
Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

From distributed coordination to field calculus and aggregate

computing ✩

Mirko Viroli a,∗, Jacob Beal b, Ferruccio Damiani c, Giorgio Audrito c,
Roberto Casadei a, Danilo Pianini a

a Alma Mater Studiorum—Università di Bologna, Italy
b Raytheon BBN Technologies, USA
c Università di Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2019
Received in revised form 29 July 2019
Accepted 4 September 2019
Available online 10 September 2019

Keywords:
Distributed systems
Aggregate computing
Field calculus
Spatial computing

Aggregate computing is an emerging approach to the engineering of complex coordination
for distributed systems, based on viewing system interactions in terms of information
propagating through collectives of devices, rather than in terms of individual devices and
their interaction with their peers and environment. The foundation of this approach is
the distillation of a number of prior approaches, both formal and pragmatic, proposed
under the umbrella of field-based coordination, and culminating into the field calculus, a
universal functional programming model for the specification and composition of collective
behaviours with equivalent local and aggregate semantics. This foundation has been
elaborated into a layered approach to engineering coordination of complex distributed
systems, building up to pragmatic applications through intermediate layers encompassing
reusable libraries of program components. Furthermore, some of these components are
formally shown to satisfy formal properties like self-stabilisation, which transfer to whole
application services by functional composition. In this survey, we trace the development
and antecedents of field calculus, review the field calculus itself and the current state
of aggregate computing theory and practice, and discuss a roadmap of current research
directions with implications for the development of a broad range of distributed systems.

© 2019 Published by Elsevier Inc.

1. Introduction

As computing devices continue to become cheaper and more pervasive, the complexity of the distributed systems that
run our world continues to increase. Over the past several decades, we have moved from many people sharing a single
computer to a computer for each person to many, mostly embedded and minimal-interface computing devices for each per-
son. The only way to effectively engineer and coordinate the operation of such systems is to program and operate in terms
of aggregates of devices rather than attempting to micro-manage each individual device. Moreover, as devices become more

✩ This work has been partially supported by: EU Horizon 2020 project HyVar (www.hyvar-project .eu), GA No. 644298; ICT COST Action IC1402 ARVI
(www.cost -arvi .eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it). This document does not contain technology or technical data
controlled under either U.S. International Traffic in Arms Regulation or U.S. Export Administration Regulations.

* Corresponding author.
E-mail addresses: mirko.viroli@unibo.it (M. Viroli), jakebeal@ieee.org (J. Beal), ferruccio.damiani@unito.it (F. Damiani), giorgio.audrito@unito.it

(G. Audrito), roby.casadei@unibo.it (R. Casadei), danilo.pianini@unibo.it (D. Pianini).
https://doi.org/10.1016/j.jlamp.2019.100486
2352-2208/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jlamp.2019.100486
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2019.100486&domain=pdf
http://www.hyvar-project.eu
http://www.cost-arvi.eu
mailto:mirko.viroli@unibo.it
mailto:jakebeal@ieee.org
mailto:ferruccio.damiani@unito.it
mailto:giorgio.audrito@unito.it
mailto:roby.casadei@unibo.it
mailto:danilo.pianini@unibo.it
https://doi.org/10.1016/j.jlamp.2019.100486

2 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 1. This survey reviews the development of field calculus from its antecedents (left), the current state of aggregate computing theory and practice as
layered abstractions based on field calculus (middle), and current research directions on stemming from field calculus and aggregate programming (right).

numerous, smaller, and more embedded, decentralisation brings new opportunities as well as new challenges—not only
in terms of pervasive sensing/actuation/computation abilities, but also of increasing requirements for resilience, efficiency,
privacy, sustainability, and other non-functional requirements.

Aggregate computing is an emerging approach, developed significantly within the coordination models and languages re-
search community, that embraces this environment, and with the core idea of functionally composing collective behaviours
to achieve effective and resilient complex behaviours in dynamic networks. As an example, to provide smart-mobility ser-
vices for pedestrians in smart-cities [1], with aggregate computing one might first program a distributed building block to
estimate crowded areas (e.g., reusing core library blocks to compute distances, elect distributed leaders, and collect informa-
tion from regions to target nodes), and then functionally stack on top a service to alert people in crowded areas, another to
disperse them by suggesting steering directions, and yet another to guide people to points of interest while circumventing
those crowded areas.

Aggregate computing builds from a foundation of the field calculus, a functional programming model for the specification
and composition of collective behaviours with formally equivalent local and aggregate semantics. Atop this foundation,
a layered approach has been constructed to engineering coordination of complex distributed systems in contexts such as
smart-cities and smart-environments, robot/drone swarms, and tactical networks. This has been achieved by first considering
challenges of resilience, then pragmatism in the form of reusable libraries capturing common coordination patterns, and
finally applications across a number of different domains. As the research on aggregate computing is becoming rather
multi-faceted, we also envision a variety of research directions of high importance for distributed systems and specifically
for coordination models and languages, in theory, in engineering methods and tools, and in applications.

In this survey, an extended version of [2], we present a discussion of the past, present, and future of aggregate computing
(Fig. 1). The paper expands on [2] through a broader coverage of related works (including the pictorial overview in Fig. 2),
formal properties studied, and current/future works in several areas (platforms, security, applications); together with the
addition of a section (Section 3.3) presenting the denotational semantics for the first-order field calculus, obtained by
simplifying the semantics previously published for the higher-order version of the calculus.

Section 2 begins by tracing the development of aggregate computing through its antecedents both in coordination re-
search and in other areas, culminating in the development of the field calculus. Section 3 then presents a detailed review of
field calculus, the formal foundation of aggregate computing, as well as examples of aggregate programming. Section 4 dis-
cusses the current state of the rest of aggregate computing theory and practice across its various abstraction layers. Section 5
presents a roadmap of current research directions on top of field calculus and with respect to challenges in coordination
models and languages. Finally, Section 6 summarises and concludes the paper.

2. Coordination, self-organisation, and fields

In this section, we review and discuss the conceptual, but also technical and technological, path that has brought tra-
ditional coordination models for parallel computing, step-by-step to address the complexity of self-organising, large-scale
deployed systems (Section 2.1 and Section 2.2). We then describe the emergence of field-based coordination (Section 2.3),
and how, through the interaction with research falling under the umbrella of space-based computation models (Section 2.4),
this path has led to the development of the field calculus and aggregate computing. A pictorial overview of the antecedents
of field calculus and aggregate computing discussed in this section is provided in Fig. 2.

2.1. Coordination towards self-organisation

One of the key threads of antecedent research begins with simple coordination of parallel activities, then moves towards
increasing intelligence in coordination and distribution into increasingly complex self-organising distributed coordination
systems.

Generative communication
Coordination models are rooted in the idea that interaction among multiple, independent, and autonomous software

systems (e.g., processes, components, and so on, somewhat generically called agents henceforth) could be conceived and

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 3
Fig. 2. Overview of research threads leading from coordination to field calculus and aggregate computing, highlighting some bibliographic references. This
summary—by no means exhaustive—provides key highlights for the perspective discussed in this paper.

designed as a space orthogonal to pure computation. Historically, many coordination models reify this idea into a concept
of shared data space, working as a whiteboard, where processes of a parallel computing system can write and read infor-
mation [39], enabling so-called generative communication. Linda [3] is broadly recognised as the ancestor of a number of
approaches to generative communication falling under the umbrella of tuple-based coordination models. The foundational
idea of Linda was to have processes (on a centralised system) share information and synchronise by writing and retrieving,
with a suspensive semantics (the requester is blocked until the query is satisfiable), data in the form of an ordered col-
lection of possibly-heterogeneous knowledge chunks, i.e., tuples, from a shared (tuple-)space. Such data could be retrieved
associatively, by querying through partial representations of the structure and content matching the desired piece of data
(tuple template). The consequence is twofold: (i) decoupling in communication is strongly promoted, since no information
about the sender, the space itself, and the tuple insertion time is required in order for communication to happen; and (ii)
coordination is still possible in environments where information is vague, incomplete, inaccurate, or not entirely specified,
due to the possibility of synchronising over a partial representation of knowledge.

Programmable coordination rules
The vision of tuple-based coordination as a shared knowledge repository used for agent coordination is further promoted

by logical tuple-space models, where software agents coordinate through first-order logic tuples, and tuple spaces can
be programmed as first-order logic theories. A prominent example of such approach is Shared Prolog [6], a framework
for writing multi-processor Prolog systems. More generally, this view promotes the idea of equipping the shared space
with some form of “intelligence”, e.g., in the form of an application logic that can manipulate data in the shared space
and the way that it can be accessed. Several Linda-inspired approaches tackle this issue by enabling programmability at

4 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
the tuple-space level in order to express rules of coordination, and hence, pushing forward a notion of expressiveness
of the coordination media [40]. Among them, we find Law-Governed Interaction [7], which structures the coordination
logic within groups of agents by explicit “rules of engagement”; MARS [8], whose tuple spaces can be programmed with
stateful “reaction objects” triggered upon access patterns; and ReSpecT [9], where logic specification tuples map events to
transactional sequences of reactions, which are primitive invocations of logic-based computations.

Distribution
All these approaches, however, do not explicitly focus on distributed systems, but on the coordination of centralised

local components. As software components become spread across the system network, so multiple tuple spaces can be
distributed across the system environment, enabling distributed coordination abstractions, featuring mechanisms for event-
based interactions, timing, and advanced data representation. This is the case with industrial systems like JavaSpaces [4],
an API for distributed coordination through persistent, shared spaces of objects, and TSpaces [5], which combines Linda-
like spaces with asynchronous messaging. Some middlewares take the approach a step further, by dealing with location
and mobility, and enabling expression of dynamic environment topologies in a distributed setting, thus paving the way
towards application of coordination models to pervasive computing system scenarios. For instance, LogOp [10] extends basic
Linda with coordination primitives for dynamically accessing multiple distributed tuple spaces based on logical expressions.
Scope [11] leverages distributed broadcasts for tuple placement and migration. In Lime [13], mobile agents communicate
with each other through “transiently shared tuple spaces” whose content is dynamically reconfigured based on the set of co-
located agents. Another example is Klaim [12], which exposes a programming paradigm of mobile processes and data where
explicit localities regulate the interaction protocol of located processes and types characterise the intention of processes with
respect to specific localities.

Self-organising coordination
As coordination abstractions of various sorts (e.g., tuple spaces, channels, coordination artefacts [41,42]) are available in

distributed settings, one is directly faced with the problem of dealing with openness (hence, unexpectedness of environ-
ment changes, faults, and interactions), large scale (possibly a huge number of agents and coordination abstractions to be
managed), and intrinsic adaptiveness (such as the ability to intercept relevant events and react to them to guarantee overall
system resilience). This calls for an approach of self-organising coordination [43], where coordination abstractions handle “lo-
cal” interactions only (and typically use stochastic mechanisms to keep the coordination process always “up and running”),
such that global and robust patterns of correct coordination behaviour can emerge—achieved by trading off by-design adap-
tiveness with inherent, automatic forms of adaptiveness.

Coordination models following this approach typically take their inspiration from complex natural systems (from physics
through chemistry, all the way to ethology) and attempt to reuse the foundational mechanisms of such systems. A pri-
mary source of inspiration for these systems is to be found in biology (social animals, and insects in particular), whose
foraging techniques inspire mechanisms to regulate coordination [44,15,45]. For instance, SwarmLinda [15] is a tuple-based
middleware that brings the collective intelligence displayed by swarms of ants to computational mechanisms aimed at
guaranteeing efficient retrieval of tuples. Tuples are handled as forms of pheromones or items that ants (agents) con-
tinuously and opportunistically relocate. Chemical inspiration is used in [46,16] to regulate the “activity level” of tuples,
which drives the likelihood of their retrieval as well as their propagation rate. Ecological inspiration is instead used in
[47] to inject competition, composition, and disposal behaviour in the context of coordination of pervasive computing ser-
vices.

2.2. Multi-agent and collective adaptive systems

The research line of Multi-Agent Systems (MAS) [48] inherently acknowledges the key role of coordination [49] by focusing
on the macro level of systems of interacting autonomous agents. One key coordination challenge is to make agents cooperate
despite conflicting goals, e.g., through consistent multi-agent planning and proper negotiation. The survey in [50] provides an
account of recent progress in distributed multi-agent coordination in the areas of consensus, formation control, optimisation,
task assignment, and estimation.

Additionally, MAS research recognises the importance that the organisational dimension [51] assumes in the realisation
of system-level behaviour. Indeed, the function of structure and order is to regulate interactions so as to achieve static or
dynamic goals. This significance has motivated the emergence of frameworks and linguistic approaches (grouped under the
notion of organisation-oriented programming [52]) to model the organisational dimension of MAS, such as e-institutions [32]
and Moise+ [33]. The perspective of self-organisation is particularly relevant in MAS [53], as it provides a way to deal with
change in the environment and system itself.

A closely related branch of research that focuses on macro-level behaviour, especially in large-scale dynamic scenarios, is
that of Collective Adaptive Systems (CAS) [54]. Decentralisation of control, non-synchronised operation, and opportunistic inter-
action are often essential in this context to deal with the scale and changes in both the system structure and environment.
In this research area, it is common to consider large, dynamic groups of devices as first-class abstractions – sometimes called
ensembles, collectives, or aggregates – and support interaction between (sub-)groups of devices by abstracting from certain

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 5
details (e.g., networking, or individual logical connections). For instance, in Helena [29], components can dynamically par-
ticipate in multiple ensembles according to different roles. Similarly, DEECo [30] is another CAS model where components
can only communicate by dynamically binding together through ensembles. The GCM/ProActive framework [31] supports
the development of large-scale ensembles of adaptable autonomous devices through a hierarchical component model where
components have a non-functional membrane and “collective interfaces”, and a programming model based on active objects.
SCEL [27] is a kernel language to specify the behaviour of autonomic components, the logic of ensemble formation, as well
interaction through attribute-based communication (which enables implicit selection of a group of recipients). Carma [28]
uses attribute-based communication as well, to coordinate large ensembles of devices via local broadcast operations. In
these approaches, the ensemble abstraction is dynamic—in order to cope with change—and hence provides a way to adapt
the coordination logic.

2.3. Field-based coordination

Another important natural source of inspiration comes from physics: a number of physics-inspired self-organising co-
ordination systems rely on the notion of “field” (gravitational field, electromagnetic field), which essentially provides a
framework to handle (create, manipulate, combine) global-level, distributed data structures.

A notion of coordination field (or co-field) was initially proposed in [55] as a means to support self-organisation pat-
terns of agent movement in complex environments: it was used as an abstraction over the actual environment, spread by
both agents and the environment itself, and used by agents (which can locally perceive the value of fields) to properly
navigate the environment. Based on this idea, the TOTA (Tuples On The Air) tuple-based middleware [17] was proposed
to support field-based coordination for pervasive-computing applications. In TOTA each tuple, when inserted into a node
of the network, is equipped with a content (the tuple data), a diffusion rule (the policy by which the tuple has to be
cloned and diffused around), and a maintenance rule (the policy whereby the tuple should evolve due to events or time
elapsing).

The evolving tuples model, presented in [56], is an extension to traditional Linda tuple spaces with the goal of supporting
resource discovery in a pervasive system, relying on ideas similar to those of TOTA. Evolution is firstly embedded in tuples
by adding, to each field of the tuple, a name and a formula that specifies the field behaviour over time. Formulas support
the if-then-else construct and arithmetic and boolean operators. Secondly, a new operation evolve() is introduced in the
tuple space, which is responsible for applying formulas to tuples using contextual information.

One of the first works connecting field-based coordination with formalisation tools typical of coordination models and
languages (e.g., process algebras and transition systems) is the στ -Linda model [14], where agents can inject into the space
“processes” that spread, collect and decay tuples, ultimately sustaining fields of tuples.

2.4. Spatial computing approaches: towards the field calculus

More or less independently to the problem of finding suitable coordination models for distributed and situated systems,
a number of works addressed similar problems in the more general attempt of building distributed intelligent systems by
promoting higher abstractions of spatial collective adaptive systems. Works such as [57–60] survey from various different
viewpoints the many approaches that fall under this umbrella (including also some of the above mentioned coordina-
tion models), and which mainly organise in the following categories: methods that simplify programming of a collective
by abstracting individual networked devices (e.g., Hood [23], Abstract Regions [24], Butera’s “paintable computing” [25],
and Meld [26]), spatial patterns and languages (e.g., Growing Point Language [21], geometric patterns in Origami Shape
Language [22], self-healing geometries [61], or universal patterns [62]), tools to summarise and stream information over re-
gions of space and time (e.g., TinyDB [34], Cougar [35], TinyLime [36], and Regiment [37]), and finally space-time computing
models aiming at the manipulation of data structures diffused in space and evolving with time, e.g., targeting parallel com-
puting (e.g., StarLisp [63], systolic computing [64]) and topological computing (e.g., MGS [19,20]). Among them, space-time
computing models based on the notion of computational fields were initially proposed in [65] and [18] and implemented in
the Proto language [18]. Combining techniques coming from the above approaches and generalising over Proto (which can
be considered the archetypal spatial computing language due to its expressiveness and versatility), the field calculus has
been proposed as a foundational model for the coordination of computational devices spread in physical environments, also
known as aggregate computing.

