
Submitted to:
FORECAST 2016

c© Mirko Viroli & Jacob Beal
This work is licensed under the
Creative Commons Attribution License.

Resiliency with Aggregate Computing:
State of the Art and Roadmap

Mirko Viroli
Alma Mater Studiorum – Università di Bologna

Cesena, Italy
mirko.viroli@unibo.it

Jacob Beal
Raytheon BBN Technologies

Cambridge, MA, USA
jakebeal@bbn.com

One of the difficulties in engineering collective adaptive systems is the challenge of simultaneously
engineering both the desired resilient behavior of the collective and the details of its implementation
on individual devices. Aggregate computing simplifies this problem by separating these aspects into
different layers of abstraction by means of a unifying notion of computational field and a functional
computational model. We review the state of the art in aggregate computing, discuss the various
resiliency properties it supports, and develop a roadmap of foundational problems still needing to be
addressed in the continued development of this emerging discipline.

1 Introduction

The environment in which we all live, work, and play is increasingly saturated with computational de-
vices, and those devices are increasingly linked with one another, with the physical environment, applica-
tion services, and humans. The problems and applications of this emerging computational environment
are being addressed in a wide variety of different areas, including such areas as smart cities, intelligent
transportation systems, personalized health care, and the Internet of Things. A common problem in all
such diverse topics, however, is to tractably engineer safe, reliable, and maintainable collective behaviors
in a complex open environment comprising many devices and scales of operation.

Aggregate computing is an approach to these problems based on the recognition that many collective
applications are most naturally specified in terms of aggregate properties, rather than the behavior of
individual devices. For example, a crowd safety service needs to know the density and distribution of
people through the environment, not the location of individuals, and users of a bike-sharing system do
not typically care which bicycle or station they use as long as one is readily available nearby. Building
on the natural expression of such properties in terms of collections of values spread over regions of
space, called computational fields [26, 4], aggregate computing factors the challenging problems of
programming collective adaptive systems into several abstraction layers, each of which can be engineered
independently and much more tractably.

In this paper, we begin by reviewing the state of the art in aggregate computing. Following a brief
discussion of the history of related work in Section 2, we present the notion of computational fields
and its elaboration into the aggregate computing “stack” of abstractions in Section 3, and key results on
resilience in aggregate computation systems in Section 4. We then present our view on a roadmap of
foundational problems yet to be solved in Section 5 and conclude with a summary in Section 6.

2 History of Related Work

Engineering collective systems has long been a subject of interest in a wide variety of fields, from biology
to robotics, networking to high-performance computing, and many more; a thorough survey of this his-

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Resiliency with Aggregate Computing: State of the Art and Roadmap

tory may be found in [4], which we summarise here. As the foundational issues of engineering collective
adaptive systems remain the same, particularly when dealing with systems embedded in geometric space
and having goals linked to that space (also known as spatial computers), a number of common themes
have emerged across the multitude of approaches that have been developed. In particular, there are four
main clusters of approaches to construct collective adaptive computational behaviours in heterogeneous
networks that are identified in [4]:

• Device abstraction languages do not provide adaptivity per se, but allow a programmer to focus
on adaptivity by making device interaction implicit (e.g., TOTA [26], MPI [27], NetLogo [34],
Hood [38]),

• Pattern languages generally provide adaptive means for composing geometric and/or topological
constructions, but little computational capability (e.g., Origami Shape Language [29], Growing
Point Language [14], ASCAPE [22]),

• Information movement languages are the complement of pattern languages, providing means
for summarizing from space-time regions of the environment and streaming these summaries to
other regions, but little control over the patterning of that computation (e.g., TinyDB [25], Regi-
ment [30], KQML [19]),

• General purpose spatial languages typically require more investment to use as they lack the special-
isation of the other categories, but the general constructs they provide avoid the limiting constraints
of the other categories (e.g., Protelis [33], Proto [3], MGS [20]).

Overall, the successes and failures of these language suggest, as observed in [5], that adaptive mech-
anisms are best arranged to be implicit by default, that composition of aggregate-level modules and
subsystems must be simple, transparent, and result in highly predictable behaviors, and that large-scale
collective adaptive systems typically require a mixture of coordination mechanisms to be deployed at
different places, times, and scales. Aggregate computing is an approach that aims to draw on the suc-
cesses of past approaches to produce a generalised means of programming collective adaptive systems
that comply with these observations.

3 Aggregate Programming Approach

Two main lessons can be learned from previous works to more directly capture the cooperative nature
of aggregates of devices. First, to raise the abstraction level, the basic mechanisms needed to achieve
robust interaction of a group of devices need to be hidden “under-the-hood” of the computational model
(and hence not to required to be exposed to application programmers). Second, suitable mechanisms to
smoothly compose subsystems and modules are needed, in order to determine which types of coordi-
nation are appropriate between which aggregates in various regions of space and time, so as to control
complex behaviours more easily.

Accordingly, the aggregate computing paradigm is grounded in three main concepts: (i) the refer-
ence “machine” over which collective adaptive applications run is abstracted to a conceptually single
yet distributed computational device, (ii) the reference “elaboration process” for that machine is the ma-
nipulation of a “collective data-structure” physically distributed through part or all of the surrounding
environment; and (iii) computation is carried out by cooperation of devices, achieving resiliency by self-
organisation. This approach may then be implemented by the approach of layered abstractions depicted
in Figure 1, incrementally connecting the capabilities of single devices to the development of collective
adaptive applications. The remainder of this section describes each of these layers in turn.

