
On a Higher-order Calculus of
Computational Fields

Giorgio Audrito1[0000−0002−2319−0375], Mirko Viroli[0000−0003−2702−5702]2,
Ferruccio Damiani1[0000−0001−8109−1706], Danilo Pianini[0000−0002−8392−5409]2,

and Jacob Beal3[0000−0002−1663−5102]

1 Dipartimento di Informatica, University of Turin, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

2 DISI, University of Bologna, Cesena, Italy
{mirko.viroli,danilo.pianini}@unibo.it

3 Raytheon BBN Technologies, Cambridge (MA), USA
jakebeal@ieee.org

Abstract. Computational fields have been proposed as an effective ab-
straction to fill the gap between the macro-level of distributed systems
(specifying a system’s collective behaviour) and the micro-level (individ-
ual devices’ actions of computation and interaction to implement that
collective specification), thereby providing a basis to better facilitate the
engineering of collective APIs and complex systems at higher levels of
abstraction. This approach is particularly suited to complex large-scale
distributed systems, like the Internet-of-Things and Cyber-Physical Sys-
tems, where new mechanisms are needed to address composability and
reusability of collective adaptive behaviour. This work introduces a full
formal foundation for field computations, in terms of a core calculus
equipped with typing, denotational, and operational semantics. Criti-
cally, we apply techniques for formal programming languages to collec-
tive adaptive systems: we provide formal establishment of a link between
the micro- and macro-levels of collective adaptive systems, via a result
of computational adequacy and abstraction for the (aggregate) denota-
tional semantics with respect to the (per-device) operational semantics.

Keywords: Distributed computing · Core calculus · Type system · De-
notational semantics · Operational semantics · Computational adequacy.

1 Background

Aggregate computing [6] is a paradigm aiming to address the complexity of large-
scale distributed systems, by means of the notion of computational field [15] (or
simply field): this is a collective, distributed map from computational events
(when and where a device executes a computational action, also called a round)
to computational objects (data values of any sort, including higher-order objects
such as functions and processes) representing the result of computation at that
event. Computing with fields means computing such global data structures, and
defining a reusable block of behaviour means to define a reusable computation
from fields to fields. This functional view holds at any level of abstraction, from

2 G. Audrito et al.

low-level mechanisms of the language up to whole applications, which ultimately
work by getting input fields from sensors and processing them to produce out-
put fields for actuators. Most importantly, computing with fields is functional
and hence declarative: (i) the designer focusses on the intended global goal of
system behaviour, while the dynamics of interactions is left to the underlying
platform (i.e., semantics); and (ii) one can scale with complexity by relying on
functional composition: libraries of reusable building blocks can be constructed,
and successive layering can be used to bottom-up derive whole applications.

The field calculus [11] is a tiny functional language providing basic con-
structs to work with fields.4 It provides a unifying approach to understanding
and analysing the wide range of approaches to distributed systems engineering
that make use of computational fields [5,21]. The operational semantics of field
calculus [11] can act as a blueprint for actual implementations where myriad
devices interact via proximity-based broadcasts. More recently, the field calcu-
lus has been used to investigate formal properties of resiliency to environment
changes [18,20] and to device distribution [7]. Its expressiveness has been inves-
tigated by introducing the cone Turing Machine [1].

The higher-order field calculus [12] combines self-organisation and code mo-
bility by extending the field calculus with a semantics for distributed first-class
functions. It allows self-organisation code to be naturally handled like any other
data, e.g., dynamically constructed, compared, spread across devices, and exe-
cuted in safely encapsulated distributed scopes. Ultimately, this calculus provides
programmers with a novel first class abstraction, a “distributed function field”.
This is a dynamically evolving map from a network of devices to a set of exe-
cuting distributed processes: in each space-time region where the proces is the
same, devices form a coalition collectively carrying on that process in isolation.

2 Contributions of [3]

This paper presents syntax and operational semantics of the higher-order field
calculus together with new contributions: a type system for the higher-order
version of the calculus, a denotational semantics, and associated properties. The
new, enhanced syntax is parametric in the set of the modeled data values (in [12]
Booleans, numbers, and pairs were explicitly modeled). Moreover, the if con-
struct has been removed by encapsulating its branching capability into function
calls, which now take the form of a function field applied to arguments, implic-
itly enacting branching. Then, a novel key insight and technical result of this
paper is that the notoriously difficult problem of reconciling local and global
behaviour in a complex adaptive system [20] can be connected to a well-known
problem in programming languages: correspondence between denotational and
operational semantics. On the one hand, denotational semantics can be used to
characterise computations in terms of their collective effect across space (avail-
able devices) and time (device computation events)—i.e., the macro level. On

4 Much as λ-calculus [9] captures the essence of functional computation and FJ [14]
the essence of class-based object-oriented programming.

