Each construct can be interpreted
as aggregate-level field manipulation
or used by protocols for individual
devices implementing such manipula-
tions. Field calculus is also universal,11
supporting any causal, approximable
space–time computation. As we will
see, field calculus can express distrib-
uted services that are safely and pre-
dictably composed and modulated.

These constructs also support por-
tability, infrastructure independence,
and interaction with nonaggregate
services. In fact, aggregate program-
ming can incorporate any device or
infrastructure implementing the con-
structs, including heterogeneous mix-
tures of devices with different sensor,
actuator, computation, and commu-
nication capabilities. Likewise, com-
plementary nonaggregate software
services, whether local or cloud based,
can be integrated simply by importing
their APIs into the aggregate program-
ming environment.8

Building blocks for
resilient coordination
The next level of abstraction in the
aggregate programming framework

adds resilience, identifying a collec-
tion of general building-block opera-
tors for resilient coordination appli-
cations. This layer (middle in Figure
3) consists of coordination mecha-
nisms that are self-stabilizing, mean-
ing they reactively adjust to changes
in network structure or input values;
are scalable to large networks; and
preserve these resilience properties
when composed with one another.
Any service constructed from these
building blocks is thus implicitly
resilient as well.

One such collection of building
blocks10 contains three generalized
coordination operators plus field cal-
culus’ if and built-ins. The three oper-
ators are

 › G(source, init, metric,

accumulate)—a “spreading”

operation generalizing distance
measurement, broadcast, and
projection that executes two
tasks: it first computes a field
of shortest-path distances from
a source region (indicated as a
Boolean field) using the supplied
metric, then propagates values
up the distance gradient, begin-
ning with value initial and
accumulating along the gradient
with accumulate.

 › C(potential, accumulate,

local, null)—accumulates
information to the source down
the gradient of a potential field.
Beginning with an idempotent
null, the local value is combined
with “uphill” values using a
commutative and associative
function accumulate, producing
a cumulative value at the source.

Built-ins

Sensors

Local functions Communication State Restriction
Actuators

Built-ins

summarize
average
regionMax
…

collectivePerception
collectiveSummary
managementRegions
 …

dangerousDensity
crowdWarning

crowdTracking
safeDispersal

Crowd management

distanceTo
broadcast
partition
…

timer
lowpass
recentTrue
…

Application
code

Developer
APIs

Resilient
coordination

operators

Field
calculus

constructs

Device
capabilities

StateActionPerception

Collective behavior

C TG if

nbr rep if

FIGURE 3. Aggregate programming abstraction layers. The software and hardware
capabilities of particular devices are used to implement aggregate-level field calcu-
lus constructs. These constructs are used to implement a limited set of building-block
coordination operations with provable resilience properties, which are then wrapped and
combined together to produce a user-friendly API for developing situated IoT systems.

26 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

 › T(initial, floor, decay)—
flexible countdown with a poten-
tially time-varying rate: the
function decay strictly decreases
its input value, starting at
 initial and stopping at floor.

These few operators are general
enough to cover, individually or in
combination, many of the common
coordination patterns used in large-
scale systems. Implemented in field
calculus (see, for example, Figure 4),
these operators provide an expres-
sive programming environment with
strong guarantees of resilience and
scalability. Furthermore, the com-
posability proof is modular, allowing
expansion of the operator collection by
proving a new candidate operator that
satisfies the same resilience properties
as those already in the collection.

Pragmatic general-purpose APIs
To better meet day-to-day program-
ming needs, libraries developed using
building-block operators can apply and
combine the operators to form a prag-
matic, user-friendly API that retains
the same properties. Such libraries
form the penultimate layer in Figure 3,
upon which application code is written.

For example, many distributed
action and information diffusion
functions can be based on G. One such
common computation estimates dis-
tance to one or more designated source
devices, which can be implemented
using G initialized to zero and a metric

(nbrRange) of estimated device-to-
device distance:

def distanceTo(source) {

 G(source, 0, () -> {nbrRange},

 (v) -> {v + nbrRange})

}

Another common pattern, broad-
casting a value from a source, can be
implemented:

def broadcast(source, value) {

 G(source, value, () ->

 {nbrRange}, (v) -> {v})

}

Other G-based operations include
Voronoi partition and a path forecast
marking paths that cross an obstacle
or region of interest.