Mirko Viroli & Jacob Beal 3

sensors

local functions

actuators

Application
Code

Developer
APIs

Field Calculus
Constructs

Resilient
Coordination

Operators

Device
Capabilities

functions repnbr

TGCfunctions

communication state

PerceptionPerception

summarize
average
regionMax
…

ActionAction StateState

Collective BehaviorCollective Behavior

distanceTo
broadcast
partition
…

timer
lowpass
recentTrue
…

collectivePerception
collectiveSummary
managementRegions
…

Crowd ManagementCrowd Management
dangerousDensity crowdTracking
crowdWarning safeDispersal

restriction

Figure 1: Layers of aggregate computing, adapted from [5]

3.1 Fields

A first key question is: what should be the shape of a “collective data-structure” manipulated with ag-
gregate computing? Given the tight connection with physical space for the typical application scenarios
we address, we consider collections of values, with each value situated in a specific point of the physical
space, and at the time that value has been produced by a device, either directly by a sensor, or as result of
some computation. We define the domain of such a collection as a set of space-time points, called events;
note that such events correspond to computational actions (e.g., sensing, actuation, local computation)
executed by some device embedded in the spatial environment. For any event ε we can thus identify a
position p in space, a moment in time t, and a device d which computed it (under some coordinatisation
of space and time). In line with previous works such as [26, 36, 6], we hence rely on the notion of
computational field (or field for short), defined as a map from a domain (giving the required details of
the computational environment) to some set of computational values (e.g., Booleans, numbers, or any
complex computational object).

We sometimes refer to field evolution (instead of just a field) to emphasise how computed values
evolve over both space and time, and field snapshot as a field over a subset of a domain selecting values at
a given moment in time—i.e., selecting the last value available in each device at that time. Computational
fields are a very general mechanism, useful to various purposes; one can model inputs coming from
the environments as a sensor field, outputs as an actuator field, system knowledge as a data field, and
any intermediate results of computation as a field of computed values. So, critically, any aggregate
computation can be seen as a function from fields to fields, where input and output should have the same
domain.

As the shape of a computational field has been clarified, let us consider a second key question: how
does our space-time notion of collective data-structure affect the computational model? In general, com-
putation of a value at a given event ε should depend on some contextual information, certainly including
results of computations at the previous event at ε’s device and information produced by sensors at ε .
Additionally, some notion of local device-to-device interaction is considered. Embedded in a domain

4 Resiliency with Aggregate Computing: State of the Art and Roadmap

(and depending on application-specific aspects) there is a binary notion of proximity, dictating when two
devices are in the neighbouring relation. It is then assumed that computation of a value at a given event ε

can depend on the value at events corresponding to the latest computation at neighbouring devices, that
is, assuming a communication transferred information from a device to its neighbour. Depending on the
specific computation to achieve, in particular, neighbouring devices can be restricted to consider only
those belonging to a common “subdomain,” identifying those devices that cooperatively bring about a
common computational goal.

So to recap, computing with fields can be done by leveraging devices’ ability to connect with sensors
and actuators, to locally compute functions as usual and keep track of results over time, and to com-
municate with neighbours and possibly do so restricting the proximity relation. As shown in Figure 1
(bottom), it is on top of this lowest layer of device mechanisms, and on the notion of field, that aggregate
computing grounds and builds higher-levels computing models.

3.2 Field Calculus

The field calculus (as expressed in its higher-order version in [17]) is the foundation of aggregate com-
puting, as it provides a core language with formalised syntax, semantics and properties, on top of which
more accessible programming languages can be built, and resiliency properties can be proven by con-
struction or formal reasoning. The core idea of field calculus is to express computations by a functional
language with the “everything is a field” philosophy. Given an external environment, namely a domain
and sensors’ values, each expression defines a field on that domain, and function application is a key
ingredient that allows one to define reusable behaviour in terms of declaratively-specified transformation
from fields to fields; in fact, any field computation takes field evolutions as input and produces a field
evolution as output. For example, given an input of a Boolean field mapping certain devices of interest to
true, an output field of estimated hop-by-hop distances to the nearest such device can be constructed by
iterative aggregation and spreading of information, such that as the input changes the output changes to
match. The field calculus succinctly captures the essence of field computations, much as λ -calculus [13]
does for functional computations or FJ [21] does for object-oriented programming. Field expressions are
constructed and manipulated using three syntactic program constructs:

• Functions: λ (e1, . . . ,en) applies function λ (itself an expression) to arguments e1, . . . ,en, with
call-by-value semantics. The function can be a “built-in” primitive (any stateless mathematical,
logical, or algorithmic function, possibly in infix notation), a sensor or actuator, a function literal
“(x1, . . . ,xn) => e” or a user-defined function f defined as “def f (x1, . . . ,xn){e}”. For instance,
1+ 2 gives a flat field mapping each event to 3, sns-temp() the field of temperatures, ((x) =>
x+1)(0) gives 1 everywhere, and mux(eb,e1,e2) computes fields out of eb, e1 and e2, and gives
at each event the result given by e1 where eb is true and e2 where eb is false. Importantly,
since λ can be an expression, it actually provides a field, namely, a field of functions which could
change over space and time: in that case, the resulting field is obtained by preventing information
flow between events where the values of λ differ. Thus, for example, (mux(eb,+,−))(2,1) splits
the domain in two subdomains depending on the true/false evaluation of eb, and computes 2+1
in one and 2−1 in the other.