3. Field calculus

In this section, we review the mathematical core of aggregate computing, the field calculus language, together with its
most relevant formalisations and properties. We follow the goal of presenting the full spectrum of results achieved while
avoiding all deep technical details (which can be accessed if desired from the references provided), though providing a
full formalisation of its semantics. First, we present the basic first-order calculus (Section 3.1) together with its operational
semantics, typing, basic properties (Section 3.2), and denotational semantics (Section 3.3). We then discuss the behavioural
properties that have been studied for field calculus programs (Section 3.4). We conclude by discussing the extension of the
calculus to allow for higher-order functions (Section 3.5).

6 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 3. Abstract syntax of the field calculus, as adapted from [70].

3.1. Basic calculus

The field calculus (FC) was introduced in [66] as a minimal core calculus meant to capture the key ingredients of
languages that make use of computational fields1: functions over fields, functional composition with fields, evolution of
fields over time, construction of fields of values from neighbours, and restriction of a field computation to a sub-region of
the network.

The field calculus is based on the idea of specifying the aggregate system behaviour of a network of devices, where
a dynamic neighbouring relation (which is application-dependent and represents physical or logical proximity) is used to
indicate the devices with which one can directly communicate2—e.g., in a sensor network, those within the range of a
broadcast communication. One such specification is structured as a functional composition of operators that manipulate
(evolve, combine, restrict) computational fields.

A key feature of the approach is that a specification can be interpreted either locally or globally. Locally, it can be seen
as describing a computation on an individual device, iteratively executed in asynchronous “computation rounds” comprising
reception of messages from neighbours, perception of contextual information through sensors, storing local state of com-
putation, computing the local value of fields, and spreading messages to neighbours. Globally, a field calculus expression
e specifies a mapping (i.e., the computational field) associating each computation round of each device to the value that
e assumes at that space-time event. This duality intrinsically supports the reconciliation between the local behaviour of
each device and the emerging global behaviour of the whole network of devices [69,66], as proved by the computational
adequacy and abstraction properties in [38], which relate operational and denotational semantics.

Fig. 3 gives an abstract syntax for field calculus, as presented in recent works [70]. In this syntax, the overbar notation e
indicates a sequence of elements (i.e., e stands for e1, e2, . . . , en), and multiple overbars are expanded together (e.g., δ �→ �

stands for δ1 �→ �1, δ2 �→ �2, . . . , δn �→ �n which is a map associating local values to device identifiers).
There are four keywords in this syntax: def for function definition; if for (the field-based variation of) branching

expression; and rep and nbr for the two peculiar constructs of field calculus, respectively responsible for evolution of
state over time and for sharing information between neighbours.

A field calculus program P consists of a sequence of function declarations F followed by the main expression e, defining
global (and also local) behaviour of the aggregate system. An expression e can be:

• A variable x, e.g., a function parameter.
• A value v, which can be of the following two kinds:

– a local value �, defined via data constructor c and arguments �, such as a Boolean, number, string, pair, tuple, etc;
– a neighbouring (field) value φ representing a collection of values from nearby devices, in the form of a function that

associates, for each device, the set of neighbour devices δ (including the device itself) to local values �, e.g., a map of
neighbours to the distances to those neighbours.

• A function call f(e) to either a user-declared function d (declared with the def keyword) or a built-in function b, such
as a mathematical or logical operator, a data structure operation, or a function returning the value of a sensor.

• A branching expression if(e1){e2}{e3}, used to split a computation into isolated sub-regions where (and when) e1
evaluates to True or False: the result is computation of e2 in the former area, and e3 in the latter.

• The nbr{e} construct, which creates a neighbouring value mapping neighbours to their latest available result of evalu-
ating e. In particular, each device δ:
1. shares its value of e with its neighbours, and
2. evaluates the expression into a neighbouring value φ, where φ is a function that maps each neighbour δ′ of δ to the

latest evaluation of e that has been shared from δ′ .

1 This is similar to how λ-calculus [67] captures the essence of functional computation and FJ [68] the essence of class-based object-oriented program-
ming.

2 A device with no neighbours, e.g., would be one isolated (temporarily or permanently) from the rest of the system.

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 7
Fig. 4. Example field calculus code.

For instance, nbr{temperature()} (where temperature is a built-in sensor estimating local temperature) would
produce a neighbouring value φ associating to each neighbour the temperature measured by that neighbour. Note that
in an if branch, sharing is restricted to occur between devices within the same subspace of the branch (since devices
in a different subspace do not execute the same nbr{e} constructs).

• The rep(e1){(x)=>e2} construct, which models state evolution over time. This construct retrieves the value v com-
puted for the whole rep expression in the last evaluation round (the value produced by evaluating the expression e1
is used at the first evaluation round) and updates it with the value produced by evaluating the expression obtained
from e2 by replacing the occurrences of x by v.

Within this collection of operations, the nbr and rep constructs are special, handling message exchanges respectively
between devices and within rounds of a single device. These constructs are assumed to be backed by a data gathering
mechanism accomplished through a process called alignment [71], which ensures appropriate message matching, i.e., that
no two different instances of a nbr expression can inadvertently “swap” their respective messages, nor can two different
instances of a rep expression “swap” their state memory. This has the notable consequence that the two branches of an if
statement in field calculus are executed in isolation: a device computing the “then” branch cannot communicate with the
“else” branch of a neighbour, and vice versa.

Example 3.1.1 (Distance Avoiding Obstacles). Consider Fig. 4. Function distanceTo takes as argument a field of Booleans
source, associating true to source nodes, and produces as result a field of reals, mapping each device to its minimum
distance to a source node, as computed by relaxation of the triangle inequality; namely: repetitively, and starting from
infinity (construct rep) everywhere, the distance on any node gets updated to 0 on source nodes (function mux(c,t,e)

is a purely functional multiplexer which chooses t if c is true, or e otherwise), and elsewhere to the minimum (built-
in minHood) of neighbours’ distance (construct nbr) added with nbrRange, a sensor for estimated distances. Function
distanceToWithObs takes an additional argument, a field of booleans obstacle, associating true to obstacle nodes;
it partitions the space of devices: on obstacle nodes it gives the field of infinity values, elsewhere it uses computation
of distanceTo. Because of alignment, the set of neighbours considered for distanceTo automatically discards nodes
that evaluate the other branch of if, effectively making computation of distances circumvent obstacles. Finally, the main
expression calls distanceToWithObs to compute distances from the node with deviceId equal to 0, circumventing
the devices where senseObs gives true.

Example 3.1.2 (Monitor). Consider the following field calculus expression.

if (fail()) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) }

This expression represents a simple monitor, for which higher values indicate a good situation, while lower (negative)
values signal problematic situations. In devices where fail is true, the number of consecutive rounds of failure is counted
with negative numbers by the rep expression. Non-failing devices instead compute sumHood(nbr{1}) (isolated from failing
devices) which (i) builds a neighbouring field φ mapping each non-failing neighbour to 1; (ii) sums every value in the range
of φ (except that for the current device) with built-in sumHood, obtaining the (non-negative) total number of non-failing
neighbours.

3.2. Operational semantics, typing and basic properties

The distinguished interaction model of this approach has been first formalised in [66] (see also [69]) by means of a small-
step operational semantics modelling single device computation (which is ultimately responsible for the whole network
execution). The main technical novelty in this formalisation is that device state and message content are represented in an

8 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 5. Hindley-Milner typing for field calculus, as adapted from [69].

unified way as an annotated evaluation tree θ . Field construction, propagation, and restriction are then supported by local
evaluation “against” the collection 	 of evaluation trees received from neighbours. The alignment mechanism to ensure
appropriate message matching is then implemented by operations navigating these trees, and discarding them whenever
different branches are taken (to prevent unwanted communication between nbr constructs in different branches of an if
expression).

Recent work models single device computation by a big-step operational semantics [70], expressed by the judgement
δ; 	; σ � emain ⇓ θ , to be read “expression emain evaluates to θ on device δ with respect to environment 	 and sensor state
σ ”. The overall network evolution is then formalised by a small-step operational semantics as a transition system N

act−→ N
on network configurations N , in which actions act can either be environment changes or single device computations (in
turn modelled by the big-step semantics). For the purpose of this survey, it is key to convey the overall behaviour of a field
computation (modelled by the denotational semantics formalised in the next section), but there is no need to provide the
full details of the operational semantics, since they pertain to a specific implementation “template” for node computational
rounds—the interested reader may find it in [70, Online Appendix C].

The work in [69] presents a type system used to intercept ill-formed field-calculus programs. Fig. 5 presents this system
(adapted to the syntax in Fig. 3), which builds on the Hindley-Milner type system [72] for ML-like functional languages,
as a set of syntax-directed type inference rules. Being syntax-directed, the rules straightforwardly specify a variant of the
Hindley-Milner type inference algorithm [72]. Namely, an algorithm that, given a field calculus expression and type assump-
tions for its free variables, either fails (if the expression cannot be typed under the given type assumptions) or returns its
principal type, i.e., a type such that all the types that can be assigned to an expression by the type inference rules can be
obtained from the principal type by substituting type variables with types.

Types are partitioned in two sets: types for expressions T and type schemes for functions FS (constructors, built-in operators
and user-defined functions)—this reflects the fact that the base field calculus does not support higher order functions (i.e.,
functions are not values). Expression types are further partitioned in two sets:

• types for local values L, including Booleans and other built-in types such as numbers, strings, pairs, tuples, etc;
• types for neighbouring values F , e.g., the values produced by nbr-expressions.

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 9
These sets also include two kinds of type variables t and l (similar to how the Standard ML type system features equality
and non-equality type variables [73]). This allows functions to behave polymorphically while enforcing ad-hoc restrictions
necessary to guarantee the properties discussed at the end of this section.

Type environments, ranged over by A, collect type assumptions x : T for program variables. Function-type-scheme environ-
ments, ranged over by D, collect the function type schemes f : ∀tl.(T) → T for the data constructors and built-in functions
together with the function type schemes inferred for the user-defined functions. In particular, the distinguished built-in
function-type-scheme environment D0 associates a function type scheme to each data constructor c and built-in function b.

The typing judgement for expressions is of the form “D; A � e : T”, to be read: “e has type T under the function-type-
scheme assumptions D and the type assumptions A”. The typing judgement for function declarations “D � F : FS ” and
programs “D0 � P : T ” are read analogously. We say that a program P is well-typed to mean that D0 � P : T holds for some
type T .

The typing rules are given in Fig. 5 (bottom). Rules [T-VAR], [T-DAT], [T-APP], [T-FUNCTION], and [T-PROGRAM] are almost standard.
Rule [T-NBR] requires the argument of an nbr construct to be local, in order to prevent the creation of a field of fields, which
would be computationally expensive. Rules [T-IF] and [T-REP] require the type of their arguments to match and to be local,
since rep or if constructs of field type would violate the domain alignment property. In fact, this type system is proved to
guarantee the following two valuable properties for field calculus:

• Domain alignment: On each device, the domain of every neighbouring value arising during the reduction of a well-typed
expression consists of the identifiers of the aligned neighbours and of the identifier of the device itself. In other words,
information sharing is scoped to precisely implement the aggregate abstraction.

• Type soundness: The reduction of a well-typed expression does not get stuck.

Example 3.2.1 (Typing). Consider the Examples 3.1.1 and 3.1.2. The type system assigns the following types to the involved
built-in functions, user-defined functions, and main expressions.

// minHood, sumHood : (bool) -> num
// nbrRange : () -> field(num)
def distanceTo(source) ... // (bool) -> num
def distanceToWithObs(source, obstacle) ... // (bool, bool) -> num
distanceToWithObs(deviceId() == 0, senseObs()) // num
if (fail()) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) } // num

3.3. Denotational semantics

The operational semantics corresponds to the local interpretation of the field calculus: it specifies details concerning
how a device internally processes a round, what information fills the message sent to neighbours, and which informa-
tion persists on a node across time. Such a specification is, of course, abstract, as a compliant implementation can apply
optimisation techniques (size of messages and of state information) that need not be specified into an operational se-
mantics. A further, more abstract formalisation of field calculus can be given by a denotational semantics focusing on the
global interpretation of field expressions, namely, as functions from (space-time) fields to fields. As advocated in [38], this
allows one to focus on the semantics of field constructs in a way that completely abstracts from local interpretation of
expressions, i.e., considers only their global effect. Ideally, this is the semantics one has in mind when designing complex
specifications, whereas operational semantics is more a concern of designers of field calculus support (interpreters, plat-
forms). Accordingly, and as a novel contribution of this paper, in this section we present a denotational semantics for the
field calculus (summarised in Fig. 7), obtained by adapting the denotational semantics of the higher-order field calculus
(Section 3.5) given in [38]. The resulting first-order version is much simpler3 and therefore more suitable for a survey
paper.

In this semantics, each round of computation happening on a device is represented by an event ε , and the collection
of all such executions across space (i.e., across devices) and time (i.e., over multiple rounds) forms an event structure E
[75], representing the overall execution of a single aggregate machine. Note that we rely on a true-concurrent semantics,
which is more faithful to the intended real-world applications of the field calculus. Each event structure is assumed to
be equipped with a neighbouring relation � guided by message exchanges, so that ε1 � ε2 iff a message sent in ε1 was
taken into account in ε2. This relation provides a topology for E, and its transitive closure forms the irreflexive causality
partial order <.4 Fig. 6 shows an example of such an event structure, showing how these relations partition events into

3 In particular, the denotation of function types is greatly simplified by omitting name tags and referring to the local behaviour instead of the global one,
rules for denoting functions are not needed and the denotation of function applications is simplified by substituting nested limits with a single global limit
on a stack trace length parameter.

4 We require the past of each event {ε′ ∈ E : ε′ < ε
}

to be finite (i.e., every computation has a start), even though the overall set of events may be infinite
(eternal computations).

10 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 6. Example of a space-time event structure, comprising events (circles) and neighbour relations (arrows). Colours indicate causal structure with respect
to event ε , splitting events into causal past (red), causal future (green), and concurrent (non-ordered, in black). Figure adapted from [74]. (For interpretation
of the colours in the figure(s), the reader is referred to the web version of this article.)

“causal past”, “causal future”, and non-ordered “concurrent” subspaces with respect to any given event ε . Interpreting this
in terms of physical devices and message passing, a physical device is instantiated as a chain of events connected by �
relations (representing evolution of state over time with the device carrying state from one event to the next), and any �
relation between devices represents information exchange from the tail neighbour to the head neighbour. Notice that this is
a very flexible and permissive model: there are no assumptions about synchronisation, shared identifiers or clocks, or even
regularity of events (though of course these things are not prohibited either).

We assume that each ε incorporates all the relevant information about the corresponding event, e.g., the involved device
δε and its sensor state at the time the event happened. For all ε and δ, we define εδ as the latest event at δ that ε can
be aware of, namely the one5 satisfying δ = δεδ and εδ � ε if δ
= δε , or εδ = ε in case δ = δε . We also define E

−
(ε) where

ε ∈ E ⊆ E as the set of devices δ such that εδ exists in E . Finally, we use ε− to denote the previous event of ε at the same
device if it exists, and E0 to denote the set of initial events (ε ∈ E such that ε− does not exist).

In the remainder of this section, we use the convention that a partial function λx ∈ X .φ(x) is defined only on the
elements x for which each subformula of φ(x) is defined, and thus propagate undefinedness implicitly.

Fig. 7 (top frame) presents the interpretation T �T� of types and T �FS� of function type schemes, as the set of possible
values. We assume that the interpretation of local types is given, and define the interpretation of field types field(L) as
partial functions6 from device identifiers D to the corresponding local type interpretation T �L�. Function type schemes are
interpreted as functions between the corresponding interpretations, after applying any of the allowed substitutions of the
type variables tl.

The interpretation of type schemes is used to define the interpretation of built-in functions and constructors (middle
frame), through the interpretation function B�·�, which we assume to be given. The main objects of the denotational se-
mantics are space-time values, which are partial maps from a given set of events E (implicitly equipped with a neighbouring
relation �) to values taken from the interpretation of the corresponding type. The interpretation of expressions E�e�E

X
produces a space-time value, and is performed with respect to a subset E ⊆ E and to a variable environment X , which is a
map from variable names (we use X for the set of possible variable names) to space-time values of the corresponding type.