Similarly, C supports functions re-
lated to information perception, such
as accumulating the sum of all values
of a variable in a region:

def summarize(sink, accumulate,

local, null) {

 C(distanceTo(sink), accumulate,

 local, null)

}

or, alternately, computing the vari-
able’s average or maximum.

Likewise, T enables functions of
state and memory, such as remember-
ing a value until a specified timeout
(relying on the dt built-in to track pas-
sage of time):

def limitedMemory(value, timeout) {

 T([timeout, value], [0, false],

 (t) -> {[t.get(0) - dt,

 t.get(1)]}).get(1)

}

or implementing a timer or a low-pass
filter.

As with any other software library,
these API functions can be further
combined to create higher-level librar-
ies. For example, a summary shared
throughout a region can be imple-
mented by applying broadcast to sum-
marize, and state and partition func-
tions can be combined to organize
space into management regions by
balanced partition into clusters.

These developer APIs form a prac-
tical interface for a typical engineer to
develop IoT services using distributed
coordination. Building APIs atop resil-
ient operators and field calculus con-
structs ensures that these services are
also resilient and safely composable.
In parallel, development at lower lay-
ers of the framework can improve and
extend available coordination mecha-
nisms, improve efficiency of field cal-
culus abstractions, and improve inter-
face efficacy with particular device
hardware or with nonaggregate appli-
cations and services. Layered aggre-
gate programming thus offers the
prospect of an efficient software eco-
system for engineering distributed IoT
services, analogous to existing ecosys-
tems for Web or cloud development.

EXAMPLE:
ENGINEERING LARGE-SCALE,
OPPORTUNISTIC CROWD
SAFETY SERVICES
Field calculus and reusable building-
block APIs can greatly simplify the
construction and composition of resil-
ient applications for IoT scenarios.

def G(source, initial, metric, accumulate) {

 rep(dv <- [Infinity, initial]) {

 mux(source) {

 [0, initial]

 } else {

 minHood([nbr(dv.get(0)) + metric.apply(),

 accumulate.apply(nbr(dv.get(1)))])

 }

 }.get(1)

}

FIGURE 4. Protelis implementation of operator G.

 S E P T E M B E R 2 0 1 5 27

On one hand, individual distributed
services can be built simply by com-
posing API functions; on the other
hand, the mathematical foundations
of aggregate programming, particu-
larly restriction and distributed first-
class functions (the ability to pass
and call functions just as any other
kind of data), enable such services to
be dynamically deployed, safely com-
posed, and preemptively modulated,
similar to how threads and virtual-
ization enable the composition and
modulation of services in individual
machines and datacenters.

For example, consider how an IoT
environment might provide crowd
safety services at mass public events
such as civic festivals, outdoor con-
certs, or marathons. The high con-
centration of people in constrained
areas often creates emergent zones of
dangerous overcrowding where even
a small incident can create a panic
or stampede that leads to injuries or
deaths.12,13 Moreover, the large num-
ber of people and spatial extent often
overwhelm the available local infra-
structure: cellphone networks drop
calls, data communications become
unreliable, public safety personnel
cannot quickly attend to every inci-
dent, and so on. In an IoT environ-
ment, however, more people means
more personal smart devices, which
might coordinate with one another
and other IoT devices embedded in
their environment, requiring nei-
ther cloud services nor centrally
deployed infrastructure.

Figure 5a shows an Alchemist14
 simulation of such a crowd safety service
running on 1,000 embedded station-
ary devices plus 1,479 mobile personal
devices, each following a smartphone
position trace collected at the 2013
Vienna City Marathon.15 The devices

(a)

(b)

(c)

FIGURE 5. Snapshots from an Alchemist simulation of a crowd safety service in an IoT
environment on approximately 2,500 personal and embedded devices. (a) Restricted to
run on personal devices (colored), the service detects regions of dangerous crowd density
(red) and disseminates warnings to nearby devices (yellow). (b) Nondisruptive upgrade
of the running service disseminates replacement code from injection points: devices
running the old version only (pink) receive the new version and run encapsulated versions
of both (purple) until the new version is ready to take over entirely (green). Note the spatial
correlations in color, caused by the progressive spread of the new version outward from
several points of injection (now centers of green regions). (c) An external policy composed
with the running service prioritizes network resources (hotter colors are higher priority)
near potential emergency situations for all devices, not just those running the service.
Note the correspondence of hot regions in (c) with those in (a).