• Dynamics: rep(e0){λ} defines a field holding e0 initially, and being updated at each event on
a device by applying λ to the value held at previous event on the same device. For instance,
rep(0){(x) => x+1} gives a field counting the number of events at each device.

Mirko Viroli & Jacob Beal 5

• Interaction: nbr(e) gathers at each event a map from all neighbours to their latest resulting value
of computing e. A special set of built-in “hood” functions can then be used to summarise such
maps back to ordinary expressions. For instance, sumHood(nbr{1}) counts the number of neigh-
bours at each event.

An example using the various constructs is the following distance (or gradient) function:

def distance(source){
rep(infinity){

(d) => mux(source, 0, minHood(nbrRange() + nbr{d}))
}

}

coloring field calculus keywords red, built-in functions green, and user-defined functions blue. This code
estimates distance d to devices where source is true: it is initially infinity everywhere, and is computed
over time using built-in selector mux to set sources to 0 and other devices by the triangle inequality, taking
the minimum value obtained by adding the distance to each neighbour (as given by sensor nbrRange to
its estimate of d (obtained by nbr).

Critically, this aggregate-level model of computation over fields can also be “compiled” into an
equivalent system of local operations and message passing actually implementing the field calculus pro-
gram on a distributed system [16, 17]. In particular, it defines the computation round behaviour, framed
as a single computable function to be applied at any event.

3.3 Building Blocks and Libraries

A key advantage that aggregate programming inherits from managing computational fields functionally
(as distinct from other approaches in which this is done either by diffusion/aggregation rules embedded
into data items [26], or chemical-like rules embedded in “space” [37]) is that it intrinsically supports
compositionality. Out of many different algorithms one can express, it is possible to factor out common
behaviour into reusable functional components, all of which specify collective adaptive behaviour in
terms of field-to-field transformation. As in all standard functional languages, this methodology results
in the creation of complex APIs defining coherent layers of functions, where layers on top depend on
layers below, raising the abstraction layer incrementally from basic ingredients to realisations of entire
complex application services—see Figure 3 (top).

Most notably, experience with programming at the aggregate level and analysis of self-organisation
patterns as proposed in literature (see, e.g., [18]), suggest that the three basic mechanisms one needs to
ground complex applications include diffusion of information in the network as an advertisement mech-
anism, aggregation of distributed information as a sensing mechanism, and “evaporation” of information
as a refresh mechanism. These three mechanisms can be generally supported by building blocks called
G, C and T [5], whose operation is illustrated in Figure 2 and whose signatures are reported in Figure
3. As outlined in [35], different implementations can exist for these building blocks, trading smoothness
and speed in different ways. More importantly, though, a whole set of library functions can be built just
on top of G, C and T, by composition of these functions with one another and local functions. Figure 1
illustrates an example of the various sorts of APIs one can build, up to application services, e.g., used for
large crowd management as described in [5].

6 Resiliency with Aggregate Computing: State of the Art and Roadmap

(a) Operator G (b) Operator C

3"

1"
7"

0"
2"

1"
4"

3"
3"

(c) Operator T

Figure 2: “Building block” operators for distributed services: information-spreading (G), information
aggregation (C), and time evolution (T), adapted from [5]

// Out of source, spread init value, following direction of metric, en-route applying accumulate
G(source,init,metric,accumulate)

// Gathers values of local down potential gradient, en-route accumulating and using null identity value
C(potential,accumulate,local,null)

// Locally apply decay function to initial value, until reaching floor value
T(initial,floor,decay)

Figure 3: Signatures of building blocks

4 Results on Resilience

Resilience may be generally defined as the ability to adapt to unexpected changes in working conditions.
It is a key property for collective adaptive systems to manifest, used to ensure that system goals can be
achieved even in spite of certain classes of change. Particularly important is the ability of a computing
framework to provide a high degree of inherent resilience. This means that the system specification
produced at design-time does not explicitly deal with and planning or execution of adaptation; rather, it is
the underlying framework that is burdened with the goal of dynamically adapt to changes, autonomously
finding ways for the system goals to be automatically achieved. Aggregate computing is a framework
able to support inherent resiliency to a rather large set of changes, especially when coupled to specific
techniques to structure a system specification. Technical results on resilience in aggregate computing are
reviewed in this section.

4.1 Resilience to Occasional Disruption: Self-Stabilization

A typical resilience scenario is the one where a system is in good working condition until a certain
occasional event from the environment creates some disruption: at that point, we wish the system to
repair itself and eventually return to a good working condition. For computational fields, this notion
has been formalised in [15]. A field expression e is said to self-stabilise if there exists a time t such
that, if the environment (position and proximity of devices, and sensor fields) does not change in any

Mirko Viroli & Jacob Beal 7

t ′ > t, then eventually, at a time t ′′ > t, the field resulting from e will no longer change either, i.e., it
reaches a self-stabilised state (a field snapshot stable over time). Additionally, this self-stabilised state
must be unique, depending solely on the stable state of the environment and on field expression e, and
not on the field snapshot at time t. Put in another way, self-stabilisation of a field expression e implies
that, given a stable state of the environment E, the resulting field necessarily eventually reaches a stable
snapshot φe,E which solely depends on e and E: φe,E can be considered as the result of computation of e
with “environmental condition” E. While the distance function given in the previous section enjoys this
property, other similar functions are subtly not self-stabilising, like the following gossip function which
keeps gossiping the minimum value of an input field across space and time:

def gossipMin(field){
rep(infinity){

(v) => min(field, minHood(nbr{v}))
}

}

This is not self-stabilising because field evolution never recovers from a change in which the input field
(assuming it is taken from a sensor) temporarily flips to a very low value v at some event: even after the
value rises back again, v keeps being gossiped in the network.