Fig. 7 (bottom frame) defines the interpretation of expressions, as a limit on a parameter n that is to be understood as
a maximum allowed recursive depth. The interpretation of variables directly exploits the parameter X . The interpretation
of the application of built-in functions and constructors is directly delegated to the built-in interpretation function B�·�.
The interpretation of the application of defined functions returns an empty space-time value when the recursive depth is
exhausted (n = 0). Given a positive recursive depth n + 1, it instead corresponds to the interpretation of the body with
a reduced recursion depth n, using additional assumptions for the function parameters7 (calculated at the same recursive
depth n + 1).

The interpretation of branching statements is produced by adjoining the interpretation of its two branches, each per-
formed within the sole events on which the condition produced the corresponding (true or false) result. The interpretation of
nbr{e} expressions produces in each event ε ∈ E a neighbouring field value associating to each δ ∈ E

−
(ε) the interpretation

of e in εδ . Finally, the interpretation of e = rep(e1){(x) => e2} statements is defined as a limit of partial interpretations
�k = Rk�e�E,n

X , defined for events with at most k predecessors on the same device. When k = 0, the interpretation is an

5 We require that E is such that εδ is always unique (if it exists).
6 We write the set of partial functions from A to B as A �→B .
7 We assume that the arguments of defined functions d are implicitly renamed to avoid clashes with existing variables in X whenever needed.

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 11
Fig. 7. Denotational semantics of the field calculus.

empty space-time value. For positive values k + 1, the interpretation of e corresponds to the interpretation of e2 with the
additional assumption that x is shift(�k, �′), where �′ is the interpretation of e1 and

shift(�,�′) = λε ∈ E.

{
�′(ε) ε ∈ E0

�(ε−) otherwise

“pushes” each value in � to the next future event, while falling back to �′ for initial events.
We remark that the field calculus, according to the given semantics, is Turing universal for distributed computations

as shown in [74]. More precisely, field calculus programs can simulate the behaviour of any Turing machine T Mcone that
receives in each event ε the collection of all data available in each past event

{
ε′ ∈ E : ε′ < ε

}
and correspondingly produces

an output value.

Example 3.3.1 (Monitor Semantics). In order to showcase the denotational semantics at work, consider the field calculus
expression of Example 3.1.2.

if (fail()) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) }

The denotational semantics of this expression is summarised in Fig. 8, on a sample event structure E consisting of 21 events
occurring on 4 devices, among which device 2 had a reboot after its first two rounds of failure (represented by the missing
link between consecutive events). The variable environment is initially empty X = ∅ and the recursive depth n is irrelevant
as no function calls are considered. The denotation of the whole expression e is first split into two sub-networks ETrue ,
EFalse depending on the value returned by the built-in function fail.

The denotation of the then branch er is obtained as a limit of partial approximations: the first R0�er�∅ is defined only
on initial events (as the result of x − 1 assuming that x is 0 on those events), and the following ones are defined on more
events until the limit is reached with R3�er�.

The denotation of the else branch es is obtained in steps. First, the denotation of 1 (top right) is used to compute the
denotation of nbr{1} (middle right), producing in each event a neighbouring field value φ associating 1 (shown as edge

12 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 8. Example of denotational semantics of an expression as it is built up from sub-expressions. Events not included in the current reference event
structure are greyed out, while events on which the denotation is undefined are marked in blue.

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 13
label) to each neighbour device. Finally, such neighbouring field values are summed up by the built-in function sumHood
(bottom right).

3.4. Behavioural properties

The field calculus is designed as a general-purpose language for spatially distributed computations. Thus, regularity
properties have been isolated and studied for subsets of the core language. Among them, the established notion of self-
stabilisation to correct states for distributed systems [76–78] plays a central role. This notion, defined in terms of properties
of the transition system N

act−→ N of network evolution (cf. Section 3.2), ensures that both (i) the evaluation of a program
on an eventually constant input converges to a limit value in each device in finite time; (ii) this limit only depends on the
input values, and not on the transitory input values that may have happened before that. When applied in a dynamically
evolving system, a self-stabilising algorithm guarantees that whenever the input changes, the output reacts accordingly
without spurious influences from past values.

In [79] (an extended version of [80]), a first self-stabilising fragment is isolated through a spreading operator, which
minimises neighbour values as they are monotonically updated by a diffusion function. This pattern can be composed ar-
bitrarily with local operations, but no explicit rep and nbr expressions are allowed: nonetheless, several building blocks
can be expressed inside this fragment, such as classic distance estimation and broadcast (specific instances of operator G in
Fig. 12).

More self-stabilising programs and existing “building block” implementations are covered by the larger self-stabilising
fragment introduced in [70] (an extended version of [81]). This fragment restricts the usage of rep statements to three
specific patterns: converging, acyclic, and minimising rep. They roughly correspond to the three main building blocks pro-
posed, G, C and T: G is a generalisation of distance estimation, which spreads a spanning tree from a source region based
on a given metric, and use it to compute values outward; C conversely collects values inward a spanning tree (typically
produced by G) aggregating them “en route” so as to summarise a final result into a target node; and finally T is a lo-
cal operator to temporally evolve a value until reaching a fixpoint—see Fig. 12). Furthermore, a notion of equivalence and
substitutability for self-stabilising programs is examined: on the one hand, this notion allows for practical optimisation of
distributed programs by substitution of routines with equivalent but better-performing alternatives; on the other hand, this
equivalence relation naturally induces a limit viewpoint for self-stabilising programs, complementing and integrating the
two general (local and global) viewpoints by abstracting away the transitory characteristics and isolating the input-output
mapping corresponding to the distributed algorithm. These viewpoints effectively constitute different semantic interpreta-
tions of the same program: operational semantics (local viewpoint), denotational semantics (global viewpoint), and eventual
behaviour (limit viewpoint).

A fourth “continuous” viewpoint is considered in [82]: as the density of computing devices in a given area increases,
assuming that each device takes inputs from a single continuous function on a space-time manifold, the output values may
converge towards a limit continuous output. Programs with this property are called consistent, and have a “continuous”
semantic interpretation as a transformation of continuous functions on space-time manifolds. Taking inspiration from self-
stabilisation, this notion is relaxed for eventually consistent programs, which are only required to continuously converge to
a limit except for a transitory initial period, provided that the inputs are constant (except for a transitory initial period).
Eventual consistency can then be proved for all programs expressible in the GPI (gradient-following path integral) calculus,
which is a restriction of the field calculus where the only coordination mechanism allowed is the GPI operator, a generalised
variant of the distance estimation building block.

Finally, a recent thread of work [83] has begun considering the transient behaviour of field calculus programs, by provid-
ing real-time guarantees on program performance. In these results, a bounded amount of error with respect to ideal values
is proved to hold after a predictable set-up (or reconfiguration) time.

Up to this point, hence, validation of behavioural properties is mostly addressed “by construction”, namely, proving
properties on simple building blocks or restricting the calculus to fragments. It is a future work to consider the applicability
of techniques such as the formal basis in [77], or model-based analysis such as [84].

3.5. Language extension: the higher-order field calculus

The higher-order field calculus (HFC) [38,85] is an extension of the field calculus with first-class functions. Its primary
goal is to allow programmers to handle functions just like any other value, so that code can be dynamically injected, moved,
and executed in network (sub)domains. Namely, in HFC:

• Functions can take functions as arguments and return a function as result (higher-order functions). This is key to define
highly reusable building block functions, which can then be fully parametrised with various functional strategies.

• Functions can be created “on the fly” (anonymous functions). Among other applications, such functions can be passed
into a system from the external environment, as a field of functions considered as input coming from a sensor modelling
addition of new code into a device while the system is operating.

14 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
• Functions can be moved between devices (via the nbr construct) and the function to be executed can be remembered
and changed over time (via the rep construct), which allows one to express complex patterns of code deployment
across space and time.

• A field of functions (possibly created on the fly and then shared by movement to all devices) can be used as an
“aggregate function” operating over a whole spatial domain.

In considering fields of function values, HFC takes an approach in which making a function call acts as a branch, with
each function in the range of the field applied only on the subspace of devices that hold that function. When the field
of functions is constant, this implicit branch reduces to be precisely equivalent to a standard function call. This means
that we can view ordinary evaluation of a function name (or anonymous function) as equivalent to creating a function-
valued field with a constant value, then making a function call applying that field to its argument fields. This elegant
transformation is one of the key insights of HFC, enabling first-class functions to be implemented with relatively minimal
complexity.

In [85] the operational semantics of HFC is formalised, for computation within a single device, by a big-step op-
erational semantics where each expression evaluates to an ordered tree of values tracking the results of all evaluated
sub-expressions. Moreover, [85] also presents a formalisation of network evolution, by a transition system on network
configurations—transitions can either be firings of a device or network configuration changes, while network configurations
model environmental conditions (i.e., network topology and inputs of sensors on each device) and the overall status of de-
vices in the network at a given time. In the extension of this work in [38] the formalisation of HFC is carried on by providing
a denotational semantics, which is proved to correspond to the operational semantics through computational adequacy and
abstraction results. Furthermore, a refined type system is presented that is able to guarantee domain alignment, i.e., that the
domain of any expression of field type equals the set of neighbours that computed the same expression.

4. From field calculus to aggregate computing

In this section, we discuss the current state of the art in practical aggregate computing, without going into deep tech-
nical details—the reader can access code examples and tutorials from the references provided. We begin by discussing the
construction of implementations of field calculus as supported by the domain specific language Protelis (Section 4.1) and
the ScaFi API for Scala (Section 4.2). We then discuss the layered abstractions of aggregate programming built upon these
foundations, from resilient operators to pragmatic libraries (Section 4.3). Note that as far as current implementations are
concerned, field calculus is supported in its higher-order version, hence in the following we sometimes generally refer to
field calculus even if higher-order capabilities are concerned.

4.1. Protelis: a DSL for field calculus

The concrete usage of field calculus in application development is dependent on the availability of practical languages,
which provide an interpreter or compiler, as well as handling runtime aspects such as communication, interfacing with
the operating system, and integration with existing software. Protelis [86] provides one such implementation, including:
(i) a concrete syntax; (ii) an interpreter and a virtual machine; (iii) a device interface abstraction and API; and (iv) a
communication interface abstraction and API.

In Protelis, the parser translates a Protelis source code file into a valid representation of HFC semantics. This translated
program, along with an execution context, is fed to a virtual machine that executes the Protelis interpreter at regular
intervals. The execution context API defines the interface towards the operating system, including (with ancillary APIs)
an abstraction of the device’s capabilities and communication system. This architecture has been demonstrated to make
the language easy to port across diverse contexts, both simulated (Alchemist8 [87] and NASA World Wind [88]) and real-
world [89].

The entire Protelis infrastructure is developed in Java and hosted on the Java Virtual Machine (JVM). The motivation
behind this choice is twofold: first, the JVM is highly portable, being available on a variety of architectures and operating
systems; second, the Java world is rich in libraries that can be directly used within Protelis, with little or no need for writing
new libraries for common tasks.

The model-to-model translation between the Protelis syntax and the HFC interpreter is implemented using the Xtext
framework [90]. Along with the parser machinery, this framework is also able to generate most of the code required for
implementing Eclipse plug-ins: one such plug-in is available for Protelis, assisting the developer through code highlighting,
completion suggestions, and early error detection.

The language syntax is designed with the goal of lowering the learning curve for the majority of developers, and as
such it is inspired by languages of the C-family (C, C++, Java, C#, ...), with some details borrowed from Python. Code can
be organised in modules (or namespaces) whose name must reflect the directory structure and the file name. Modules can
contain functions and a main script. The code snippet in Fig. 9 offers a sampler of both the ordinary and field-calculus-
specific features of Protelis, including importing libraries and static methods, using functions as higher-order values in let

8 Alchemist is released as open source and available at http://alchemistsimulator.github .io.

http://alchemistsimulator.github.io

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 15
Fig. 9. Example Protelis code showcasing a sampler of language features.

constructs and by apply, tuple and string literals, lambdas, built-ins (e.g., minHood, and mux), and the field calculus
constructs rep and nbr.

Function definitions are prefixed by the def keyword, and they are visible by default only in the local module. In order
for other modules to access them, the keyword public must be explicitly specified. Other modules can be imported, as
well as Java static methods. Types are not specified explicitly: in fact, Protelis is duck-typed—namely, type-checked at run-
time through reflection mechanisms. The language offers literals for commonly used numeric values, tuples, and strings.
Instance methods can be invoked on any expression with the same “dot” syntax used in Java. Higher order support includes
a compact syntax for lambda expressions, closures, function references, functions as parameters, and function application.
Lastly, context properties, including device capabilities, are accessible through the self keyword. Environment variables
can be accessed via the short syntax env.

Another relevant asset of Protelis is its recently developed library “protelis-lang” [91], streamlining the implementation
of a number of algorithms found in the distributed systems literature. Among others, it includes several implementations
of self-stabilising building block functions [92,70], such as distanceTo to estimate distances, broadcast to send alerts,
summarize to perform distributed sensing, and so on. Notably, the library also includes meta-machinery for “aligning”
aggregate computing programs along arbitrary keys, separating and mixing domains in a finer way than the if construct
allows. These constructs, based on the alignedMap primitive of Protelis, enable highly dynamic meta-algorithms to be
written, that open up new possibilities such as multiInstance [91], or allow for increased resilience and adaptation as
in the case of timeReplicated [93].

Protelis is released as open source, and instructions on how to use it are available at http://www.protelis .org.

4.2. ScaFi: an API for the Scala programming ecosystem

From a pragmatic viewpoint, it is highly desirable to bridge the gap between field calculus-based DSLs and mainstream
programming platforms and languages that embody, among other things, the functional, object-oriented, and actor-based
paradigms (i.e., reference styles for in-the-small, in-the-large, and concurrent/distributed programming, respectively). Indeed,
this may be critical to foster adoption, reducing accidental complexity through coherent syntax, semantics, and toolset, and
paving the way to a more integrated programming experience.

External DSLs such as Protelis, despite the aid provided by DSL frameworks like Xtext [90], can require a lot of devel-
opment and maintenance effort, since they must cover aspects ranging from language design to typing, and proper tooling
must be provided to enable full interoperability with the target platform in static, runtime, and debugging contexts. By
contrast, internal DSLs are an interesting alternative, for they are expressed in the host language and are de facto equivalent
to an API: they more seamlessly interoperate, and reuse the syntax, semantics, typing, and tools of their host language, at
the expense of reduced flexibility due to the constraints exerted by the host environment.

http://www.protelis.org

16 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 10. ScaFi interface to the field calculus [94,97].

Such considerations of pragmatism, reuse, and interoperability motivate ScaFi (Scala Fields) [94], an aggregate computing
framework including a field-calculus DSL internal to the Scala programming language [95], also integrated into the Alchemist
meta-simulator [96], as well as an actor-based platform for distributed aggregate systems [97,98]. The choice of Scala as
the host language was inspired by its (i) interoperability across the JVM platform, (ii) seamless integration of the object-
oriented and functional paradigms, with support for lightweight component-based programming (cf., traits and self-types),
(iii) advanced features for type-safe library development (cf., implicits, generic type constraints), (iv) syntax flexibility and
sugar (cf., by-name arguments), allowing creation of fluent DSL-like APIs; and (v) prominent role in the scene of distributed
computing frameworks (cf., Akka [99], Kafka [100], Spark [101]).

Complementarily, from the platform perspective the use of actor-based abstractions is instrumental to the integration of
aggregate-level functionality into existing distributed systems (e.g., developed with more traditional techniques), by exposing
collective coordination events and data through message or event-like interfaces [97].

In ScaFi, the field calculus is modelled through a Scala trait (i.e., an interface) like the one reported in Fig. 10—where
type parameters are specified in square brackets; syntax =>T denotes by-name parameters; syntax T=>R denotes function
types; syntax (.,.) denotes tuples; and methods can be specified with multiple parameter lists. Interestingly, fields do not
emerge at the type level. Indeed, with respect to HFC, ScaFi provides a slightly different semantics where neighbouring fields
are substituted by a notion of “computation against a neighbour”, which is carried out by “folding” over the set of aligned
neighbours through a foldhood operation; coherently, nbr expressions can only be used within the expr expression of
the fold.

In practice, writing an aggregate program is as simple as subclassing AggregateProgram and defining a main method
which represents the entry point of the round logic. Operationally, an AggregateProgram instance acts simply as a
function from an abstract Context to an Export. Hence, for a platform to support local execution of field computations
it is just a matter of instancing an aggregate program (possibly mixing in components to provide access to platform-
level functionality), preparing contextual information (i.e., previous state, sensor data, and messages from neighbours), and
running a computation round according to the device lifecycle.