On a Higher-order Calculus of Computational Fields 3

the other hand, operational semantics gives a transition system dictating each
device’s individual and local computing/interactive behaviour—i.e., the micro
level. Correspondence between the two, formally proved in this paper via com-
putational adequacy and a form of abstraction (c.f. [10,19]) that we call computa-
tional abstraction, thus provides a formal micro–macro connection: one designs a
system considering the denotational semantics of programming constructs, and
an underlying platform running the distributed interpreter defined by the op-
erational semantics guarantees a consistent execution. This is a significant step
towards effective methods for the engineering of self-adaptive systems, achieved
thanks to the standard theory and framework of programming languages.

3 Conclusions, Related and Future Work

The work presented in this paper builds on a sizable body of prior work, for which
the field calculus can somewhat act as a lingua franca: foundational approaches
to group interaction (ambients [8], shared-spaces [22]), device abstraction lan-
guages (TOTA [15], Hood [23]), pattern languages [16], information movement
languages [17], and spatial computing languages (MGS [13] and Proto [4]). Ac-
cordingly, future plans include consolidation of this work to investigate variants
of the field calculus [2], to support an analytical methodology and a practical
toolchain for system development, and to isolate fragments of the calculus that
satisfy behavioural properties such as self-stabilisation developed in [20].

References

1. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Coordination Models and Languages. COORDINATION 2018.
Lecture Notes in Computer Science, vol. 10852, pp. 1–20. Springer (2018).
https://doi.org/10.1007/978-3-319-92408-3 1

2. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of com-
putation domains in field calculus. In: 2016 IEEE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W). pp. 192–197. IEEE
(2016). https://doi.org/10.1109/FAS-W.2016.50

3. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Transactions on Computational Logic 20(1), 5:1–
5:55 (Jan 2019). https://doi.org/10.1145/3285956

4. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for
robotic swarms. Neural Computing and Applications 19(6), 825–847 (2010)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
Languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical As-
pects of Domain-Specific Languages: Recent Developments, chap. 16, pp. 436–501.
IGI Global (2013). https://doi.org/10.4018/978-1-4666-2092-6.ch016

6. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Computer 48(9) (2015). https://doi.org/10.1109/MC.2015.261

7. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the internet of things. ACM Trans. Auton. Adapt. Syst. 12(3), 12:1–12:29 (Sep
2017). https://doi.org/10.1145/3105758

https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1145/3285956
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758

4 G. Audrito et al.

8. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science
240(1), 177–213 (Jun 2000). https://doi.org/10.1016/S0304-3975(99)00231-5

9. Church, A.: A set of postulates for the foundation of logic. Annals of Mathematics
33(2), 346–366 (1932). https://doi.org/10.2307/1968337

10. Curien, P.: Definability and full abstraction. Electromic Notes in Theorerical Com-
puter Science 172, 301–310 (2007). https://doi.org/10.1016/j.entcs.2007.02.011

11. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computa-
tional fields. Science of Computer Programming 117, 17 – 44 (2016).
https://doi.org/10.1016/j.scico.2015.11.005

12. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-
organisation: A higher-order calculus of computational fields. In: FORTE 2015,
Lecture Notes in Computer Science, vol. 9039, pp. 113–128. Springer (2015).
https://doi.org/10.1007/978-3-319-19195-9 8

13. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology. Tech. Rep. 72-2002, Univerite d’Evry, LaMI
(2002)

14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems
23(3), 396–450 (2001). https://doi.org/10.1145/503502.503505

15. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: The TOTA approach. ACM Transactions on Software Engineering Method-
ologies 18(4), 1–56 (2009). https://doi.org/10.1145/1538942.1538945

16. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
MIT, Cambridge, MA, USA (2001)

17. Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks. pp. 78–87.
ACM (Aug 2004). https://doi.org/10.1145/1052199.1052213

18. Nishiwaki, Y.: Digamma-calculus: A universal programming language of self-
stabilizing computational fields. In: 2016 IEEE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W). IEEE (2016).
https://doi.org/10.1109/FAS-W.2016.51

19. Stoughton, A.: Fully abstract models of programming languages. Research Notes
in Theoretical Computer Science, Pitman (1988)

20. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Transactions on Modeling and
Computer Simulation 28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

21. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. coordination 2018. In: Coordination
Models and Languages. Lecture Notes in Computer Science, vol. 10852, pp. 252–
279. Springer (2018). https://doi.org/10.1007/978-3-319-92408-3 12

22. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination
of pervasive services through chemical-inspired tuple spaces. ACM Transac-
tions on Autonomous and Adaptive Systems 6(2), 14:1 – 14:24 (June 2011).
https://doi.org/10.1145/1968513.1968517

23. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood ab-
straction for sensor networks. In: Proceedings of the 2nd international con-
ference on Mobile systems, applications, and services. ACM Press (2004).
https://doi.org/10.1145/990064.990079

https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.2307/1968337
https://doi.org/10.1016/j.entcs.2007.02.011
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1109/FAS-W.2016.51
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1145/990064.990079

	On a Higher-order Calculus of Computational Fields