We here refer to self-stabilisation as a notion of “resilience to occasional disruption” because the
above definition implies that in a situation of continuous changes in the environment, field evolution
keeps chasing a self-stabilised state, but will reach it only if there is enough time following the last
change. Hence, in a situation of continuous changes, self-stabilisation per se provides no guarantee of
resilience.

Self-stabilisation is undecidable in general, given that computational rounds are not even guaranteed
to terminate due to the universality of even local computation. Thus, ensuring self-stabilisation is a matter
of isolating fragments of the calculus that produce only self-stabilising field expressions. This problem
has been addressed in [35] in which the following technical results are provided: (i) building blocks G,
C and T are proved self-stabilising, and (ii) by generalising over them, a fragment of the field calculus
guaranteeing self-stabilisation is identified. Most notably, such a fragment is closed under functional
composition. As a result, any library or application built on top of G, C and T, and avoiding direct use
of rep (like those showed in Figure 1 and in [5]), is self-stabilising by construction.

4.2 Resilience to Device Distribution: Eventual Consistency

A weakness of the above property is that the result of computation, expressed as the stabilised field
snapshot, may be highly dependent on network shape. Even small perturbations to the position of a
device, to the proximity relation, or to the addition/removal of a device, can make the field stabilise to
a completely different result. This means that even general aspects like the overall density of devices in
a given portion of space can significantly affect the result. A simple example is given by the following
hop-count distance measure, estimating distances only based on the number of hops to a source:

def hopCountDistance(source){
rep(infinity){

(d) => mux(source, 0, minHood(nbr{d} + 1))

}
}

8 Resiliency with Aggregate Computing: State of the Art and Roadmap

There, doubling the density of devices while keeping a constant number of neighbors generally re-
sults in an increase of hop-count distances. Since practically the actual location of devices in a pervasive
environment can be not known a priori, and even occasional changes to distribution can be the norm, one
may want to introduce more specific forms of self-stabilisation, able to well tolerate changes to device
distribution. Put in another way, we seek a property such that a field expression e necessarily eventu-
ally reaches a stable snapshot φe that depends on e, and is “mostly independent” to the shape of the
environment, especially at sufficiently high densities.

The work in [8] address this issue by a notion of eventual consistency, essentially stating that, in
addition to self-stabilisation, with the limit of event densities (devices and their work frequency) going to
infinity, the stabilised state of computation converges. This notion of convergence is given by interpreting
field snapshots as measurable functions over a continuous domain, and checking whether the Lebesgue
integral of the absolute difference between the field snapshot obtained with a given density and that at
infinite density actually converges to 0 as density goes to infinity. Though this notion does not measure
the extent to which a device distribution change affects the result of computation, it can give guarantee of
robustness to changes in the scale of the number of devices: at sufficient high densities, e.g. a disrupting
change like increasing by 1 the order of magnitude of device densities is not going to significantly
affect the shape of the stabilised field snapshot. So, one can easily expect that simpler changes like
addition/removal/relocation or one or more devices will likely be irrelevant to the overall computation.

Ensuring eventual consistency is harder than simple self-stabilisation, because of a boundary prob-
lem. Many computations involve discrete approximations of non-continuous built-in functions (like test
for equality between numbers) which tend to be very fragile to small changes in position (and distances)
of devices. In [8], GPI calculus is introduced as a fragment of field calculus (a fragment significantly
smaller than the one of self-stabilisation in [35]) which is based on two mechanisms. First, the only
allowed form of field evolution is with a “Gradient Path Integral” construct, essentially spreading infor-
mation outward from a source s and returning at each device d the result of computing the integral of a
provided function across the shortest path connecting s with d. Examples of fields one can create with
this construct include distance measures, broadcasts, and obstacle forecasting, all possibly realised with
different kinds of metrics. Second, expressions that can lead to fragile “boundary” values (due to use of
non-continuous functions) are marked, such that values cannot differ over any significant region of the
field.

4.3 Resilience to Ongoing Perturbations: Controlling Dynamical Performance

What kind of resiliency support can we provide in the case of ongoing perturbations of the environment?
There, it is not sufficient simply to know that a system self-stabilises, but it is very important how
self-stabilisation is reached. Depending on the application context, we might simply seek fast self-
stabilisation, while in other cases we can tolerate slow self-stabilisation provided there is smoothness, i.e.,
field evolution never shifts to snapshots that are too distant from the actual result of self-stablisation once
reached. While fast self-stablisation can be useful with frequent, though non-continuous changes, smooth
self-stabilisation may be needed with continuous changes, as in the case of many mobile networks. Two
contributions have been provided in the direction of better controlling field dynamics, so far.

First, in [35] an engineering methodology is presented in which G, C and T are selectively replaced
with alternative and more specialized implementations that can better trade off speed with adaptiveness
in certain contexts of usage. For instance, the approach in [1] can be used to compute distances instead
of by the standard implementation of G, especially when direction of movement to the source is more
important than actual estimation of distance, while a multi-path collection of information can be used

Mirko Viroli & Jacob Beal 9

instead of C’s single path one when reactivity to network changes is more important than reactivity to
changes in the collected data.