Working with a general-purpose, multi-paradigm programming language like Scala can give developers quite a lot of
flexibility and power with regards to the design and implementation of field libraries and programs. Indeed, generic,
object-oriented, and modular programming techniques are used within ScaFi and its standard library to provide type-safe,
expressive, reusable functionality.

Fig. 11 shows an example of programming in ScaFi, including the definition of a reusable block G (extending distance
calculation [1,70]), the import of functionality through mix-ins (with), the use of type-class-style assumptions on arguments
via context bound “[V: Bounded]” for implicit resolution [102], and pattern matching “case...=>...”. Despite this
power, some care has to be taken when mixing standard Scala features with ScaFi code: because field computations build
on a notion of alignment [71] for correct composition, their operation can be disrupted by features that locally affect or
alter the abstract position of field construct calls in the program, such as by-need constructs, control structures like Scala’s
if, iterative constructs, and operations on collections (especially when these are lazy).

In addition to the DSL, ScaFi also provides an actor-based platform [97], implemented on top of the Akka toolkit [99], to
ease the development of distributed aggregate systems. It currently supports two architectural styles [98]: (i) a fully peer-to-
peer style, where individual devices have everything they need to make up a system through decentralised interaction; and
(ii) a client-server style, where device-to-device interaction leverages a central server as an intermediary.

ScaFi is released as open source, with instructions on how to obtain and use it available at http://scafi .github .io.

4.3. Aggregate programming

Building upon these theoretical and pragmatic foundations, aggregate programming [1] elaborates a layered architecture
that aims to dramatically simplify the design, creation, and maintenance of complex distributed systems. This approach is

http://scafi.github.io

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 17
Fig. 11. Example of ScaFi DSL code.

motivated by three key observations about engineering complex coordination patterns:

• composition of modules and subsystems must be simple and transparent;
• different subsystems need different coordination mechanisms for different regions and times;
• mechanisms for robust coordination should be hidden by abstractions, such that programmers are not required to

interact with the details of their implementation.

Field calculus (along with its language incarnations) provides mechanisms for the first two, but is too general to guarantee
resilience and too mathematical and succinct in its syntax for direct programming to be simple: some methodology is
needed to properly scale with complexity.

Aggregate programming thus proposes two additional abstraction layers, as illustrated in Fig. 12, for hiding the complex-
ity of distributed coordination in complex networked environments. First, the “resilient coordination operators” layer plays
a crucial role both in hiding the complexity and in supporting efficient engineering of distributed coordination systems.
First proposed in [92], it is inspired by the approach of combinatory logic [103], the catalogue of self-organisation prim-
itives in [104], and work on self-stabilising fragments of the field calculus [79,70,80]. Notably, three key operators within
this self-stabilising fragment cover a broad range of distributed coordination patterns: operator G is a highly general infor-
mation spreading and “outward computation” operation, C is its inverse, a general information collection operation, and T
implements bounded state evolution and short-term memory.

Above the resilience layer, aggregate programming libraries [91,81] capture common patterns of usage and more spe-
cialised and efficient variants of resilient operators to provide a more user-friendly interface for programming. This definition
of well-organised layers of abstractions with predictable compositional semantics thus aims to foster (i) reusability, through
generic components; (ii) productivity, through application-specific components; (iii) declarativity, through high-level func-
tionality and patterns; (iv) flexibility, through low-level and fine-grained functions; and (v) efficiency, through multiple
components with coherent substitution semantics [70,81].

Within these two layers, development has progressed from an initial model built only around the spreading of informa-
tion to a growing system of composable operators and variants. The first of these operator/variant families to be developed
centred around the problems of spreading information, since interaction in aggregate computing is often structured in terms
of information flowing through collectives of devices. A major problem thus lies in regulating such spreading, in order to
take into account context variation, and in rapidly adapting the spreading structure in reaction to changes in the envi-

18 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Fig. 12. Aggregate programming abstraction layers. The software and hardware capabilities of particular devices are used to implement aggregate-level field
calculus constructs. These constructs are used to implement a limited set of building-block coordination operations with provable resilience properties,
which are then wrapped and combined together to produce a user-friendly API for developing situated IoT (Internet-of-Things) systems. Figure adapted
from [1].

ronment and in the system topology. Here, the gradient (i.e., the field of minimum distances from source nodes) in its
generalised form in the G operator is what captures, in a distributed way, a notion of “contextual distance” instrumental
for calculating information diffusion, and forms the basis for key interaction patterns, such as outward/inward bounded
broadcasts and dynamic group formation, as well as higher-level components built upon these.

The widespread adoption of gradient structures in algorithms stresses the importance of fast self-healing gradients [105],
which are able to quickly recover good distance estimates after disruptive perturbations, and more “dependable” gradient
algorithms in which stability is favoured by enacting a smoother self-healing behaviour [106]. Several other alternative gradi-
ent algorithms have also been developed, addressing two main issues. Firstly, the recovery speed after an input discontinuity,
which has first been bounded to O (diameter) time by the CRF (constraint and restoring force) gradient algorithm [105], fur-
ther improved to optimal for algorithms with a single-path communication pattern by the BIS (bounded information speed)
gradient algorithm [107,108], and refined to optimality for algorithms with a multi-path communication pattern by the SVD
(stale values detection) gradient algorithm [109]. Secondly, the smoothness and resilience to noise in inputs, first addressed
by the FLEX (flexible) gradient algorithm [106] and then refined and combined with improved recovery speed by the ULT
(ultimate) gradient algorithm [109].

To empower the aggregate programming tool-chain, other building blocks have been proposed and refined in addition
to gradients: consensus algorithms [110], centrality measures [111], leader election and partitioning [92], and most no-
tably, collection [70,81]. The collection building block C progressively aggregates and summarises values spread throughout
a network into a single value, e.g., their sum or other meaningful statistics. Based itself on distance estimation through gra-
dients, a general single-path collection algorithm has been proposed in [92] granting self-stabilisation to a correct value, then
multi-path collection has been developed for improved resiliency in sum estimations [70], and finally refined to weighted
multi-path collection [112] and its parametric extension [113], which is able to maintain acceptable whole-network sums
and maxima even in highly volatile environments. A different approach to collection has also proved to be effective for min-
imum/maximum estimates: overlapping replicas of non-self-stabilising gossip algorithms [93] (with an appropriately tuned
interval of replication), thus combining the resiliency of these algorithms with self-stabilisation requirements.

In sum, the current state of aggregate computing features pragmatic implementations of field calculus well-integrated
into modern languages. These in turn support an expanding library of resilient building blocks with various tradeoffs in their
dynamical behaviour, and which can be used as the basis for implementation of a wide variety of distributed applications.

5. Perspectives and roadmap

Over the past decade, aggregate computing has moved from a fragmented collection of ideas and tools to a stable core
calculus and a coherent layered framework for the engineering of distributed systems. Thus, even as the underlying theory

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 19
continues to be developed, as shown in [114], a significant portion of research and development can shift to more pragmatic
issues linked to applications and higher levels of the aggregate computing stack. In this section, we review a number of
such research directions, which include elaboration of libraries (Section 5.1), techniques to control dynamics (Section 5.2),
management of mobile devices and processes (Section 5.3), development of software platforms (Section 5.4), addressing
non-functional requirements such as safety and security (Section 5.5), and applications (Section 5.6).

5.1. Elaboration of libraries

The most immediate and incremental line of future development for aggregate computing is the elaboration of the
existing collection of libraries, to form a more broadly applicable and easier to use interface at the top of the aggregate
computing stack. One of the key directions for such additions and refinements will be the development of alternative
implementations of core resilient building block algorithms. The current resilient building block algorithms were selected
to be both simple, in order to make composition proofs more tractable, and highly general, which comes at a cost of being
unable to make assumptions about application needs or network conditions. As such, these algorithms are also often much
lower performance than they might be, and in most circumstances a software engineer would prefer to be able to use more
sophisticated and/or more specialised alternatives. Development of such alternatives has already begun as described above
(e.g., [113,108,93]), but there is much opportunity for further development and for adaptation of existing high-performance
algorithms into the aggregate programming framework.

Complementarily, despite the breadth of the core building blocks, there are also many distributed algorithms whose
behaviour cannot be reasonably expressed in terms of these building blocks. Another direction of future library elabora-
tion will thus be the incorporation of a larger range of widely used distributed algorithms (e.g., those in [115] and [76]).
Similarly, particular application domains will suggest adaptation or development of more specialised collections that cap-
ture the common design patterns and necessary functionalities peculiar to a domain. Adapting pre-existing algorithms into
an aggregate programming context will often pose some challenges, however, as most prior distributed algorithms are not
self-stabilizing and/or have not been designed with composition in mind.

Overall, the process of library elaboration is expected to follow a natural incremental progression of ongoing maturation
and professionalisation, driven by issues discovered as the other lines of future development outlined below exercise the
existing libraries to expose their current shortcomings and needs for enhancement.

5.2. Understanding and controlling dynamics and feedback

Much of the work to date on aggregate computing has focused on the converged properties of a system, such as self-
stabilisation [76,70] and eventual consistency [82]. These theoretical approaches, however, assume that the network of
devices is often in a persistent quasi-stable state in which the set of devices, their connections to one another, and their
environment all do not change for a significant length of time. In large scale systems, however, such quasi-stable states
are typically rare and short-lived: there is almost always something changing with respect to some device, thus constantly
injecting perturbations into the system. Prior compositional safety analysis regarding self-stabilisation and eventual con-
sistency also does not apply in the case of systems involving feedback, and many applications do require feedback either
directly between building blocks or indirectly via interactions with the environment.

The control theory literature has many well-developed tools for analysing the response of complex systems under per-
turbation and in the presence of feedback, including Lyapunov stability theory [116], passivity theory [117–119], centre
manifold theory [120,121], the Perron-Frobenius Theorem [122], and small-gain stability [123–125]. The mathematical
frameworks for such tools are not straightforward to adapt for application to aggregate computing building blocks. With
careful work, however, they may often still be applied, e.g., through identification of appropriate Lyapunov functions to
bound the convergence behaviour of a building block.

Early work in this area shows promise, enabling analysis and prediction of aggregate computing systems with feedback
between building blocks [126,127] and providing stability analysis and tight convergence bounds for particular applications
of the G operator [128,129] and C operator [130]. An important area for future development is thus to expand these
results to cover a large sublanguage of aggregate computing systems and to apply them in order to refine and improve the
dynamical performance of building blocks.

A potential complementary approach to these problems is to instead apply runtime verification techniques in order to
control the behaviour of an aggregate system, possibly exerting some kind of corrective action or feedback to maintain a
given quality of service. Early work in this area [131] shows that the field calculus is a promising language for expressing
runtime properties to be monitored (which may in turn be expressed either in field calculus or in other formalisms). The
recent development of the share construct for optimal state diffusion [132] further supports this claim, by providing means
to check temporal properties without delays. Notably, runtime verification methods are often too expensive to be used on
the complex state spaces of distributed systems, leading to the development of state-reduction methods like mean-field
approximation [133,134]; field calculus may provide an alternative method for state reduction that is more readily able to
be applied to a broader class of systems. Future developments may provide automatic translations of properties expressed
in spatio-temporal logics into field calculus, possibly improving over existing similar approaches in the field of runtime
verification of distributed systems.

20 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
5.3. Mobility of devices and processes

Another key area for expansion of aggregate computing, both in theory and practice, is better handling of mobility, both
of devices and of processes dispersed through networks of devices. From a theoretical perspective, this is closely interwoven
with the need for a deeper understanding of convergence dynamics, as systems with mobile devices or processes typically
do not ever achieve the quasi-stable states required for self-stabilisation to hold. Work to date, however, has instead typically
depended on the informal observation that “slow enough” mobility does not disrupt commonly used self-stabilising building
blocks—an assumption called into question by the results in [130]. Theoretical work is needed to predict and bound regions
of stability and effects of perturbation, as well as to develop improved building block alternatives for conditions where
the identified dynamics are unsatisfactory. There is also a need to expand the existing building block libraries to support
applications involving mobility. For controlling the physical motion of devices, a number of building blocks have been
demonstrated or proposed throughout the swarm robotics and multi-agent systems literature, including a number already
formulated as building blocks for aggregate computing (e.g., [135–137]).

Complementarily, another direction deserving exploration concerns the ability of the field calculus to effectively express a
dynamical collection of concurrent field computations with possibly dynamic domains. In this case, it is not the device that
is the focus of mobility, but instead code and processes that dynamically deploy, migrate, upgrade, and terminate during
system operation, as considered for example in [1,138,93] [139]. To effectively support mobility in aggregate computing, the
large volume of prior work on algorithms and strategies for such systems needs to be systematised and organised, analysed
for compositional safety and bounds on convergence, and adapted for use in aggregate computing based on the results of
analysis.

While some initial work has been reported in [91], there is need for development of a reasoned stack, from fine-grained
alignment primitives to meta-algorithms, that neatly increases the practical expressiveness of the field calculus and better
captures the dynamism, transitoriness and opportunistic traits of forthcoming IoT scenarios [140] [141]. Moreover, novel
support for the meta-management of field computation domains could help in defining dynamic coalitions or teams [51] of
devices—i.e., short-lived, goal-directed groupings attempting to maximise individual or group utility, respectively.

5.4. Software platforms

Aggregate computing targets a broad range of application scenarios, generally characterised by inherent distribution, het-
erogeneity, mobility, and lack of stable infrastructure (including computation, storage, and networking media). Development,
deployment, and runtime management of such applications can be greatly facilitated by development of middleware or
similar software platforms [98]. Middleware is a long-established approach to injection of abstraction layers between appli-
cation software and underlying software, hardware, or network challenges [142], providing a means of sharing and layering
functionality to assist with distributed systems challenges such as security and authentication, privacy and information man-
agement, run-time monitoring, fault tolerance, etc. Middleware does not solve or isolate these problems, particularly with
where it regards security and safety, but provides a means of at least sharing and reusing patterns and means of addressing
them.

Though middleware is used throughout the world of distributed computing, there are some issues (e.g., those discussed
in this section, like mobility and control) and opportunities specifically related to aggregate computing and coordination
that deserve attention. In particular, note that the aggregate programming model is partially declarative in that it abstracts
over a number of details such as, for instance, the specifics of neighbourhood-based communication and the order and
frequency of micro-level activities sustaining application execution—details that can be delegated to corresponding platform
services for topology management, scheduling, and round execution. This abstraction provides a high degree of flexibility
for the actual platform implementation, which is free to apply optimisations of various sorts, from simpler (e.g., avoiding
broadcasting redundant messages) to more complex ones (e.g., mixing of different communication modes).

Indeed, the entire aggregate computing system can be run according to varying strategies, depending on the pragmatics
of communication and underlying hardware [98]. At one extreme, programs may be executed in a fully distributed peer-to-
peer environment, where end-devices directly communicate to peer neighbours and each runs its own fragment of aggregate
logic. At the other extreme are completely centralised solutions where end-devices act only as managers for sensors and
actuators, sending perceptions upstream to one or more servers that run computations on their behalf and ultimately
propagate actuation data downstream.

Crucially, this flexibility suggests that aggregate computing may enable development of a more principled spectrum
for transitioning between cloud systems and distributed systems, embracing as well the emerging domains of edge and
fog computing [143–145] [146]. Aggregate computing may thus enable adaptive adjustment of systems for opportunistic
and QoS-driven exploitation of available infrastructural resources, as well as to the intrinsic adaptation required to deal
with emerging IoT scenarios. For instance, an aggregate system specification can be mapped to a system of actors [97]
where each actor is responsible for a specific aspect of the overall computation and communication and can be migrated to
different machines while preserving coordination by automatically adapting the bindings [98]. Much work remains, however,
to further develop both the theory of adaptive execution and to put such execution into practice.

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 21
5.5. Non-functional requirements

In real-world engineering efforts, the effort required to make a system that addresses core functional requirements is
often heavily outweighed by the effort required to deal with additional considerations such as safety, security, privacy, and
sustainability. The success or failure of aggregate programming as an approach to distributed systems engineering is thus
likely to depend strongly on whether its implementation is sufficiently able to either help address such non-functional
requirements or at least not interfere with other efforts to address them.

5.5.1. Safety
Safety in software usually concerns protections included in software to prevent, intercept, and react to unintentional

harm. In the context of aggregate programming, safety is relevant at several levels: platform-level safety, language-level
safety, algorithmic safety, and compositional safety.

