Programming a Sensor Network as an Amorphous Medium
Jonathan Bachrach & Jacob Beal, MIT CSAIL

Programming in Proto

Proto 1s a stream processing language based
on the amorphous medium abstraction.

Our implementation supports over-the-air
programming of Mica2 Motes.

Basics
Primitives

Gy Tiny @y Gy Iy
2 mux
s s

Composition Abstraction

5
~ &

(def sq (x) (sq 3)
(* x X))
Special Operations
Communication Space Restriction State

restrict ‘ not

ol -

1
restrict‘ :

(letfed ((v O (+ f v)))
V)

(reduce-nbrs (+ f 3) max) (if f (sqrt 4) 7)

For more information on Proto, see Infrastructure for
Engineered Emergence on Sensor/Actuator Networks,
Jacob Beal and Jonathan Bachrach, IEEE Intelligent
Systems, (Vol. 21, No. 2) pp. 10-19, March/April 2006.

What is an Amorphous Medium?

Many sensor-network applications care less about the
network than the properties of the space 1t occupies. An
amorphous medium program controls space explictly,
and 1s approximated by implicit network activity.

device
neighborhood

The medium is a compact manifold with a
device at every point. Devices can read
time-lagged state from neaby neighbors.

The network 1s a sample of the amorphous
medium and simulates 1t approximately.

Amorphous Medium
Discrete Network

Programs scale gracefully across a wide range

100 nodes 1,000 nodes 10,000 nodes

(and (green (dilate (sense 1) 30)) (blue (dilate (sense 2) 20)))

Energy Management

Many existing energy management techniques
can be confined to one side of the abstraction barrier.

Space-Centric Local Communication
S
Sk
S
ME
V
2 |=
Q |
Sl INY
region of interest . tive devi §~4 é
MACHVE AEVICes S A - reduce collisions
S Q - only transmit changes
~ - directional transmission

etc.
Examples: Energy Aware Examples: S-MAC, TDMA

Routing, Directed Diffusion

Example Applications
Target Tracking

Complete Code:
(def | ocal -average-tup (x)
(vhul (/ 1 (fold-hood + O (* (infinitesimal) 1)))
(fol d-hood vadd (tup 0 0) (vrul (infinitesimal) x))))
(def gradient (src)
(letfed ((n (inf) (+ 1 (if src O (fold-hood (fun (r x) (mnr (+ x (nbr-range)))) (inf) n)))))
(- n1)))
(def grad-value (src f)
(let ((d (gradient src)))
(letfed ((v f (rmux src f (2nd (fold-hood (fun (r x) (if (< (1st x) (1st r)) x r))
(tup (inf) f) (tup dv))))))
v)))
(def distance (pl p2)
(let ((gv (gradient p2))) (grad-value pl gv)))
(def dilate (src n) (<= (gradient src) n))
(def channel (src dst w dth)
(let* ((d (+ (distance src dst) 1))
(trail (<= (+ (gradient src) (gradient dst)) d)))
(dilate trail wdth)))
(def track (target dst coord)
(let ((point
(if (channel target dst 10)
(all (red 1) (grad-value target (nmux target (Il ocal-average-tup coord) (tup 0 0))))
(tup 0 0))))
(mux dst (vsub point coord) (tup 0 0))))
(track (sense 1) (sense 2) (coord))

Threat Avoidance

Complete Code:

(def sqr (x) (* x X))
(def dist (pl p2)
(sart (+ (sqr (- (1st pl) (1st p2))) (sar (- (2nd pl) (2nd p2))))))
(def |Ii (pl vl p2 v2)
(pow (/ (- 2 (+ vl v2)) 2) (* 0.01 (+ 1 (dist pl p2)))))
(def max-survival (dst v p)
(letfed ((ps O (fold-hood (fun (r n) (max r (* (Ii (1st n) (2nd n) p v) (3rd n))))

(if dst 1 0) (tup p Vv ps))))
ps))

(def exp-gradient (src d)

(letfed ((n O (max (* d (fold-hood max O n)) src))) n))
(def greedy-ascent (v c)

(vsub (2nd (fold-hood (fun (r p) (if (< (1st r) (1st p)) pr)) (tup v c) (tup v c))) c))
(def avoid-threats (src dst)

(greedy-ascent (max-survival dst (exp-gradient src 0.8) (coord)) (coord)))
(avoid-threats (sense 1) (sense 2))