Second, in [32] a technique is proposed to turn gossiping into a self-stabilising process by means
of running multiple replicas of gossiping in parallel at staggered times. If the proper duration of such
replicas can be estimated, replicated gossip provides a much more controlled evolution of dynamics. As
suggested in next section, this approach might be evaluated as a general meta-technique to improve speed
and smoothness of self-stabilisation.

5 Roadmap of Foundational Problems

The results reviewed so far represent important progress in methods for the engineering of collective
adaptive systems. Many foundational questions remain to be addressed, however, and resolving these
questions will both broaden the applicability of aggregate computing and improve the guarantees of
resilience and performance that can be made. We now present our view on the critical foundational
problems still to be addressed, organizing the current key open foundational problems into four thematic
groups: universality, static properties, dynamic properties, and workflow constructs.

5.1 Universality

The notion of computational universality has long been well-developed both for individual devices and
for networks of devices. In this sense, there is a trivial sense in which aggregate computing can be readily
shown as being universal, through the computational universality of the individual devices in the aggre-
gate. At the aggregate level, however, studying universality helps reasoning in terms of expressiveness,
allowing one to understand whether a given choice of language constructs is sufficient to express all
required behaviour, and to assess comparison between different languages.

• Discrete notion of universality. A first notion of universality can be achieved by looking at which
kinds of computations one can achieve on a given domain (defined as a finite set of events as of
Section 3). Reasonable hypotheses there are that each device can compute with universal Turing
power, and that inputs come from values in the local context (sensors and neighbour events).

• Continuous notion of universality. The work in [7, 2] suggests a different notion of universality,
that focusses instead on the ability of field computations to generate fields defined over continuous
space and time. Similar hypotheses here are that such fields can be locally effectively computed,
and that information at an event ε can solely depend on information from the cone of past events
from which ε is reachable considering a certain maximum velocity of information. With this no-
tion, field calculus is argued to be universal in [7]. Considering less specific versions of universality
is a key future work.

• Consistency between notions universality. Clearly, many notions of universality can be defined,
and hence it will be key to compare and connect them. The work in [35] already connects discrete
and continuous domains for defining the notion of eventual consistency, which can inspire the
definition of a unified notion capturing both discrete and continuous domains.

• Mobile devices. The notions of continuous computation presented in [7, 2] address only stationary
devices, while in many real-world systems the devices either move themselves or are moved by
external forces (e.g., a personal device carried by its owner). Consistency between continuous
and discrete computational models needs to extend to these cases, as well as accounting for the

10 Resiliency with Aggregate Computing: State of the Art and Roadmap

qualitatively different behavior between tightly packed (“solid”), loosely packed (“liquid”), and
sparse (“gas”) distributions of mobile devices.

5.2 Static properties

A key advantage of aggregate computing compared to other approached for designing self-organising
systems is its ability to compositionally and declaratively express complex behaviour. Its functional
nature, in particular, allows one to readily reason formally on the expected behaviour of a program.
Many interesting results have already emerged in the area of “static properties,” namely, properties of
the result of computation, neglecting transitory aspects that concern dynamics of evolution, but there are
important areas for which these should be further extended.
• Fragments of resilient behaviour. As described in previous section, in [35] a fragment of self-

stabilising field expression has been identified by generalisation of building blocks G, C and T
into specific usage patterns for rep construct. Such patterns require to inspect whether certain sub-
expressions enjoy properties of monotonicity, boundedness, progressiveness and so on. The work
in [15] shows how automatically proving such properties in practice is not very easy. Important
future work here is to find a larger fragment, with patterns easier to automatically check.

• Beyond existing building blocks. A reason for the current limited extent of the fragment of self-
stabilising expressions is due to the fact that it originated from G, C and T, which were identified
as reusable blocks even before the self-stabilisation property was established. These three building
blocks allow one to functional compose operations of collection and spread of information, along
with functions taking into account timing mechanisms. Although quite expressive, these do not
cover all of the useful patterns of self-stabilizing algorithms. Identifying new building blocks is
key to enlarge the set of resilient aggregate behaviours one can engineer. Areas of future work
in this context include but are not limited to graph-based algorithms, adaptive leader election,
clustering of data, flocking, and so on.

• Model-checking and other formal methods. The problem of addressing the foundation of group
interaction in complex environments has been attacked in the community of formal models of
concurrent and distributed systems, mostly by extensions of the archetype process algebra π-
calculus, which models flat compositions of processes, with various versions of environment
structure [10, 11, 28], shared-space abstractions [9, 36], and attribute-based ensembles [31]. In
this context, rigorous formal models are typically exploited to predict quantitative and qualitative
properties. To trade off verification time with accuracy, statistical model-checking [24] is often
used instead of classical model-checking in addition to standard simulation, though it only par-
tially alleviates the scalability problem. Recently, fluid flow and mean-field approximations have
been proposed to turn large-scale computational systems into systems of differential equations that
one could solve analytically or use to derive an evaluation of system behaviour [23, 12]. We believe
that research on aggregate computing can aim at going beyond existing uses of model-checking
verification techniques, relying on innovative techniques of mean-field approximation to address
state-space explosion, while still allowing reasoning about aggregate processes interacting in space
and time.