Platform safety is not a property of aggregate programming itself, but rather is inherited from specific implementation
and deployment. As discussed in Section 5.4, in fact, aggregate programming abstracts away from the middleware in charge
of allowing network communications. Such middleware, however, will in the end be part of the deployed system, and its
safety properties (including possible issues) will propagate to the aggregate system.

Language safety refers on the safety of the specific implementation of field calculus. One key element of field calculus is
alignment [38,71], which determines whether or not two devices belong to the same domain at some specific point during
the execution. Practical implementations must deal with alignment [71]. The issue is usually tackled by annotating shared
values in such a way that the same computation path allows reconstruction of the annotation. However, both the existing
implementations have potential issues due to their hosting platform: in Protelis, alignment is not applied when Java code is
called from within the DSL, as Java libraries are not aware of the requirement to build annotations; in ScaFi, the primitive
construct aggregate must be used to wrap lambdas to turn them into “aggregate functions”, i.e., function objects that
are “tagged” with unique identifiers when they are created and hence respect alignment when invoked (by adding a cor-
responding labelled node to the evaluation tree). These aspects call for additional care when designing interaction between
aggregate programming languages and their host platform, and might be further improved in future implementations. Lan-
guage safety also includes language features that help developers write correct programs, such as type checking, debugging
tools, null safety, and so on.

Algorithmic safety is related to the guarantees that algorithms offer, especially those more frequently used and those in-
cluded in standard libraries. Eventual consistency [82], self-stabilisation [70], and self-adaptation to device distribution [147]
are good examples of algorithmic safety guarantees. Further relevant algorithmic safety information includes behaviour with
respect to time, which is particularly relevant for hard real-time systems [83]. One promising research line to obtain further
safety information of existing and novel aggregate algorithms is analysis conducted through the tools classically leveraged
by control theory [126,128–130], as described in Section 5.2.

Compositional safety, finally, refers to the conservation of safety properties when algorithms are combined. Existing work
has identified a collection of fundamental building blocks that propagate their algorithmic safety properties when com-
bined in non-cyclic constructions [92]. Current work, however, provides little in the way of compositional safety guarantees
regarding time or systems involving feedback mechanisms.

5.5.2. Security
Security refers to the ability of the system to prevent, detect, monitor, and react to intentional malicious attacks. Security

is a critical concern in computer science in general and especially in open environments, such as those envisioned in
pervasive computing and IoT scenarios involving vast numbers of devices administered by individuals and organisations
with no particular knowledge of security. This problem is multifaceted and requires carefully thought, full-stack solutions
that also consider orthogonal requirements, such as the cost of security-related computational tasks in resource-constrained
devices.

Similarly to safety issues, security issues arise at every level of the computing platform: a hypothetical perfectly secure
aggregate language used to write only demonstrably secure programs can still be exploited by attackers if the platform
hosting the computation (virtual or hardware) or enabling communication is not secure. At the same time, a perfectly secure
middleware does not guarantee security at the higher abstraction levels, since the mechanics of the aggregate system or
implementation shortcomings could be leveraged to induce unwanted behaviours.

Regarding application-level interaction, since coordination activity in aggregate computing is substantially based on a
premise of cooperation between the participating entities, it is often sensitive to attacks that may trigger epidemic deviation.
That is, what is the extent to which agents and their data can be trusted? In order to assess and mitigate the impact of
voluntary or involuntary misbehaviour, adoption of computational trust has proven useful [148] and applicable even in
decentralised settings, in which no central authority is available to certify recipients and endpoints, and in scenarios where
seamless opportunistic interaction is the norm. The proposed system provides some degree of protection from malicious
attackers with minimal requirements (i.e., without any infrastructural service or assumption about other devices), but also
requires special, trust-aware versions of algorithms, as well as a non-trivial parameter tuning process. Combined, these
restrictions limit the applicability of the proposed techniques.

22 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
Aggregate computing security at the language and language implementation level is, to the best of our knowledge,
currently unexplored. One possible approach to tackling the issue is by performing design and code level hardening [149],
which would require a specific analysis phase oriented to threat identification and risk calculation, before the design of
potential countermeasures.

A number of security issues, not strictly related to coordination but of prominent importance in real-world, trustworthy
systems, can be addressed in the middleware layer and through proper deployment solutions. For example, support is
needed to enable safe code mobility and execution, as proposed in [85], which may be required in scenarios characterised
by significant dynamicity requirements or demands for automatic deployment of new functionality. Additionally, despite the
decentralised and inherently scalable nature of aggregate systems, availability issues need to be considered, according to the
specifics of applications, especially with respect to nodes playing a crucial role in algorithms (e.g., sources, hubs, collectors,
region leaders). Security at the platform level is usually delegated almost entirely to the platform itself. However, some
specific security features of specific platforms may have relevant consequences for aggregate software executing on them.
For instance, in [150] a number of attacks are designed to compromise an aggregate program executing a trust-aware [148]
version of an aggregate algorithm. Interestingly, a class of attacks known as Byzantine behaviours [151], which include
selective attacks (sending data only to selected targets, or sending different information to different neighbours), masquerade
attacks (imitating the identity of another device), and Sybil attacks (faking multiple identities) could actually exploit the trust-
based protection mechanism via carefully crafted messages in order to impair the aggregate system. A possible solution is
leveraging the BlockChain technology [152] at the middleware level to provide transparent protection (i.e., without impact
on application logic) from Byzantine attacks. Unfortunately, permissioned BlockChains require certification authorities to
provide identities and roles, hence reducing system openness, while permissionless BlockChains pose serious limitations on
throughput (of transactions corresponding to coordination messages, and hence to system reactivity).

As practical aggregate programming platforms come to target embedded devices (as they are likely to do in future),
more focus will be required on lower level platform issues, especially if the protection layer usually offered by the operating
system will not be available or will be subject to more severe limitations due to efficiency requirements. In this context,
even “close-to-metal” attacks such as Meltdown [153], Spectre [154], and (Th)Rowhammer [155,156] will need to be taken
into account when selecting or designing the execution platform.

5.5.3. Privacy
Another related theme is privacy and confidentiality of information. The privacy properties of the data propagated and

collected by aggregate programs needs to be understood and guaranteed, or else participation may be hindered. Privacy
concerns have not, so far, been strongly considered in designing and implementing aggregate programming languages or
programs. In many ways, these concerns overlap with security: for example, the attacks mentioned in Section 5.5.2 have
the potential not just to disrupt computations, but to be used to maliciously extract data not meant to be available. Another
issue that must be tackled in the future includes adequate encryption not just of data exchanged between communicating
devices (an issue that could arguably be tackled at the platform level), but of unauthorised access to some portions of this
data. Due to alignment, there may be some portions of a collection of data that are sent to all neighbours, but are meant
to be accessed only by a subset of them, due to domain separation induced by a distributed branching construct. Currently,
in existing practical aggregate languages, nothing prevents legitimate participants to the system, even running on some
theoretical perfectly secure platform, from accessing all of the data shared by any of the neighbours. Adequate protection of
confidentiality at this level will require novel research and careful thought.

5.5.4. Efficiency and sustainability
Efficiency of computing is already a major concern for platforms with constrained energy budgets (e.g., those powered

by batteries and/or energy harvesting), and sustainability is becoming of increasing concern as a non-functional require-
ment for computing systems [157]. Sustainability and efficiency, which are closely related, are pervasive issues requiring
special attention, as they can pose limitations to the techniques that can be deployed in order to satisfy both functional
and other non-functional requirements. For example, encryption techniques intended for tackling privacy and security is-
sues may require the use of computational resources that may imply unacceptably high battery consumption. Moreover,
network and power efficiency concerns are often among the elements that are simplified away in simulated models, shift-
ing the burden down the line to deployment and implementation. As discussed for safety in Section 5.5.1, efficiency should
also be considered as a cross-cutting concern throughout the whole stack of aggregate computing. Besides algorithmic
efficiency, which has a great deal of impact, there are also a number of concerns related to language and platform effi-
ciency.

Although some of the antecedents of aggregate computing have been quite energy efficient [158], the increased gener-
ality and functionality of recent platform implementations has as a byproduct resulted in less efficient implementations.
Aggregate programming has been recently experimented with in conjunction with long-range, low-power communication
devices (LoRaWAN [159]), yielding mixed results and suggesting future research directions [160]. One relevant issue for
integration in such networks is the fact that both existing practical implementations of the field calculus require a Java Vir-
tual Machine to execute, which is far above the computational resources of small microcontrollers such as those commonly
found in LoRa nodes. Consequently, such nodes were used as long range networking interfaces for more computationally
capable devices; such a configuration, however, would make sense only for a narrow range of applications, where either

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 23
battery power is not a relevant concern, or the computation and communication system power consumption is only a small
fragment of the overall consumption (e.g., with self-propelled mobile devices), and would likely complicate the deployment
of self-powered LoRa systems [161]. Future efforts devoted to providing highly efficient implementations of the field calcu-
lus targeting microcontrollers, however, could possibly once again make aggregate programming of ensembles of low power
devices feasible. A second relevant factor limiting the adoption of aggregate programming over long range networks is its
use of network capacity: unlike the antecedent implementations in Proto [18], current field calculus implementations do
not have bandwidth capacity saving systems in place (such as a mechanism not to send identical messages in sequence),
nor do they focus on reducing message size. At present, the produced packet size produced is large enough to prevent
any non-trivial aggregate programming application from using long-range, low-power communication [160], particularly if
packets contain Java objects transmitted with default serialization. Unfortunately, optimisations focused on reducing mes-
sage size often conflict with optimisations oriented at improving simulation performance and accessibility of debugging
information, as well as frequently conflicting with privacy and security requirements. The issue might be mitigated in a
number of ways, however, including isolating the construction of network packets and of the annotations used to fetch
data based on the current computation, and by providing multiple implementations that target different efficiency trade-
offs.

5.6. Applications and pragmatics

Finally, the core goal for the aggregate computing research thrust has always been to enable simpler, faster development
of more resilient distributed applications. Having developed both its theoretical foundations and the layered system of
algorithms and libraries exploiting those foundations, one of the major directions of current and future work is indeed to
apply these developments to real-world problems across a variety of domains.

5.6.1. Pervasive computing, IoT, smart-cities
One key application area, previously discussed in [1] and other works, is pervasive or IoT scenarios in dense urban

environments. As the density of communicating devices increases, their interactions put pressure on the available fixed
infrastructure and the opportunities for local interaction increase [162]. This is particularly acute during transient events
when demand and the available infrastructure become mismatched, such as during festivals or sporting events when the
number of people packed into an area spikes, or during natural disasters and other emergencies when the available infras-
tructure may be degraded. One of the critical challenges for such applications is simply to access the potential peer-to-peer
capabilities of devices, which are often closed platforms and are currently typically configured primarily for asymmetrical
communication with fixed infrastructure or individually connected personal networks. These constraints are both loosening
over time as app infrastructures continue to spread and develop on many platforms. Finally, the benefits of distribution
must be effectively balanced with tight energy budgets on many devices and the continuous value of non-local interactions
enabled by cloud connections.

A closely related research problem revolves around the coordination of computation activities across the edge, fog, and
cloud layers. Edge and fog computing are emerging paradigms that complement traditional cloud services—provided by
massive, remote data centres—with elastic resource provisioning “at the edge of the network” [163,164], close to where
computation inputs are taken and computation outputs are needed (i.e., to users). The problem forces that have motivated
this evolution are essentially the same as those that originated the spatial computing movement [57]. Namely, at their basis
is the realisation of the key role of physical locality, as location in space affects both the performance and the feasibility
of computation—cf., latency-sensitive applications, connectivity limitations. The combined action of miniaturisation, dense
deployments, and heterogeneity promotes a vision where more and more resource-constrained devices offload computations
locally, rather than through global connectivity. Arguably, by its intrinsically spatial nature [165] and its declarativity [98],
aggregate computing may help to define edge/cloud computing ecosystems where both locality and increasingly non-local
aspects are taken into account [146,141].

5.6.2. Robot swarms, unmanned aerial vehicles
Another important emerging application area is control of drones and other unmanned vehicles, driven by the rapidly

increasing availability of high-quality platforms at various levels of cost and capability. With the emergence of highly ca-
pable autopilots, the need for detailed human control is decreased and it becomes desirable to shift from the current
typical practice of multiple people commanding a single platform toward a single person controlling many platforms. Ag-
gregate computing is a natural fit for approaching multi-platform control, using paradigms such as those discussed in [135]
and [136]. In implementation, however, the challenges of mobility become acute as one considers rapid physical move-
ments. Likewise, a better understanding of convergence dynamics and feedback will be needed. Work in this space will
also demand significant elaborations in aggregate computing libraries, adapting manoeuvres from the applicable literature
and doctrine into additional composable building block components. Finally, there are also major pragmatic issues to be
addressed in platform interfaces, including a plethora of standards, safety issues, and appropriate incorporation of resource
and manoeuvring constraints.

24 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
5.6.3. Agent-based planning
Agent-based planning uses similar principles, computing plans for future actions over an aggregate of agents. This gener-

alisation, however, typically also connects representations of future plans, tasks, goals, and environment into the aggregate
[138], as some combination of additional virtual devices in the aggregate and virtual fields that devices can interact
with. Examples include the poly-agent approach to modelling and planning [166] and agent-based sharing of airborne
sensors [167,168]. When agent-based planning is centralised, managing projections and tasks is straightforward; when dis-
tributed across physical agents, however, there are important questions to be addressed regarding where projections and
tasks should be hosted, to what degree they should be duplicated, and how to synchronise information between dupli-
cates.

5.6.4. Networked systems management
Aggregate computing can also be applied to more conventional networked systems. In this case, the links be-

tween neighbours are defined by (not particularly spatial) physical network connections, virtual network relation-
ships such as in an overlay network, or else logical relationships such as interaction patterns between services. As
long as the number of such neighbours is relatively constrained, such that sending regular updates to neighbours
is not problematic, many of the same sorts of coordination approaches that work in other application areas can
work in areas such as these as well. Examples of applications in this space include coordinating recovery opera-
tions for networks of enterprise services [89], coordinating a checkpoint-based “rewind and replay” across interacting
services to undo the effects of a cyber-attack [169], and integrating applications across intermittently connected dis-
tributed cloud nodes [169]. In this domain, in most cases it is not cost-effective to try to write or refactor entire
services and applications into an aggregate computing paradigm. Instead, aggregate computing appears better used
as a meta-level coordination and control service, helping to determine things like when and where to migrate ser-
vices across machines, how many instances of a service should be used, how to rendezvous between services that
need to communicate, and so on. Future work in this space is thus likely to focus on extending libraries to bet-
ter support various coordination paradigms, particularly with distributed graph algorithms for supporting coordination
regarding dependencies and information flows, and on the pragmatics of interfacing with complex legacy applica-
tions.

5.6.5. Other application domains
In addition to the domains presented here, aggregate computing offers potential value in many other application do-

mains as well: it is likely to offer value in any domain with an increasing number and potential volatility in collections
of devices capable of communicating locally. The ongoing continuation of miniaturisation and embedding of computa-
tional devices means this is likely to apply in most areas of human endeavour, to one degree or another. Across all
such domains, just as in the four domains described in detail, it is likely to be the case that aggregate computing will
not be the focus of the system but rather, much like any other specialised library, used as a modular component: and
most specifically, as a component providing a coordination service. A critical challenge for the future, then, will be to
continue shaping and improving libraries and interface patterns in response to the needs of these application domains,
in order to allow aggregate computing to become as invisible as possible in the actual process of systems engineer-
ing.

6. Conclusions

Aggregate computing is a potentially powerful approach to the engineering of distributed systems, emerging from the
distillation of a wide variety of approaches to coordination into the field calculus. This mathematical core then serves as
the basis for a layered approach to pragmatic development of composable and resilient distributed systems. The future of
aggregate programming involves both continued development of its core theoretical tools as well as work to realise its
potential across a wide range of important application domains.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

References

[1] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the Internet of Things, IEEE Comput. 48 (9) (2015) 22–30, https://doi .org /10 .1109 /MC .2015 .
261.

[2] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From field-based coordination to aggregate computing, in: International Conference on
Coordination Models and Languages, COORDINATION, in: Lecture Notes in Computer Science, vol. 10852, Springer, 2018, pp. 252–279.

[3] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang. Syst. 7 (1) (1985) 80–112, https://doi .org /10 .1145 /2363 .2433.
[4] E. Freeman, S. Hupfer, K. Arnold, JavaSpaces Principles, Patterns, and Practice, The Jini Technology Series, Addison-Wesley Longman, 1999.
[5] P. Wyckoff, S.W. McLaughry, T.J. Lehman, D.A. Ford, T spaces, IBM J. Res. Dev. 37 (3–Java Techonology) (1998) 454–474, https://doi .org /10 .1147 /sj .373 .