28 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

communicate via once- per-second
asynchronous local broadcasts with a
range of 100 meters.13,16

Our example uses a simple conser-
vative estimate of dangerous crowd-
ing via level of service (LoS) ratings,17
with LoS D (>1.08 people/m2) indicat-
ing a crowd and LoS E (>2.17 people/
m2) in a group of at least 300 people
indicating potentially dangerous den-
sity. Density is estimated as ρ = |nbrs|/
pπr2w, where |nbrs| counts neighbors
within range r, p estimates the propor-
tion of people with a device running
the app (about 0.5 percent of mara-
thon attendees), and w estimates the
fraction of walkable space in the local
urban environment.

Given this estimate, potential
crowding danger can be detected
and warnings disseminated robustly
with just a few lines of Protelis code
dynamically deployed and executed
on individual devices by a middle-
ware app.8,9 The coordination code
is realized using aggregate program-
ming API elements as shown in Fig-
ure 6. This short program is resilient
and adaptive, enabling it to effectively
estimate crowding (none, low, high)
and distribute warnings while execut-
ing on numerous mobile devices. Fig-
ures 7a and 7b compare the number of
crowded and warned devices against

ideal values across a 15-minute simula-
tion: crowding level estimations track
very closely to the true level of crowd-
ing, while warnings have a small
overestimate, primarily due to brief
persistence of warnings after devices
leave a warned region.

Beyond resilience, aggregate pro-
gramming also supports the unantici-
pated composition of processes, a crit-
ical need in IoT environments. With
our approach, a complex distributed
service can be encapsulated and man-
aged as a single aggregate object that
can be modulated and composed with
other services.9 For example, crowd
estimation can be wrapped with
another service for nondisruptive
distributed upgrades, which spreads
a new version peer to peer from one
or more devices where it is injected.
The new version runs alongside the
old version for some period of time,
each safely encapsulated using field
calculus’s restriction and alignment
semantics, and switching over when
some criterion is met—for example,
a specified elapsed time. Figure 5b
shows such an upgrade in progress.
This allows a switchover from one
version to another without disrupting
services, as Figure 7c shows, and with-
out building any upgrade capability
into the services.

Similarly, encapsulation allows
management of service composition
with dynamically specified policies.
For example, Figure 5c shows the effect
of a policy prioritizing crowd safety
services near dangerously crowded
situations. Again, the policy has been
wrapped around distributed services
not designed to support it, and further-
more acts not just on devices running
crowd estimation but also on other
nearby embedded devices, ensur-
ing that unrelated services on those
devices do not interfere with emer-
gency communication requirements.
Just as with upgrades and resilience,
adopting an aggregate programming
model simplifies the engineering and
complex coordination of services in an
open and dynamic IoT environment.

Through field calculus con-
structs and building-block
APIs, aggregate programming

could help unlock the IoT’s true poten-
tial by allowing complex distributed
services to be specified succinctly, as
well as by enabling such services to be
safely encapsulated, modulated, and
composed with one another.

Aggregate programming thus
invites a fundamental change in how
we think about engineering IoT sys-
tems, as well as a plethora of new
investigations. First, hybrid models
that take advantage of the comple-
mentary capabilities of aggregate pro-
gramming and cloud-based architec-
tures are needed. Security must also
be considered, as IoT environments
are open and dynamic, and involve
many actors with different motiva-
tions and capabilities. In addition,
building-block APIs need to be fur-
ther developed against real applica-
tions to ensure that they support a

def dangerousDensity(p, r) {

 let mr = managementRegions(r*2, () -> { nbrRange });

 let danger = average(mr, densityEst(p, r)) > 2.17 &&

 summarize(mr, sum, 1 / p, 0) > 300;

 if(danger) { high } else { low }

}

def crowdTracking(p, r, t) {

 let crowdRgn = recentTrue(densityEst(p, r)>1.08, t);

 if(crowdRgn) { dangerousDensity(p, r) } else { none };

}

def crowdWarning(p, r, warn, t) {

 distanceTo(crowdTracking(p,r,t) == high) < warn

}

FIGURE 6. Protelis implementation of crowd estimation and warning dissemination.