5.3 Dynamic properties

As discussed in Section 4, the framework of self-stabilisation, though rather expressive, does not address
a number of issues of high practical impact, including performance issues as well as quantitative con-

Mirko Viroli & Jacob Beal 11

siderations related to transitory errors in the expected behaviour. Though rather difficult to address in
general, study of dynamic properties is a key ingredient for future research on aggregate computing.
• Characterisation of resilience. We believe that a first step towards a more clear understanding of

the problem is to analyse the full spectrum of resilience, so as to identify what kind of changes an
aggregate system should aim at adapting to, and the extent to which this is done in a proper and
satisfactory way.

• Speed and smoothness of self-stabilisation and eventual-consistency. Even considering self-stabilisation,
we find it key to identify formal means by which one can check, control, and then enact, various
levels of speed to self-stabilisation, or of smoothness, defined as the ability of evolving towards a
stable state along a trajectory guaranteeing good intermediate results. Key issues in this context
include finding building block implementations for which extensive empirical analysis can be con-
ducted to study dynamic properties, and addressing the more general problem of how properties
of dynamics of certain components are preserved (or at least bounded) by composition.

• Meta-algorithms for resiliency of dynamics. Of great interest are those techniques that can be ap-
plied to a large class of aggregate computations that can improve their resilience, either in terms of
turning non-self-stabilising computations into self-stabilising ones, speeding up self-stabilisation,
or generally smoothing behaviour. Replicated instances, as initially studied in [32], are an ex-
ample of such a technique, which has to be more systematically studied to identify applicability,
methodologies for tuning parameters, and extensions to advance flexibility.

5.4 Workflow constructs

The functional paradigm adopted by aggregate computing promotes a clear design of the interface of
piece of collective adaptive behaviour, paving the way towards composition, reuse, and substitutability.
On the other hand, simple composition may itself be quickly found too limited in expressive complex
interactions between modules. More generally, thinking about aggregate computations in terms of work-
flow (e.g., sequencing of processes) will be important for dealing with a number of complex real-world
applications.
• From fields to processes. How might we deal with a multiset of interacting processes, as typically

considered in process calculi, in the context of aggregate computing? Answering this question is
key for a number of important results to be achieved, particularly for defining execution platforms
for ecosystems of pervasive computing services. Possibly, this can be addressed by new constructs
for the field calculus, capturing parallel composition, interleaved execution, and forms of aggregate
interaction.

• Workflow constructs. As a notion of process is correctly identified and supported by the field
calculus, new building blocks will be needed to expressively compose such processes. It will be
needed to clearly identify the distributed starts and ends of a process, so as to support process
sequencing, join, fork and similar workflow constructs. Likewise, virtual-machine aspects like
handling of exceptions and garbage collection need to be supported in order to provide a full
framework for executing complex processes at the aggregate level.

6 Conclusions

Aggregate programming is an emerging approach to the engineering of collective adaptive systems. The
layered approach advocated by aggregate computing rests on the core computational model of field-based

12 Resiliency with Aggregate Computing: State of the Art and Roadmap

programming embodied in field calculus. Resilience is then provided by restriction to building blocks
that both provide desired resilience properties and that preserve these properties when composed with
one another: to date, self-stabilization provides resilience to occasional disruptions, eventual consistency
provides resilience to distribution of devices, and substitutability can be used to improve the dynamical
performance of systems.

Looking toward the future, we have presented a roadmap organizing the key foundational problems
for advancing aggregate programming. Beyond this roadmap, there are also a number of pragmatic
challenges to address, such as improvement of aggregate programming software tools and language im-
plementations, characterization and optimization of costs in computation, communication, energy con-
sumption, etc, extension of the libraries and APIs, and development of additional tools and other aspects
of the engineering ecosystem. Finally, ongoing work on applications will both realize the value of these
approaches into real engineered systems as well as presenting challenges that we expect to feedback into
new challenges for both foundational and practical investigation.

References

[1] Jacob Beal (2009): Flexible Self-Healing Gradients. In: ACM Symposium on Applied Computing, ACM,
New York, NY, USA, pp. 1197–1201.

[2] Jacob Beal (2010): A Basis Set of Operators for Space-Time Computations. In: Spatial Computing Workshop.
Available at: http://www.spatial-computing.org/scw10/.

[3] Jacob Beal & Jonathan Bachrach (2006): Infrastructure for Engineered Emergence in Sensor/Actuator Net-
works. IEEE Intelligent Systems 21, pp. 10–19.

[4] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli & Nikolaus Correll (2013): Organizing the Ag-
gregate: Languages for Spatial Computing. In Marjan Mernik, editor: Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments, chapter 16, IGI Global, pp. 436–501, doi:10.4018/978-
1-4666-2092-6.ch016.

[5] Jacob Beal, Danilo Pianini & Mirko Viroli (2015): Aggregate Programming for the Internet of Things. IEEE
Computer 48(9).

[6] Jacob Beal, Kyle Usbeck & Brett Benyo (2013): On the Evaluation of Space-Time Functions. The Computer
Journal 56(12), pp. 1500–1517, doi:10.1093/comjnl/bxs099. Doi: 10.1093/comjnl/bxs099.

[7] Jacob Beal, Mirko Viroli & Ferruccio Damiani (2014): Towards a Unified Model of Spatial Computing. In:
7th Spatial Computing Workshop (SCW 2014), AAMAS 2014, Paris, France.