0454.

https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD3BA9AC8359832167BCA325A6A2D2670s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD3BA9AC8359832167BCA325A6A2D2670s1
https://doi.org/10.1145/2363.2433
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib7397CE0E56808541753302501F8332E1s1
https://doi.org/10.1147/sj.373.0454
https://doi.org/10.1147/sj.373.0454

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 25
[6] A. Brogi, P. Ciancarini, The concurrent language, Shared Prolog, ACM Trans. Program. Lang. Syst. 13 (1) (1991) 99–123, https://doi .org /10 .1145 /114005 .
102807.

[7] N.H. Minsky, V. Ungureanu, Law-governed interaction: a coordination and control mechanism for heterogeneous distributed systems, ACM Trans.
Softw. Eng. Methodol. 9 (3) (2000) 273–305, https://doi .org /10 .1145 /352591.352592.

[8] G. Cabri, L. Leonardi, F. Zambonelli, MARS: a programmable coordination architecture for mobile agents, IEEE Internet Comput. 4 (4) (2000) 26–35,
https://doi .org /10 .1109 /4236 .865084.

[9] A. Omicini, E. Denti, From tuple spaces to tuple centres, Sci. Comput. Program. 41 (3) (2001) 277–294, https://doi .org /10 .1016 /S0167 -6423(01)00011 -9.
[10] R. Menezes, J. Snyder, Coordination of distributed components using LogOp, in: International Conference on Parallel and Distributed Processing Tech-

niques and Applications, PDPTA, vol. 1, CSREA Press, 2003, pp. 109–114.
[11] I. Merrick, A. Wood, Scoped coordination in open distributed systems, in: International Conference on Coordination Languages and Models, Springer,

2000, pp. 311–316.
[12] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: a kernel language for agent interaction and mobility, IEEE Trans. Softw. Eng. 24 (5) (1998) 315–330,

https://doi .org /10 .1109 /32 .685256.
[13] A.L. Murphy, G.P. Picco, G.-C. Roman Lime, A coordination model and middleware supporting mobility of hosts and agents, ACM Trans. Softw. Eng.

Methodol. 15 (3) (2006) 279–328, https://doi .org /10 .1145 /1151695 .1151698.
[14] M. Viroli, D. Pianini, J. Beal, Linda in space-time: an adaptive coordination model for mobile ad-hoc environments, in: 14th International Conference

on Coordination Models and Languages, COORDINATION, 2012, pp. 212–229.
[15] R. Tolksdorf, R. Menezes, Using swarm intelligence in Linda systems, in: Engineering Societies in the Agents World IV, in: Lecture Notes in Computer

Science, vol. 3071, Springer, 2004, p. 519.
[16] M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordination of pervasive services through chemical-inspired tuple spaces, ACM Trans. Auton.

Adapt. Syst. 6 (2) (2011) 14, https://doi .org /10 .1145 /1968513 .1968517.
[17] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing applications: the TOTA approach, ACM Trans. Softw. Eng. Methodol. 18 (4)

(2009) 1–56, https://doi .org /10 .1145 /1538942 .1538945.
[18] J. Beal, J. Bachrach, Infrastructure for engineered emergence in sensor/actuator networks, IEEE Intell. Syst. 21 (2006) 10–19, https://doi .org /10 .1109 /

MIS .2006 .29.
[19] J.-L. Giavitto, C. Godin, O. Michel, P. Prusinkiewicz, Computational Models for Integrative and Developmental Biology, Tech. Rep. 72-2002, Univerite

d’Evry, LaMI, 2002.
[20] J.-L. Giavitto, O. Michel, J. Cohen, A. Spicher, Computations in space and space in computations, in: Unconventional Programming Paradigms, in:

Lecture Notes in Computer Science, vol. 3566, Springer, Berlin, 2005, pp. 137–152.
[21] D. Coore, Botanical Computing: A Developmental Approach to Generating Inter Connect Topologies on an Amorphous Computer, Ph.D. Thesis, MIT,

Cambridge, MA, USA, 1999.
[22] R. Nagpal, Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics, Ph.D.

Thesis, MIT, Cambridge, MA, USA, 2001.
[23] K. Whitehouse, C. Sharp, E. Brewer, D. Culler, Hood: a neighborhood abstraction for sensor networks, in: 2nd International Conference on Mobile

Systems, Applications, and Services, ACM, 2004.
[24] M. Welsh, G. Mainland, Programming sensor networks using abstract regions, in: NSDI, vol. 4, 2004, p. 3, https://dl .acm .org /citation .cfm ?id =1251178.
[25] W. Butera, Programming a Paintable Computer, Ph.D. Thesis, MIT, Cambridge, USA, 2002.
[26] M.P. Ashley-Rollman, S.C. Goldstein, P. Lee, T.C. Mowry, P. Pillai, Meld: a declarative approach to programming ensembles, in: International Conference

on Intelligent Robots and Systems, IROS, IEEE, 2007, pp. 2794–2800.
[27] R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi, A formal approach to autonomic systems programming: the SCEL language, ACM Trans. Auton. Adapt.

Syst. 9 (2) (2014) 7, https://doi .org /10 .1145 /2619998.
[28] M. Loreti, J. Hillston, Modelling and analysis of collective adaptive systems with CARMA and its tools, in: M. Bernardo, R. De Nicola, J. Hillston (Eds.),

Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems – 16th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, Advanced Lectures, SFM 2016, Bertinoro, Italy, June 20–24, 2016, in: Lecture Notes in Computer
Science, vol. 9700, Springer, 2016, pp. 83–119.

[29] R. Hennicker, A. Klarl, Foundations for ensemble modeling—the Helena approach, in: Specification, Algebra, and Software, Springer, 2014, pp. 359–381.
[30] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, Deeco: an ensemble-based component system, in: Proceedings of the 16th

International ACM Sigsoft Symposium on Component-Based Software Engineering, ACM, 2013, pp. 81–90.
[31] F. Baude, L. Henrio, C. Ruz, Programming distributed and adaptable autonomous components—the GCM/ProActive framework, Softw. Pract. Exp. 45 (9)

(2015) 1189–1227, https://doi .org /10 .1002 /spe .2270.
[32] M. Esteva, J.-A. Rodriguez-Aguilar, C. Sierra, P. Garcia, J.L. Arcos, On the formal specification of electronic institutions, in: Agent Mediated Electronic

Commerce, Springer, 2001, pp. 126–147.
[33] J.F. Hübner, J.S. Sichman, O. Boissier, Developing organised multiagent systems using the MOISE+ model: programming issues at the system and agent

levels, Int. J. Agent-Oriented Softw. Eng. 1 (3/4) (2007) 370–395, https://doi .org /10 .1504 /IJAOSE .2007.016266.
[34] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: a tiny aggregation service for ad-hoc sensor networks, Oper. Syst. Rev. 36 (SI) (2002) 131–146,

https://doi .org /10 .1145 /844128 .844142.
[35] Y. Yao, J. Gehrke, The Cougar approach to in-network query processing in sensor networks, SIGMOD Rec. 31 (3) (2002) 9–18, https://doi .org /10 .1145 /

601858 .601861.
[36] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, G.P. Picco, Mobile data collection in sensor networks: the TinyLime middleware, Pervasive

Mob. Comput. 4 (2005) 446–469, https://doi .org /10 .1016 /j .pmcj .2005 .08 .003.
[37] R. Newton, M. Welsh, Region streams: functional macroprogramming for sensor networks, in: Workshop on Data Management for Sensor Networks,

2004, pp. 78–87.
[38] G. Audrito, M. Viroli, F. Damiani, D. Pianini, J. Beal, A higher-order calculus of computational fields, ACM Trans. Comput. Log. 20 (1) (2019) 1–55,

https://doi .org /10 .1145 /3285956.
[39] D. Corkill, Blackboard systems, AI Expert 9 (6) (1991) 40–47.
[40] N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro, Coordination models: a guided tour, in: Coordination of Internet Agents: Models, Technologies, and

Applications, Springer, 2001, pp. 6–24, Ch. 1.
[41] M. Viroli, A. Omicini, A. Ricci, Engineering MAS environment with artifacts, in: D. Weyns, H.V.D. Parunak, F. Michel (Eds.), 2nd International Workshop

“Environments for Multi-Agent Systems”, E4MAS 2005, AAMAS 2005, Utrecht, The Netherlands, 2005.
[42] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, L. Tummolini, Coordination artifacts: environment-based coordination for intelligent agents, in: 3rd

International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, IEEE Computer Society, 2004, pp. 286–293, https://ieeexplore .
ieee .org /document /1373490.

[43] M. Viroli, M. Casadei, A. Omicini, A framework for modelling and implementing self-organising coordination, in: ACM Symposium on Applied Com-
puting, SAC, 2009, pp. 1353–1360.

https://doi.org/10.1145/114005.102807
https://doi.org/10.1145/114005.102807
https://doi.org/10.1145/352591.352592
https://doi.org/10.1109/4236.865084
https://doi.org/10.1016/S0167-6423(01)00011-9
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib68DAB099F042C4AFDA052D0EBC12C516s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib68DAB099F042C4AFDA052D0EBC12C516s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib02D13853656479DA5E579ECF49779D2Es1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib02D13853656479DA5E579ECF49779D2Es1
https://doi.org/10.1109/32.685256
https://doi.org/10.1145/1151695.1151698
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib65D563211D2CD18F2C8EB1E09B7D4584s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib65D563211D2CD18F2C8EB1E09B7D4584s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib573DBC10E29230296F76FBD569828EC7s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib573DBC10E29230296F76FBD569828EC7s1
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.1109/MIS.2006.29
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib65406DEC2117EF482DDC69EB9F82CE50s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib65406DEC2117EF482DDC69EB9F82CE50s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib1CF3FAA227FD747EEA6CCE40F7614250s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib1CF3FAA227FD747EEA6CCE40F7614250s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib8FFB3F208F04B4844104AD540F934208s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib8FFB3F208F04B4844104AD540F934208s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDC387EF84E4A7F706CB75B3A48B523B7s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDC387EF84E4A7F706CB75B3A48B523B7s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib14DA543530C3E30213C24915B346CAA3s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib14DA543530C3E30213C24915B346CAA3s1
https://dl.acm.org/citation.cfm?id=1251178
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4918BFD4C3251F7684FDFEBB486D91C3s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib87E3F3C76BFD1200846A77CA02FD2D56s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib87E3F3C76BFD1200846A77CA02FD2D56s1
https://doi.org/10.1145/2619998
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4E3BE1726257A156BEEFFEA54A90BF03s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4E3BE1726257A156BEEFFEA54A90BF03s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4E3BE1726257A156BEEFFEA54A90BF03s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4E3BE1726257A156BEEFFEA54A90BF03s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib11D523DD3E2A28CDB948B515DF6153FBs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA84A068D823548823F4B6FE1C29CAE6Es1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA84A068D823548823F4B6FE1C29CAE6Es1
https://doi.org/10.1002/spe.2270
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib39D24FECE7B7DCB55770965815BC0ED9s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib39D24FECE7B7DCB55770965815BC0ED9s1
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1145/844128.844142
https://doi.org/10.1145/601858.601861
https://doi.org/10.1145/601858.601861
https://doi.org/10.1016/j.pmcj.2005.08.003
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib060F4DCBAE2FD88ACF230669545B3816s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib060F4DCBAE2FD88ACF230669545B3816s1
https://doi.org/10.1145/3285956
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDA6CCAC703F0700FCD30957BFC6440CCs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibC46C686FEE9E054C24F52A4CFF4A9C05s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibC46C686FEE9E054C24F52A4CFF4A9C05s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9C0B732ED926AFA81887EB58077EE42Cs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9C0B732ED926AFA81887EB58077EE42Cs1
https://ieeexplore.ieee.org/document/1373490
https://ieeexplore.ieee.org/document/1373490
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3AB31B307E84F6CA81F3F6ED8AD0A944s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3AB31B307E84F6CA81F3F6ED8AD0A944s1

26 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
[44] M. Casadei, M. Viroli, L. Gardelli, On the collective sort problem for distributed tuple spaces, Sci. Comput. Program. 74 (9) (2009) 702–722, https://
doi .org /10 .1016 /j .scico .2008 .09 .018.

[45] D. Pianini, S. Virruso, R. Menezes, A. Omicini, M. Viroli, Self organization in coordination systems using a WordNet-based ontology, in: 4th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, SASO, IEEE, 2010.

[46] M. Viroli, M. Casadei, Biochemical tuple spaces for self-organising coordination, in: Lecture Notes in Computer Science, Springer, 2009, pp. 143–162.
[47] M. Viroli, On competitive self-composition in pervasive services, Sci. Comput. Program. 78 (5) (2013) 556–568, https://doi .org /10 .1016 /j .scico .2012 .10 .

002.
[48] J. Ferber, G. Weiss, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1, Addison-Wesley, Reading, 1999.
[49] H.S. Nwana, L.C. Lee, N.R. Jennings, Coordination in software agent systems, BT Technol. J. 14 (4) (1996) 79–88.
[50] Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Ind. Inform. 9 (1)

(2013) 427–438, https://doi .org /10 .1109 /TII .2012 .2219061.
[51] B. Horling, V. Lesser, A survey of multi-agent organizational paradigms, Knowl. Eng. Rev. 19 (4) (2004) 281–316, https://doi .org /10 .1017 /

S0269888905000317.
[52] O. Boissier, J.F. Hübner, J.S. Sichman, Organization oriented programming: from closed to open organizations, in: International Workshop on Engineer-

ing Societies in the Agents World, Springer, 2006, pp. 86–105.
[53] G.D.M. Serugendo, M.-P. Gleizes, A. Karageorgos, Self-organization in multi-agent systems, Knowl. Eng. Rev. 20 (2) (2005) 165–189, https://doi .org /10 .

1017 /S0269888905000494.
[54] A. Ferscha, Collective adaptive systems, in: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Comput-

ing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC’15 Adjunct, ACM, New York, NY, USA, 2015,
pp. 893–895.

[55] M. Mamei, F. Zambonelli, L. Leonardi, Co-fields: towards a unifying approach to the engineering of swarm intelligent systems, in: Engineering Societies
in the Agents World III, Springer, 2003, pp. 68–81.

[56] D. Stovall, C. Julien, Resource discovery with evolving tuples, in: International Workshop on Engineering of Software Services for Pervasive Environ-
ments: In Conjunction with the 6th ESEC/FSE Joint Meeting, ESSPE, ACM, New York, NY, USA, 2007, pp. 1–10.

[57] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the aggregate: languages for spatial computing, in: Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments, IGI Global, 2013, pp. 436–501, Ch. 16, a longer version available at: http://arxiv.org /abs /1202 .5509.

[58] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic communi-
cations, ACM Trans. Auton. Adapt. Syst. 1 (2) (2006) 223–259, https://doi .org /10 .1145 /1186778 .1186782.

[59] R. Menezes, R. Tolksdorf, Adaptiveness in Linda-based coordination models, in: Engineering Self-Organising Systems: Nature-Inspired Approaches to
Software Engineering, in: LNAI, vol. 2977, Springer, 2004, pp. 212–232.

[60] A. Omicini, M. Viroli, Coordination models and languages: from parallel computing to self-organisation, Knowl. Eng. Rev. 26 (1) (2011) 53–59, https://
doi .org /10 .1017 /S026988891000041X.

[61] L. Clement, R. Nagpal, Self-assembly and self-repairing topologies, in: Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open,
2003.

[62] D. Yamins, A Theory of Local-to-Global Algorithms for One-Dimensional Spatial Multi-Agent Systems, Ph.D. Thesis, Harvard, Cambridge, MA, USA,
2007.

[63] C. Lasser, J. Massar, J. Miney, L. Dayton, Starlisp Reference Manual, Thinking Machines Corporation, 1988.
[64] B.R. Engstrom, P.R. Cappello, The SDEF programming system, J. Parallel Distrib. Comput. 7 (2) (1989) 201–231, https://doi .org /10 .1016 /0743 -7315(89)

90018 -X.
[65] J. Beal, Programming an amorphous computational medium, in: Unconventional Programming Paradigms, Springer, Berlin/Heidelberg, 2005, p. 97.
[66] M. Viroli, F. Damiani, J. Beal, A calculus of computational fields, in: Advances in Service-Oriented and Cloud Computing, in: Communications in

Computer and Information Science, vol. 393, Springer, 2013, pp. 114–128.
[67] A. Church, A set of postulates for the foundation of logic, Ann. Math. 33 (2) (1932) 346–366, https://doi .org /10 .2307 /1968337.
[68] A. Igarashi, B.C. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for Java and GJ, ACM Trans. Program. Lang. Syst. 23 (3) (2001) 396–450,

https://doi .org /10 .1145 /503502 .503505.
[69] F. Damiani, M. Viroli, J. Beal, A type-sound calculus of computational fields, Sci. Comput. Program. 117 (2016) 17–44, https://doi .org /10 .1016 /j .scico .

