Managing Bioengineering Complexity

Fusun Yaman and Aaron Adler and Jacob Beal
BBN Technologies
10 Moulton Street
Cambridge, MA 02138

Introduction

Engineering the behavior of cells by modification of their genetic machinery holds the potential for revolutionary advances in many important application areas, including medical therapies, vaccination, manufacturing of proteins and other organic compounds, and environmental remediation. As capabilities and potential applications grow, the complexity and cross-disciplinary knowledge required to employ them is also growing rapidly. Managing the complexity of biological engineering is thus a problem of increasing importance. The rapid pace of advancement makes it important to have good methods for integration of new knowledge and procedures into organism engineering workflows.

Synthetic biology, the systematic design and engineering of biological systems, is not the first field facing the challenge of managing engineering complexity. In areas as disparate as the engineering of software, electronics, and mechanical systems, the common response has been to use artificial intelligence (AI) techniques to capture human expert knowledge and embed it into assistive tools. This paper refers to AI in the sense of knowledge-based computing systems, including the representation of knowledge (e.g., semantic networks, frame representations), the acquisition of knowledge (e.g., machine learning, hypothesis generation), its employment in planning and decision making (e.g., expert systems, constraint-based reasoning, planning under uncertainty), and also in automated action (e.g., robotics).

Although biological organisms are complex and not entirely understood, there are many opportunities for AI techniques to make a major difference in the efficacy of organism engineering. As it has in other fields, AI is likely to have transformative impact not through the construction of a single dramatic system, but rather through the progressive relaxation of many different bottlenecks and points of friction by the deployment of a wide variety of AI-based tools.

Organism Engineering

Rather than attempting to cover the whole field, we will narrow the focus of discussion for this paper to one important and widely addressed class of synthetic biology systems—genetic regulatory networks that implement a sense-control-actuate paradigm—and to a prototypical design-build-test workflow for engineering such systems.

Many synthetic biology systems can be viewed as three components: 1) sensing of environmental or cell state, 2) a control system that processes the signals from these sensors to determine appropriate cellular behavior, and 3) actuators that convert the control signals into actions such as enzymatic pathway regulation or reporter expression (Figure 1).

A typical synthetic biology workflow for organism engineering may be viewed as a cycle of three stages: design maps a behavior specification to a nucleic acid sequence intended to realize this behavior; build draws on synthesis and/or assembly protocols to fabricate said nucleic acid sequence; and test (measures) the behavior of cells modified to include the sequence, feeding this information back into the design step completing the cycle (Figure 2).

We discuss each of these steps emphasizing opportunities for improvements in the typical current workflow.

Design At the most abstract level, the engineer must determine the arrangement of sensors, actuators, regulatory relationships, and/or enzymatic pathways that will be used to implement a desired behavior. An arrangement is then mapped onto the set of DNA or RNA components that are available, or new components are engineered with the desired specifications while ensuring that there are not conflicts between the components selected in the arrangement. Finally, the components in the arrangement must be linearized, i.e., an order must be determined for genes to appear in the DNA sequence. At present, the selection and arrangement of components is typically carried out largely...
by hand, with little usable characterization data (component measurements under specific conditions) to guide component selection and poor models to quantitatively predict the behavior of the resultant composite system.

Build The build stage creates organisms modified with the designed nucleic sequence(s). First, the sequence(s) are synthesized (created) or assembled to produce actual physical samples, and the host organisms are cultured (grown) to be ready to receive these sequences. The sequences are then delivered to the organism by one of a variety of protocols. Both of these stages have a number of issues in yield and quality assurance. Many protocols require a “magic touch” by which some practitioners get reliable results and others frequently build systems with problematic flaws. Next-generation sequencing may help to address issues of quality control, but planning, resourcing, and executing build protocols effectively is still an open and challenging problem.

Test Finally, the behavior of the newly constructed organism or organisms is assayed (measured) to determine how well it corresponds with the original specification, and to help debug misbehavior such that the next iteration of the design can be closer to the desired behavior. Here, one of the biggest challenges is in relating assay data to the original specification: many assays produce data in great volume, but the mapping back to the original specification is often qualitative or relative. Likewise, it is often not clear how to relate the observed behavior to predictive models that can provide principled guidance in how to adjust the design phase in order to produce improved results.

Potential AI Contributions

Currently most organism engineering workflows have little automation and rely heavily on domain expertise, a limited amount of which is shared through publications. There are a number of places, however, where tools to support or carry out information integration and informed decision making might improve the efficiency and speed of organism engineering, as well as enabling better results to be produced. Such integration and decision-making points are summarized in Table 1.

Other Challenges

A number of non-technical challenges need to be addressed in pursuit of the synthesis of AI and synthetic biology.

- Much of the knowledge held by experts is not actually explicitly written down anywhere, or is documented in a way that counts on a human reader to make “common sense” assumptions. Other forms of expertise, particularly in complex physical processes, are transmitted more through apprenticeship than explicit communication. Capturing such knowledge requires investment and cooperation from experts in synthetic biology and AI.

- Many aspects of organism engineering and an organization’s engineering workflow may be considered proprietary, depend on closed systems that are not designed for integration with automation processes, or may be subject to intellectual property claims. In computer science, these types of barriers have been mitigated by strong movements in both the scientific and business communities that promote open exchange of knowledge.

- Biological organisms are complex, and many critical pieces of information are still unknown. While this is potentially a serious limitation in some areas, recent results in improving the modeling and predictability of composition in synthetic biology systems, give evidence that at least some areas of organism engineering appear to be at a sufficient level of maturity to support application of AI techniques. AI techniques can also reveal areas of biology that need further study.

- The continuing rapid advancement in both knowledge and methods also poses the threat that specific AI-enabled methods will be rapidly rendered obsolete. Furthermore, because most laboratories already have complex and highly customized processes in place, adoption barriers are likely to be a significant challenge. Impactful AI applications should deliver large enough benefits to overcome adoption cost and need to focus on providing somewhat more general frameworks for the rapid capture and automation of methods.

Summary and Recommendations

From an AI perspective, there are many interesting problems for applications, particularly given the massive scope and complexity of biological organisms and the problems encountered in their engineering. Complementarily, from a biology perspective, there are many potentially large benefits from integration of AI techniques. Realizing these benefits is likely to require tight collaboration between practitioners of both disciplines. We thus strongly recommend that practitioners interested in realizing these benefits seek out complementary colleagues.

Table 1: Summary of bioengineering challenges where there is a high potential AI techniques to contribute to the solution.

<table>
<thead>
<tr>
<th>Bioengineering Challenge</th>
<th>Key AI techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-assisted gene circuit design</td>
<td>expert systems, constraint-based reasoning, heuristic search, optimization, machine learning, multi-agent systems</td>
</tr>
<tr>
<td>Flexible protocol automation</td>
<td>robotics, planning under uncertainty</td>
</tr>
<tr>
<td>Assay interpretation and modeling</td>
<td>machine learning, qualitative reasoning</td>
</tr>
<tr>
<td>Represent/exchange designs</td>
<td>semantic networks, ontologies</td>
</tr>
<tr>
<td>Represent/exchange protocols</td>
<td>semantic networks, schemas</td>
</tr>
</tbody>
</table>

Figure 2: Typical synthetic biology workflow.