[8] Jacob Beal, Mirko Viroli, Danilo Pianini & Ferruccio Damiani (2016): Self-adaptation to Device Distribu-
tion Changes in Situated Computing Systems. In: IEEE Conference on Self-Adaptive and Self-Organising
Systems (SASO 2016), IEEE. To appear.

[9] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gian Luigi Ferrari, Daniele Gorla, Michele Loreti,
Eugenio Moggi, Rosario Pugliese, Emilio Tuosto & Betti Venneri (2003): The Klaim Project: Theory
and Practice. In: Global Computing 2003, Lecture Notes in Computer Science 2874, Springer, pp. 88–
150. Available at http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=

0302-9743{&}volume=2874{&}spage=88.

[10] Luca Cardelli & Philippa Gardner (2010): Processes in Space. In: 6th Conference on Computability in
Europe, Lecture Notes in Computer Science 6158, Springer, pp. 78–87. Available at http://dx.doi.org/
10.1007/978-3-642-13962-8.

[11] Luca Cardelli & Andrew D. Gordon (2000): Mobile ambients. Theoretical Computer Science 240(1), pp.
177–213.

http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.1093/comjnl/bxs099
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2874{&}spage=88
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2874{&}spage=88
http://dx.doi.org/10.1007/978-3-642-13962-8
http://dx.doi.org/10.1007/978-3-642-13962-8

Mirko Viroli & Jacob Beal 13

[12] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2016): Symbolic computation of
differential equivalences. In: POPL 2016, pp. 137–150, doi:10.1145/2837614.2837649. Available at http:
//doi.acm.org/10.1145/2837614.2837649.

[13] Alonzo Church (1932): A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33(2), pp.
346–366.

[14] Daniel Coore (1999): Botanical Computing: A Developmental Approach to Generating Inter connect Topolo-
gies on an Amorphous Computer. Ph.D. thesis, MIT, Cambridge, MA, USA.

[15] Ferruccio Damiani & Mirko Viroli (2015): Type-based Self-stabilisation for Computational Fields. Logical
Methods in Computer Science 11(4), pp. 1–53, doi:10.2168/LMCS-11(4:21)2015. Available at http://
www.lmcs-online.org/ojs/viewarticle.php?id=1767.

[16] Ferruccio Damiani, Mirko Viroli & Jacob Beal (2016): A type-sound calculus of computational fields. Sci-
ence of Computer Programming 117, pp. 17 – 44, doi:http://dx.doi.org/10.1016/j.scico.2015.11.005. Avail-
able at http://www.sciencedirect.com/science/article/pii/S0167642315003573.

[17] Ferruccio Damiani, Mirko Viroli, Danilo Pianini & Jacob Beal (2015): Code Mobility Meets Self-
organisation: A Higher-Order Calculus of Computational Fields. In Susanne Graf & Mahesh Viswanathan,
editors: Formal Techniques for Distributed Objects, Components, and Systems, Lecture Notes in Computer
Science 9039, Springer International Publishing, pp. 113–128.

[18] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli & Josep Lluı́s
Arcos (2013): Description and composition of bio-inspired design patterns: a complete overview. Natu-
ral Computing 12(1), pp. 43–67, doi:10.1007/s11047-012-9324-y. Available at http://dx.doi.org/10.
1007/s11047-012-9324-y.

[19] Tim Finin, Richard Fritzson, Don McKay & Robin McEntire (1994): KQML as an agent communication
language. In: Proceedings of the third international conference on Information and knowledge manage-
ment, CIKM ’94, ACM, New York, NY, USA, pp. 456–463, doi:http://doi.acm.org/10.1145/191246.191322.
Available at http://doi.acm.org/10.1145/191246.191322.

[20] Jean-Louis Giavitto, Christophe Godin, Olivier Michel & Przemyslaw Prusinkiewicz (2002): Computational
models for integrative and developmental biology. Technical Report 72-2002, Univerite d’Evry, LaMI.

[21] Atsushi Igarashi, Benjamin C. Pierce & Philip Wadler (2001): Featherweight Java: A Minimal Core Calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems 23(3).

[22] M.E. Inchiosa & M.T. Parker (2002): Overcoming design and development challenges in agent-based mod-
eling using ASCAPE. Proceedings of the National Academy of Sciences of the United States of America
99(Suppl 3), p. 7304.

[23] Diego Latella, Michele Loreti & Mieke Massink (2015): On-the-fly PCTL fast mean-field approx-
imated model-checking for self-organising coordination. Sci. Comput. Program. 110, pp. 23–50,
doi:10.1016/j.scico.2015.06.009. Available at http://dx.doi.org/10.1016/j.scico.2015.06.009.

[24] Axel Legay, Benot Delahaye & Saddek Bensalem (2010): Statistical Model Checking: An Overview. In
Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rou,
Oleg Sokolsky & Nikolai Tillmann, editors: Runtime Verification, Lecture Notes in Computer Science 6418,
Springer, pp. 122–135.

[25] Samuel R. Madden, Robert Szewczyk, Michael J. Franklin & David Culler (2002): Supporting Aggregate
Queries Over Ad-Hoc Wireless Sensor Networks. In: Workshop on Mobile Computing and Systems Appli-
cations.

[26] Marco Mamei & Franco Zambonelli (2009): Programming pervasive and mobile computing applica-
tions: The TOTA approach. ACM Trans. on Software Engineering Methodologies 18(4), pp. 1–56,
doi:http://doi.acm.org/10.1145/1538942.1538945.