2015 .11.005.
[70] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering resilient collective adaptive systems by self-stabilisation, ACM Trans. Model. Comput.

Simul. 28 (2) (2018) 1–28, https://doi .org /10 .1145 /3177774.
[71] G. Audrito, F. Damiani, M. Viroli, R. Casadei, Run-time management of computation domains in field calculus, in: International Workshops on Foun-

dations and Applications of Self* Systems, FAS*W, IEEE, 2016, pp. 192–197.
[72] L. Damas, R. Milner, Principal type-schemes for functional programs, in: Symposium on Principles of Programming Languages (POPL), ACM, 1982,

pp. 207–212.
[73] R. Milner, The Definition of Standard ML: Revised, MIT Press, 1997.
[74] G. Audrito, J. Beal, F. Damiani, M. Viroli, Space-time universality of field calculus, in: International Conference on Coordination Models and Languages,

COORDINATION, in: Lecture Notes in Computer Science, vol. 10852, Springer, 2018, pp. 1–20.
[75] G. Winskel, Event structures, in: W. Brauer, W. Reisig, G. Rozenberg (Eds.), Petri Nets: Central Models and Their Properties, Advances in Petri Nets

1986, Part II, Proceedings of an Advanced Course, in: Lecture Notes in Computer Science, vol. 255, Springer, 1986, pp. 325–392.
[76] S. Dolev, Self-Stabilization, MIT Press, 2000.
[77] A. Lluch-Lafuente, M. Loreti, U. Montanari, Asynchronous distributed execution of fixpoint-based computational fields, Log. Methods Comput. Sci.

13 (1) (2017), https://doi .org /10 .23638 /LMCS -13(1 :13)2017.
[78] A. Lluch-Lafuente, M. Loreti, U. Montanari, A fixpoint-based calculus for graph-shaped computational fields, in: 17th International Conference on

Coordination Models and Languages, COORDINATION, 2015, pp. 101–116.
[79] F. Damiani, M. Viroli, Type-based self-stabilisation for computational fields, Log. Methods Comput. Sci. 11 (4) (2015), https://doi .org /10 .2168 /LMCS -

11(4 :21)2015.
[80] M. Viroli, F. Damiani, A calculus of self-stabilising computational fields, in: 16th International Conference on Coordination Models and Languages,

COORDINATION, in: Lecture Notes in Computer Science, vol. 8459, Springer, 2014, pp. 163–178.
[81] M. Viroli, J. Beal, F. Damiani, D. Pianini, Efficient engineering of complex self-organising systems by self-stabilising fields, in: 9th International Confer-

ence on Self-Adaptive and Self-Organizing Systems, SASO, 2015, pp. 81–90.
[82] J. Beal, M. Viroli, D. Pianini, F. Damiani, Self-adaptation to device distribution in the Internet of Things, ACM Trans. Auton. Adapt. Syst. 12 (3) (2017)

12, https://doi .org /10 .1145 /3105758.
[83] G. Audrito, F. Damiani, M. Viroli, E. Bini, Distributed real-time shortest-paths computations with the field calculus, in: 2018 IEEE Real-Time Systems

Symposium, RTSS, IEEE, 2018, pp. 23–34.
[84] R. Bakhshi, L. Cloth, W. Fokkink, B.R. Haverkort, Mean-field framework for performance evaluation of pushpull gossip protocols, in: Advances in

Quantitative Evaluation of Systems, Perform. Eval. 68 (2) (2011) 157–179.

https://doi.org/10.1016/j.scico.2008.09.018
https://doi.org/10.1016/j.scico.2008.09.018
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD5C9E3B232EEE5AA2DC5C6DB92FD185As1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD5C9E3B232EEE5AA2DC5C6DB92FD185As1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD7D761D9FCC920E9440633738D75ED53s1
https://doi.org/10.1016/j.scico.2012.10.002
https://doi.org/10.1016/j.scico.2012.10.002
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib1EEE06A3796A66303461BCE44A9189ABs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib302688FEFAB8D3194A596639B9008A21s1
https://doi.org/10.1109/TII.2012.2219061
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib09B76F2089C7CE7EBDED31E9C24D8BAAs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib09B76F2089C7CE7EBDED31E9C24D8BAAs1
https://doi.org/10.1017/S0269888905000494
https://doi.org/10.1017/S0269888905000494
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBE30A7AE700E4C10D0B405FE0266D607s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBE30A7AE700E4C10D0B405FE0266D607s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBE30A7AE700E4C10D0B405FE0266D607s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5A916D67FFAA64BC03AEB76755830604s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5A916D67FFAA64BC03AEB76755830604s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibCC79642DC67D1EA5EF02AC8AB13FE044s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibCC79642DC67D1EA5EF02AC8AB13FE044s1
http://arxiv.org/abs/1202.5509
https://doi.org/10.1145/1186778.1186782
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB57D4727B5CD61D5F706BF414C3D22EEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB57D4727B5CD61D5F706BF414C3D22EEs1
https://doi.org/10.1017/S026988891000041X
https://doi.org/10.1017/S026988891000041X
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9AEA77A343051411F53654BDC290C473s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9AEA77A343051411F53654BDC290C473s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib110BBF1F9C169EE79CD6652A8F2FF23Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib110BBF1F9C169EE79CD6652A8F2FF23Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBC53746C35F31803513D5CD38E920021s1
https://doi.org/10.1016/0743-7315(89)90018-X
https://doi.org/10.1016/0743-7315(89)90018-X
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib58306289D33C93027D70D1863BD3607Cs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib1FECBB7C6830558271CEFA8FDA6704C9s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib1FECBB7C6830558271CEFA8FDA6704C9s1
https://doi.org/10.2307/1968337
https://doi.org/10.1145/503502.503505
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1145/3177774
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib6C88602061F2EAB084E2E78D2CAB9541s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib6C88602061F2EAB084E2E78D2CAB9541s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib61E85422AAF476A0933A12D2A2AA11AEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib61E85422AAF476A0933A12D2A2AA11AEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibE1D50465FE3A9B1E1F5FAFECDD23E2CFs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib312B2E7B0CFE7A24707ECC104CB11E75s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib312B2E7B0CFE7A24707ECC104CB11E75s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA7E26754750B9B4382220852FCBB2604s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA7E26754750B9B4382220852FCBB2604s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib107DCCAF2F4852CAA6BC6B7CB19E005As1
https://doi.org/10.23638/LMCS-13(1:13)2017
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF4DA2681A1DDEF2D887DD2E899D699ECs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF4DA2681A1DDEF2D887DD2E899D699ECs1
https://doi.org/10.2168/LMCS-11(4:21)2015
https://doi.org/10.2168/LMCS-11(4:21)2015
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2A7162EACAF4F313D1F78AAA11D22E2Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2A7162EACAF4F313D1F78AAA11D22E2Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib377F2B7FDC8C28CE53F2CB52DDF6E0D1s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib377F2B7FDC8C28CE53F2CB52DDF6E0D1s1
https://doi.org/10.1145/3105758
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDC885330A64D945887FB7FDCD08D5535s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDC885330A64D945887FB7FDCD08D5535s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib0AB80649F741C73C7DC3BB46C1610D3Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib0AB80649F741C73C7DC3BB46C1610D3Ds1

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 27
[85] F. Damiani, M. Viroli, D. Pianini, J. Beal, Code mobility meets self-organisation: a higher-order calculus of computational fields, in: Formal Techniques
for Distributed Objects, Components, and Systems, in: Lecture Notes in Computer Science, vol. 9039, Springer, 2015, pp. 113–128.

[86] D. Pianini, M. Viroli, J. Beal, Protelis: practical aggregate programming, in: Symposium on Applied Computing, ACM, 2015, pp. 1846–1853.
[87] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of computational systems with ALCHEMIST, J. Simul. 7 (3) (2013) 202–215, https://

doi .org /10 .1057 /jos .2012 .27.
[88] D.G. Bell, F. Kuehnel, C. Maxwell, R. Kim, K. Kasraie, T. Gaskins, P. Hogan, J. Coughlan, NASA world wind: opensource GIS for mission operations, in:

Aerospace Conference, IEEE, 2007.
[89] S.S. Clark, J. Beal, P. Pal, Distributed recovery for enterprise services, in: 9th International Conference on Self-Adaptive and Self-Organizing Systems,

SASO, IEEE, 2015, pp. 111–120.
[90] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, 2E, Packt Publishing, 2016.
[91] M. Francia, D. Pianini, J. Beal, M. Viroli, Towards a foundational API for resilient distributed systems design, in: International Workshops on Founda-

tions and Applications of Self* Systems, FAS*W, IEEE, 2017.
[92] J. Beal, M. Viroli, Building blocks for aggregate programming of self-organising applications, in: 8th International Conference on Self-Adaptive and

Self-Organizing Systems Workshops, SASOW, 2014, pp. 8–13.
[93] D. Pianini, J. Beal, M. Viroli, Improving gossip dynamics through overlapping replicates, in: 18th International Conference on Coordination Models and

Languages, COORDINATION, Springer, 2016, pp. 192–207.
[94] R. Casadei, M. Viroli, Towards aggregate programming in Scala, in: 1st Workshop on Programming Models and Languages for Distributed Computing,

ACM, 2016, p. 5.
[95] M. Odersky, T. Rompf, Unifying functional and object-oriented programming with Scala, Commun. ACM 57 (4) (2014) 76–86, https://doi .org /10 .1145 /

2591013.
[96] R. Casadei, D. Pianini, M. Viroli, Simulating large-scale aggregate MASs with Alchemist and Scala, in: Federated Conference on Computer Science and

Information Systems, FedCSIS, IEEE, 2016, pp. 1495–1504.
[97] R. Casadei, M. Viroli, Programming actor-based collective adaptive systems, in: Programming with Actors – State-of-the-Art and Research Perspectives,

in: Lecture Notes in Computer Science, vol. 10789, Springer, 2018.
[98] M. Viroli, R. Casadei, D. Pianini, On execution platforms for large-scale aggregate computing, in: International Joint Conference on Pervasive and

Ubiquitous Computing: Adjunct, ACM, 2016, pp. 1321–1326.
[99] R. Roestenburg, R. Bakker, R. Williams, Akka in Action, 1st Edition, Manning Publications Co., Greenwich, CT, USA, 2015.

[100] Apache Kafka, retrieved March 13-th, 2019, https://kafka .apache .org, 2019.
[101] Apache Spark, retrieved March 13-th, 2019, https://spark.apache .org, 2019.
[102] B.C. Oliveira, A. Moors, M. Odersky, Type classes as objects and implicits, ACM SIGPLAN Not. 45 (10) (2010) 341–360, https://doi .org /10 .1145 /1932682 .

1869489.
[103] H. Curry, R. Feys, Combinatory Logic, North-Holland, 1958.
[104] J.L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna, M. Viroli, J.L. Arcos, Description and composition of bio-inspired design patterns: a

complete overview, Nat. Comput. 12 (1) (2013) 43–67, https://doi .org /10 .1007 /s11047 -012 -9324 -y.
[105] J. Beal, J. Bachrach, D. Vickery, M. Tobenkin, Fast self-healing gradients, in: Symposium on Applied computing, ACM, 2008, pp. 1969–1975.
[106] J. Beal, Flexible self-healing gradients, in: Symposium on Applied Computing, ACM, 2009, pp. 1197–1201.
[107] G. Audrito, F. Damiani, M. Viroli, Optimally-self-healing distributed gradient structures through bounded information speed, in: International Confer-

ence on Coordination Models and Languages, COORDINATION, in: Lecture Notes in Computer Science, vol. 10319, Springer, 2017, pp. 59–77.
[108] G. Audrito, F. Damiani, M. Viroli, Optimal single-path information propagation in gradient-based algorithms, Sci. Comput. Program. 166 (2018)

146–166, https://doi .org /10 .1016 /j .scico .2018 .06 .002.
[109] G. Audrito, R. Casadei, F. Damiani, M. Viroli, Compositional blocks for optimal self-healing gradients, in: 11th International Conference on Self-Adaptive

and Self-Organizing Systems, SASO, IEEE, 2017, pp. 91–100.
[110] J. Beal, Trading accuracy for speed in approximate consensus, Knowl. Eng. Rev. 31 (4) (2016) 325–342, https://doi .org /10 .1017 /S0269888916000175.
[111] G. Audrito, F. Damiani, M. Viroli, Aggregate graph statistics, in: D. Pianini, G. Salvaneschi (Eds.), Proceedings of the First Workshop on Architectures,

Languages and Paradigms for IoT, ALP4IoT@iFM 2017, in: EPTCS, vol. 264, 2017, pp. 18–22.
[112] G. Audrito, S. Bergamini, Resilient blocks for summarising distributed data, in: D. Pianini, G. Salvaneschi (Eds.), Proceedings of the First Workshop on

Architectures, Languages and Paradigms for IoT, ALP4IoT@iFM 2017, in: EPTCS, vol. 264, 2017, pp. 23–26.
[113] G. Audrito, S. Bergamini, F. Damiani, M. Viroli, Effective collective summarisation of distributed data in mobile multi-agent systems, in: Proceedings

of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, 2019, pp. 1618–1626, http://dl .acm .org /citation .
cfm ?id =3331882.

[114] M. Viroli, J. Beal, Resiliency with aggregate computing: state of the art and roadmap, in: Workshop on FORmal Methods for the Quantitative Evaluation
of Collective Adaptive SysTems, FORECAST, 2016.

[115] N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, USA, 1996.
[116] D. Shevitz, B. Paden, Lyapunov stability theory of nonsmooth systems, IEEE Trans. Autom. Control 39 (9) (1994) 1910–1914, https://doi .org /10 .1109 /

CDC .1993 .325114.
[117] M. Arcak, Passivity as a design tool for group coordination, IEEE Trans. Autom. Control 52 (8) (2007) 1380–1390, https://doi .org /10 .1109 /TAC .2007.

902733.
[118] T. Hatanaka, N. Chopra, M. Fujita, M.W. Spong, Passivity-Based Control and Estimation in Networked Robotics, Springer, 2015.
[119] B.D. Anderson, The small-gain theorem, the passivity theorem and their equivalence, J. Franklin Inst. 293 (2) (1972) 105–115, https://doi .org /10 .1016 /

0016 -0032(72)90150 -0.
[120] T.H. Summers, C. Yu, S. Dasgupta, B.D. Anderson, Control of minimally persistent leader-remote-follower and coleader formations in the plane, IEEE

Trans. Autom. Control 56 (12) (2011) 2778–2792, https://doi .org /10 .1109 /TAC .2011.2146890.
[121] L. Krick, M.E. Broucke, B.A. Francis, Stabilisation of infinitesimally rigid formations of multi-robot networks, Int. J. Control 82 (3) (2009) 423–439,

https://doi .org /10 .1080 /00207170802108441.
[122] R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95 (1) (2007) 215–233, https://

doi .org /10 .1109 /JPROC .2006 .887293.
[123] Z.-P. Jiang, I.M. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica 32 (8)

(1996) 1211–1215, https://doi .org /10 .1016 /0005 -1098(96)00051 -9.
[124] M. Fu, S. Dasgupta, Y.C. Soh, Integral quadratic constraint approach vs. multiplier approach, Automatica 41 (2) (2005) 281–287, https://doi .org /10 .