 S E P T E M B E R 2 0 1 5 29

sufficiently wide range of IoT services.
Finally, mechanisms for composition
and modulation must be expanded
into a general IoT “operating system,”
including support on various devices
and encapsulation methods created
for integrating legacy applications.
Together, these could lead toward a
future where complex distributed sys-
tems are just as simple to engineer as
individual computers.

ACKNOWLEDGMENTS
This work has been partially supported by
the EU FP7 project “SAPERE: Self-Aware
Pervasive Service Ecosystems” under con-
tract no. 256873 (Viroli), by the Italian
PRIN 2010/2011 project “CINA: Compo-
sitionality, Interaction, Negotiation, Au-
tonomicity” (Viroli), and by the United
States Air Force and the Defense Ad-
vanced Research Projects Agency under
contract no. FA8750-10-C-0242 (Beal). The
US government is authorized to reproduce
and distribute reprints for governmental
purposes notwithstanding any copyright
notation thereon. The views, opinions,
and/or findings contained in this article
are those of the author(s)/presenter(s) and
should not be interpreted as representing
the official views or policies of the Depart-
ment of Defense or the US government.
Approved for public release; distribution
is unlimited.

REFERENCES
1. L. Atzori, A. Iera, and G. Morabito,

“The Internet of Things: A Survey,”
Computer Networks, vol. 54, no. 15,
2010, pp. 2787–2805.

2. D. Miorandi et al., “Internet of Things:
Vision, Applications and Research
Challenges,” Ad Hoc Networks, vol. 10,
no. 7, 2012, pp. 1497–1516.

3. J. Beal et al., “Organizing the Aggre-
gate: Languages for Spatial Comput-
ing,” Formal and Practical Aspects of

Domain-Specific Languages: Recent
Developments, M. Mernik, ed., IGI
Global, 2013, pp. 436–501.

4. M. Mamei and F. Zambonelli, “Pro-
gramming Pervasive and Mobile
Computing Applications: The TOTA

0 5 10 15

0 5 10 15

0 5 10 15

1,500

1,000

500

0

1,500

1,000

500

0

1,500

1,000

500

0

Time (minutes)

Time (minutes)

Time (minutes)

Co
un

t
Co

un
t

Co
un

t

No crowd
Crowded
Dangerous

No warning
Warning

(a)

(b)

(c)

No process
Version 1
Version 2

FIGURE 7. Aggregate programming enables lightweight construction of resilient IoT ser-
vices, such as (a) distributed crowd estimation and (b) warnings of dangerous crowding.
Despite executing on numerous mobile devices, both services produce estimates (solid
lines) that track closely to the true values (dashed lines). (c) Aggregate-level manipulation
of distributed services further enables disruption-free upgrades of these services while
running: in this simulation, new versions of the services are injected at the 5-minute mark
(vertical dashed line), but both versions are encapsulated to run concurrently until the new
version is ready to take over smoothly from the old one, thereby ensuring no significant
disruption in either service.

30 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ACTIVATING THE INTERNET OF THINGS

Approach,” ACM Trans. Software
Eng. Methodology, vol. 18, no. 4,
2009, pp. 1–56.

5. R. Nagpal, “Programmable Self-
Assembly: Constructing Global
Shape Using Biologically-Inspired
Local Interactions and Origami
Mathematics,” PhD dissertation,
Dept. of Electrical Eng. and Com-
puter Science, MIT, 2001.

6. J. Dean and S. Ghemawat,
“MapReduce: Simplified Data Pro-
cessing on Large Clusters,” Comm.
ACM, vol. 51, no. 1, 2008, pp. 107–113.