[27] Message Passing Interface Forum (2009): MPI: A Message-Passing Interface Standard Version 2.2.

http://dx.doi.org/10.1145/2837614.2837649
http://doi.acm.org/10.1145/2837614.2837649
http://doi.acm.org/10.1145/2837614.2837649
http://dx.doi.org/10.2168/LMCS-11(4:21)2015
http://www.lmcs-online.org/ojs/viewarticle.php?id=1767
http://www.lmcs-online.org/ojs/viewarticle.php?id=1767
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2015.11.005
http://www.sciencedirect.com/science/article/pii/S0167642315003573
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/http://doi.acm.org/10.1145/191246.191322
http://doi.acm.org/10.1145/191246.191322
http://dx.doi.org/10.1016/j.scico.2015.06.009
http://dx.doi.org/10.1016/j.scico.2015.06.009
http://dx.doi.org/http://doi.acm.org/10.1145/1538942.1538945

14 Resiliency with Aggregate Computing: State of the Art and Roadmap

[28] Robin Milner (2006): Pure bigraphs: Structure and dynamics. Information and Computation 204(1), pp.
60 – 122, doi:http://dx.doi.org/10.1016/j.ic.2005.07.003. Available at http://www.sciencedirect.com/
science/article/pii/S0890540105001203.

[29] Radhika Nagpal (2001): Programmable Self-Assembly: Constructing Global Shape using Biologically-
inspired Local Interactions and Origami Mathematics. Ph.D. thesis, MIT, Cambridge, MA, USA.

[30] Ryan Newton & Matt Welsh (2004): Region Streams: Functional Macroprogramming for Sensor Networks.
In: First International Workshop on Data Management for Sensor Networks (DMSN), pp. 78–87.

[31] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti & Rosario Pugliese (2013): A Language-Based Approach
to Autonomic Computing. In: Formal Methods for Components and Objects, Lecture Notes in Computer
Science 7542, pp. 25–48.

[32] Danilo Pianini, Jacob Beal & Mirko Viroli (2016): Improving Gossip Dynamics Through Overlapping Repli-
cates. In Alberto Lluch Lafuente & José Proença, editors: Coordination Models and Languages - 18th IFIP
WG 6.1 International Conference, COORDINATION 2016, Held as Part of the 11th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9,
2016, Proceedings, Lecture Notes in Computer Science 9686, Springer, pp. 192–207, doi:10.1007/978-3-
319-39519-7 12. Available at http://dx.doi.org/10.1007/978-3-319-39519-7_12.

[33] Danilo Pianini, Mirko Viroli & Jacob Beal (2015): Protelis: Practical Aggregate Programming. In: ACM
Symposium on Applied Computing 2015, pp. 1846–1853.

[34] E. Sklar (2007): NetLogo, a multi-agent simulation environment. Artificial life 13(3), pp. 303–311.
[35] Mirko Viroli, Jacob Beal, Ferruccio Damiani & Danilo Pianini (2015): Efficient Engineering of Complex Self-

Organising Systems by Self-Stabilising Fields. In: IEEE Conference on Self-Adaptive and Self-Organising
Systems (SASO 2015), IEEE.

[36] Mirko Viroli, Matteo Casadei, Sara Montagna & Franco Zambonelli (2011): Spatial Coordination of Per-
vasive Services through Chemical-inspired Tuple Spaces. ACM Transactions on Autonomous and Adaptive
Systems 6(2), pp. 14:1 – 14:24, doi:10.1145/1968513.1968517. Available at http://doi.acm.org/10.
1145/1968513.1968517.

[37] Mirko Viroli, Danilo Pianini, Sara Montagna & Graeme Stevenson (2012): Pervasive Ecosystems: a Coordi-
nation Model based on Semantic Chemistry. In Sascha Ossowski, Paola Lecca, Chih-Cheng Hung & Jiman
Hong, editors: 27th Annual ACM Symposium on Applied Computing (SAC 2012), ACM, Riva del Garda,
TN, Italy, pp. 295–302.

[38] Kamin Whitehouse, Cory Sharp, Eric Brewer & David Culler (2004): Hood: a neighborhood abstraction for
sensor networks. In: Proceedings of the 2nd international conference on Mobile systems, applications, and
services, ACM Press.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ic.2005.07.003
http://www.sciencedirect.com/science/article/pii/S0890540105001203
http://www.sciencedirect.com/science/article/pii/S0890540105001203
http://dx.doi.org/10.1007/978-3-319-39519-7_12
http://dx.doi.org/10.1007/978-3-319-39519-7_12
http://dx.doi.org/10.1007/978-3-319-39519-7_12
http://dx.doi.org/10.1145/1968513.1968517
http://doi.acm.org/10.1145/1968513.1968517
http://doi.acm.org/10.1145/1968513.1968517

	Introduction
	History of Related Work
	Aggregate Programming Approach
	Fields
	Field Calculus
	Building Blocks and Libraries

	Results on Resilience
	Resilience to Occasional Disruption: Self-Stabilization
	Resilience to Device Distribution: Eventual Consistency
	Resilience to Ongoing Perturbations: Controlling Dynamical Performance

	Roadmap of Foundational Problems
	Universality
	Static properties
	Dynamic properties
	Workflow constructs

	Conclusions