7. S. Madden et al., “Supporting Aggre-
gate Queries over Ad-hoc Wireless
Sensor Networks,” Proc. 4th IEEE
Workshop Mobile Computing and Sys-
tems Applications (WMCSA 02), 2002,
pp. 49−58.

8. D. Pianini, M. Viroli, and J. Beal,
“Protelis: Practical Aggregate Pro-
gramming,” Proc. 30th Ann. ACM

Symp. Applied Computing (SAC 15),
2015, pp. 1846–1853.

9. F. Damiani et al., “Code Mobility Meets
Self-Organisation: A Higher- Order
Calculus of Computational Fields,” For-
mal Techniques for Distributed Objects,
Components, and Systems, S. Graf and
M. Viswanathan, eds., LNCS 9039,
Springer, 2015, pp. 113–128.

10. J. Beal and M. Viroli, “Building Blocks
for Aggregate Programming of
Self-Organising Applications,” Proc.
2nd Workshop Fundamentals of Collec-
tive Adaptive Systems (FoCAS 14), 2014,
pp. 8−13.

11. J. Beal, M. Viroli, and F. Damiani,
“Towards a Unified Model of Spatial
Computing,” Proc. 7th Spatial Comput-
ing Workshop (SCW 14), 2014; www
.spatial-computing.org/_media
/scw14/scw2014_p5.pdf.

12. G.K. Still, Introduction to Crowd Sci-
ence, CRC Press, 2014.

13. B. Anzengruber et al., “Predicting
Social Density in Mass Events to Pre-
vent Crowd Disasters,” Social Infor-
matics, A. Jatowt et al., eds., LNCS
8238, Springer, 2013, pp. 206–215.

14. D. Pianini, S. Montagna, and M.
Viroli, “Chemical-Oriented Simula-
tion of Computational Systems with
Alchemist,” J. Simulation, vol. 7, no. 3,
2013, pp. 202−215.

15. F. Zambonelli et al., “Developing
Pervasive Multi-agent Systems with
Nature-Inspired Coordination,” Per-
vasive and Mobile Computing, vol. 17,
part B, 2015, pp. 236–252.

16. D. Pianini et al., “HPC from a Self-
Organisation Perspective: The Case
of Crowd Steering at the Urban
Scale,” Proc. 2014 Int’l Conf. High
Performance Computing & Simulation
(HPCS 14), 2014, pp. 460–467.

17. J. Fruin, Pedestrian and Planning
Design, Metropolitan Assoc. of Urban
Designers and Environmental Plan-
ners, 1971.

ABOUT THE AUTHORS

JACOB BEAL is a scientist at Raytheon BBN Technologies in Cambridge, Mas-

sachusetts. His research focuses on the engineering of robust adaptive sys-

tems, particularly on the problems of aggregate-level modeling and control for

spatially distributed systems like pervasive wireless networks, robotic swarms,

and natural or engineered biological cells. Beal received a PhD in electrical

engineering and computer science from MIT. He is an associate editor of ACM

Transactions on Autonomous and Adaptive Systems, is on the steering commit-

tee of the IEEE International Conference on Self-Adapting and Self-Organizing

Systems (SASO), and is a founder of the Spatial Computing Workshop series.

He is a Senior Member of IEEE. Contact him at jakebeal@bbn.com.

DANILO PIANINI is a postdoctoral researcher in the Department of Com-

puter Science and Engineering at the University of Bologna, Italy. He conducts

research on pervasive computing and self-organization, with a focus on engi-

neering, tools, and simulation. Pianini is the chief architect of the Alchemist

simulator and one of the maintainers of Protelis. Contact him at danilo.pianini@

unibo.it.

MIRKO VIROLI is an associate professor in the Department of Computer Sci-

ence and Engineering at the University of Bologna. His research focuses on pro-

gramming languages, computational models, and engineering of self- adaptive

and self-organizing systems. Viroli received a PhD in computer science and

engineering from the University of Bologna. He is on the editorial board of The

Knowledge Engineering Review and is a member of IEEE and ACM. Contact him

at mirko.viroli@unibo.it.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