1016 /j .automatica .2004 .10 .005.
[125] M. Fu, S. Dasgupta, Parametric Lyapunov functions for uncertain systems: the multiplier approach, in: Advances in Linear Matrix Inequality Methods

in Control, SIAM, 2000, pp. 95–108.
[126] A. Kumar, J. Beal, S. Dasgupta, R. Mudumbai, Toward predicting distributed systems dynamics, in: International Conference on Self-Adaptive and

Self-Organizing Systems Workshops, SASOW, IEEE, 2015, pp. 68–73.

http://refhub.elsevier.com/S2352-2208(19)30032-X/bib383715AEB5181DFBCF4E89AB0D85C1C6s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib383715AEB5181DFBCF4E89AB0D85C1C6s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5B74195BE2568897EF76E3065FBAFA44s1
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib7100456CAE65574850C5F7FBF9B6D3EAs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib7100456CAE65574850C5F7FBF9B6D3EAs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB7CF3D2EBF9DE039FCB7194434824E3Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB7CF3D2EBF9DE039FCB7194434824E3Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibED60E14E95B5B412EF82EE2900E06E39s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibFAB6CF6C3F7249BC88E87B15C853999Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibFAB6CF6C3F7249BC88E87B15C853999Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBCB2E7953132500E0AD2E9C780D6BC6Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBCB2E7953132500E0AD2E9C780D6BC6Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDAC3F4988FEFCE822A124B5AE1E08C04s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDAC3F4988FEFCE822A124B5AE1E08C04s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibE2D54998988870EA43FD73202886360Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibE2D54998988870EA43FD73202886360Bs1
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibC1987B293DB424C0D258F6DF8EB72397s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibC1987B293DB424C0D258F6DF8EB72397s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib7AEDB69EC98F6D0B575233BA70AFC66Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib7AEDB69EC98F6D0B575233BA70AFC66Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4B9F9E357B5BBC5D9FA9997C05D90411s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib4B9F9E357B5BBC5D9FA9997C05D90411s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib01AC76BC6D6E4FDE582F7BAAFB88970As1
https://kafka.apache.org
https://spark.apache.org
https://doi.org/10.1145/1932682.1869489
https://doi.org/10.1145/1932682.1869489
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3F3DB1CEC9849142399091D781927D2Fs1
https://doi.org/10.1007/s11047-012-9324-y
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib34904BD3A8A72CC478E86E81A90559DCs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5BE4981565DEAFE8822E8B5C18F21657s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib76E0C87BD474599A9E50A2F1D1C516C2s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib76E0C87BD474599A9E50A2F1D1C516C2s1
https://doi.org/10.1016/j.scico.2018.06.002
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib571CE29CCD5F3A2744905FA204BF87DDs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib571CE29CCD5F3A2744905FA204BF87DDs1
https://doi.org/10.1017/S0269888916000175
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF729554E0D973E0C3949DD7E1803B92Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF729554E0D973E0C3949DD7E1803B92Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBF34173A70E51CE8DBC7C636DCE16C74s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBF34173A70E51CE8DBC7C636DCE16C74s1
http://dl.acm.org/citation.cfm?id=3331882
http://dl.acm.org/citation.cfm?id=3331882
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB39C6386DE8A59FFC1D001FB348BE45Es1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibB39C6386DE8A59FFC1D001FB348BE45Es1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibCE1350F6DD4753D30BAE90098C50CD89s1
https://doi.org/10.1109/CDC.1993.325114
https://doi.org/10.1109/CDC.1993.325114
https://doi.org/10.1109/TAC.2007.902733
https://doi.org/10.1109/TAC.2007.902733
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF608738ACC53E4F2F73C49B3D341F3BEs1
https://doi.org/10.1016/0016-0032(72)90150-0
https://doi.org/10.1016/0016-0032(72)90150-0
https://doi.org/10.1109/TAC.2011.2146890
https://doi.org/10.1080/00207170802108441
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1016/0005-1098(96)00051-9
https://doi.org/10.1016/j.automatica.2004.10.005
https://doi.org/10.1016/j.automatica.2004.10.005
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibE388B6F97ACBF19590F5A062516CEE6Cs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibE388B6F97ACBF19590F5A062516CEE6Cs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib0D762E35B7CFBF70E1B031A60C8599A2s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib0D762E35B7CFBF70E1B031A60C8599A2s1

28 M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486
[127] Y. Mo, J. Beal, S. Dasgupta, An aggregate computing approach to self-stabilizing leader election, in: 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems, FAS*W, IEEE, 2018, pp. 112–117.

[128] S. Dasgupta, J. Beal, A Lyapunov analysis for the robust stability of an adaptive Bellman-Ford algorithm, in: 55th IEEE Conference on Decision and
Control, CDC, IEEE, 2016, pp. 7282–7287.

[129] Y. Mo, S. Dasgupta, J. Beal, Robust stability of spreading blocks in aggregate computing, in: 2018 IEEE Conference on Decision and Control, CDC, IEEE,
2018, pp. 6007–6012.

[130] Y. Mo, J. Beal, S. Dasgupta, Error in self-stabilizing spanning-tree estimation of collective state, in: International Workshops on Foundations and
Applications of Self* Systems, FAS*W, IEEE, 2017, pp. 1–6.

[131] G. Audrito, F. Damiani, V. Stolz, M. Viroli, On distributed runtime verification by aggregate computing, in: Post-Proceedings of the 3rd International
Workshop on Verification of Objects, at Runtime Execution, VORTEX 2018, in: EPTCS, 2019.

[132] G. Audrito, J. Beal, F. Damiani, D. Pianini, M. Viroli, The share operator for field-based coordination, in: H.R. Nielson, E. Tuosto (Eds.), 21st International
Conference on Coordination Models and Languages, COORDINATION, in: Lecture Notes in Computer Science, vol. 11533, Springer, 2019, pp. 54–71.

[133] L. Bortolussi, J. Hillston, D. Latella, M. Massink, Continuous approximation of collective system behaviour: a tutorial, Perform. Eval. 70 (5) (2013)
317–349, https://doi .org /10 .1016 /j .peva .2013 .01.001.

[134] V. Ciancia, S. Gilmore, G. Grilletti, D. Latella, M. Loreti, M. Massink, Spatio-temporal model checking of vehicular movement in public transport
systems, Int. J. Softw. Tools Technol. Transf. (2018) 1–23, https://doi .org /10 .1007 /s10009 -018 -0483 -8.

[135] J. Bachrach, J. Beal, J. McLurkin, Composable continuous-space programs for robotic swarms, Neural Comput. Appl. 19 (6) (2010) 825–847, https://
doi .org /10 .1007 /s00521 -010 -0382 -8.

[136] J. Beal, A tactical command approach to human control of vehicle swarms, in: AAAI Fall Symposium: Human Control of Bioinspired Swarms, 2012.
[137] J. Beal, Superdiffusive dispersion and mixing of swarms, ACM Trans. Auton. Adapt. Syst. 10 (2) (2015), https://doi .org /10 .1145 /2700322, Article 10.
[138] M. Viroli, D. Pianini, A. Ricci, A. Croatti, Aggregate plans for multiagent systems, Int. J. Agent-Oriented Softw. Eng. 4 (5) (2017) 336–365, https://

doi .org /10 .1504 /IJAOSE .2017.087638.
[139] R. Casadei, M. Viroli, G. Audrito, D. Pianini, F. Damiani, Aggregate processes in field calculus, in: H.R. Nielson, E. Tuosto (Eds.), 21st International

Conference on Coordination Models and Languages, COORDINATION, in: Lecture Notes in Computer Science, vol. 11533, Springer, 2019, pp. 200–217.
[140] R. Casadei, M. Viroli, Collective abstractions and platforms for large-scale self-adaptive IoT, in: 2018 IEEE 3rd International Workshops on Foundations

and Applications of Self* Systems, FAS*W, IEEE, 2018, pp. 106–111.
[141] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli, A development approach for collective opportunistic edge-of-things services, Inf. Sci.

498 (2019) 154–169, https://doi .org /10 .1016 /j .ins .2019 .05 .058.
[142] D. Schmidt, Middleware for real-time and embedded systems, Commun. ACM 45 (6) (2002) 43–48, https://doi .org /10 .1145 /508448 .508472.
[143] M. Iorgam, L. Feldman, R. Barton, M.J. Martin, N. Goren, C. Mahmoudi, Fog Computing Conceptual Model, Recommendations of the National Institute

of Standards and Technology, NIST Special Publication 500-325, 2018.
[144] Openfog consortium, retrieved January, 2019, https://www.openfogconsortium .org, 2019.
[145] S. Hachem, V. Issareny, V. Mallet, A. Pathak, P. Bhatia, R. amd Raverdy, Urban Civics: an IoT middleware for democratizing crowdsensed data in smart

societies, in: Research and Tech. for Society and Industry Leveraging a Better Tomorrow, RTSI, 2015, pp. 117–126.
[146] R. Casadei, D. Pianini, M. Viroli, A. Natali, Self-organising coordination regions: a pattern for edge computing, in: 21st International Conference on

Coordination Models and Languages, COORDINATION, in: Lecture Notes in Computer Science, Springer, 2019, pp. 182–199.
[147] J. Beal, M. Viroli, D. Pianini, F. Damiani, Self-adaptation to device distribution changes, in: 10th IEEE International Conference on Self-Adaptive and

Self-Organizing Systems, SASO 2016, Augsburg, Germany, September 12–16, 2016, 2016, pp. 60–69.
[148] R. Casadei, A. Aldini, M. Viroli, Towards attack-resistant aggregate computing using trust mechanisms, Sci. Comput. Program. 167 (2018) 114–137,

https://doi .org /10 .1016 /j .scico .2018 .07.006.
[149] A. Mourad, M.-A. Laverdière, M. Debbabi, Security hardening of open source software, in: Proceedings of the 2006 International Conference on Privacy,

Security and Trust Bridge the Gap Between PST Technologies and Business Services, PST 06, ACM Press, 2006.
[150] D. Pianini, G. Ciatto, R. Casadei, S. Mariani, M. Viroli, A. Omicini, Transparent protection of aggregate computations from byzantine behaviours via

blockchain, in: Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good, ACM, 2018, pp. 271–276.
[151] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (3) (1982) 382–401, https://doi .org /10 .1145 /

357172 .357176.
[152] Z. Zheng, S. Xie, H. Dai, X. Chen, H. Wang, An overview of blockchain technology: architecture, consensus, and future trends, in: 2017 IEEE Interna-

tional Congress on Big Data, BigData Congress, IEEE, 2017, pp. 557–564.
[153] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown: reading ker-

nel memory from user space, in: 27th USENIX Security Symposium, USENIX Security 18, 2018, https://www.usenix .org /conference /usenixsecurity18 /
presentation /lipp.

[154] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom, Spectre attacks:
exploiting speculative execution, in: 40th IEEE Symposium on Security and Privacy, S&P’19, 2019.

[155] Y. Kim, R. Daly, J. Kim, C. Fallin, J.H. Lee, D. Lee, C. Wilkerson, K. Lai, O. Mutlu, Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors, in: 2014 ACM/IEEE 41st International Symposium on Computer Architecture, ISCA, IEEE, 2014.

[156] A. Tatar, R.K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, K. Razavi, Throwhammer: Rowhammer attacks over the network and defenses, in:
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’18, USENIX Association, Berkeley, CA, USA, 2018,
pp. 213–225, http://dl .acm .org /citation .cfm ?id =3277355 .3277377.

[157] B. Penzenstadler, A. Raturi, D. Richardson, B. Tomlinson, Safety, security, now sustainability: the nonfunctional requirement for the 21st century, IEEE
Softw. 31 (3) (2014) 40–47, https://doi .org /10 .1109 /ms .2014 .22.

[158] J. Bachrach, J. Beal, Building Spatial Computers, Tech. Rep. CSAIL Tech Report 2007-017, MIT, March 2007.
[159] M. Bor, J. Vidler, U. Roedig, Lora for the internet of things, in: Proceedings of the 2016 International Conference on Embedded Wireless Systems and

Networks, EWSN ’16, Junction Publishing, USA, 2016, pp. 361–366, http://dl .acm .org /citation .cfm ?id =2893711.2893802.
[160] D. Pianini, A. Elzanaty, A. Giorgetti, M. Chiani, Emerging distributed programming paradigm for cyber-physical systems over LoRaWANs, in: 2018 IEEE

Globecom Workshops, GC Wkshps, 2018, pp. 1–6.
[161] H.H.R. Sherazi, G. Piro, L.A. Grieco, G. Boggia, When renewable energy meets LoRa: a feasibility analysis on cable-less deployments, IEEE Int. Things J.

(2018) 1, https://doi .org /10 .1109 /jiot .2018 .2839359.
[162] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli, Modelling and simulation of opportunistic IoT services with aggregate computing,

Future Gener. Comput. Syst. 91 (2019) 252–262, https://doi .org /10 .1016 /j .future .2018 .09 .005.
[163] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in: Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing, ACM, 2012, pp. 13–16.
[164] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges, IEEE Int. Things J. 3 (5) (2016) 637–646, https://doi .org /10 .1109 /JIOT.

2016 .2579198.
[165] J. Beal, M. Viroli, Space–time programming, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 373 (2046) (2015), https://doi .org /10 .1098 /rsta .2014 .0220.

http://refhub.elsevier.com/S2352-2208(19)30032-X/bib75DEF1058AC3F80F00E05385F44745E0s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib75DEF1058AC3F80F00E05385F44745E0s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib196BDE473CC241309241069C7C2B1EDEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib196BDE473CC241309241069C7C2B1EDEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib01446370520FDB5167C6F282406C3448s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib01446370520FDB5167C6F282406C3448s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib845C8906EF8E5FE49FFA7237893B1E7Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib845C8906EF8E5FE49FFA7237893B1E7Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBD47127BCA3EC2D06AD715363E1805D6s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBD47127BCA3EC2D06AD715363E1805D6s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib24E4A94A9A32F194DF1979ED4304849As1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib24E4A94A9A32F194DF1979ED4304849As1
https://doi.org/10.1016/j.peva.2013.01.001
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.1007/s00521-010-0382-8
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD744B036BA2F22B92133FABD51002716s1
https://doi.org/10.1145/2700322
https://doi.org/10.1504/IJAOSE.2017.087638
https://doi.org/10.1504/IJAOSE.2017.087638
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2B2608B13DA1BB39044AF23E74CA318Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2B2608B13DA1BB39044AF23E74CA318Ds1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD4D6E552AB96BD749C0D5C38B41B5BA4s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibD4D6E552AB96BD749C0D5C38B41B5BA4s1
https://doi.org/10.1016/j.ins.2019.05.058
https://doi.org/10.1145/508448.508472
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3811727DE5B0DDF6AE30DEFE2CA4D2C2s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3811727DE5B0DDF6AE30DEFE2CA4D2C2s1
https://www.openfogconsortium.org
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3D44BB60BB4326C162D186C1D6C92B04s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3D44BB60BB4326C162D186C1D6C92B04s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9283E099E7FB5DCDD50A0FD9AD76BCBCs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib9283E099E7FB5DCDD50A0FD9AD76BCBCs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA103D011C21F50400E716FDC9734BCBDs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibA103D011C21F50400E716FDC9734BCBDs1
https://doi.org/10.1016/j.scico.2018.07.006
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBC662EBA55AC8E707CE6846B76201596s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBC662EBA55AC8E707CE6846B76201596s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib337F4E65FE019138ECA462E654326566s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib337F4E65FE019138ECA462E654326566s1
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2BAE2B8368BD87F6A97DEAA8725EAD80s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib2BAE2B8368BD87F6A97DEAA8725EAD80s1
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBD8D11F8D55119FA2E2EB9E8C3095EE3s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibBD8D11F8D55119FA2E2EB9E8C3095EE3s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5FDE57A942C9B3BAEF9FFD568FBACD21s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib5FDE57A942C9B3BAEF9FFD568FBACD21s1
http://dl.acm.org/citation.cfm?id=3277355.3277377
https://doi.org/10.1109/ms.2014.22
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibF9F3DD098917E4609C160B7B1770A33Cs1
http://dl.acm.org/citation.cfm?id=2893711.2893802
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib755F15B1BDA0C16D1895C8502D2801C4s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib755F15B1BDA0C16D1895C8502D2801C4s1
https://doi.org/10.1109/jiot.2018.2839359
https://doi.org/10.1016/j.future.2018.09.005
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDB6A426A2AD97D946DAC260EC8A643DEs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bibDB6A426A2AD97D946DAC260EC8A643DEs1
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1098/rsta.2014.0220

M. Viroli et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100486 29
[166] H.V.D. Parunak, S. Brueckner, Concurrent modeling of alternative worlds with polyagents, in: Multi-Agent-Based Simulation VII, Springer, 2007,
pp. 128–141.

[167] J. Beal, K. Usbeck, J. Loyall, J. Metzler, Opportunistic sharing of airborne sensors, in: International Conference on Distributed Computing in Sensor
Systems, DCOSS, IEEE, 2016, pp. 25–32.

[168] J. Beal, K. Usbeck, J. Loyall, M. Rowe, J. Metzler, Adaptive opportunistic airborne sensor sharing, ACM Trans. Auton. Adapt. Syst. 13 (1) (2018) 6, https://
doi .org /10 .1145 /3179994.

[169] J. Beal, M. Viroli, Aggregate programming: from foundations to applications, in: Formal Methods for the Quantitative Evaluation of Collective Adaptive
Systems, Springer, 2016, pp. 233–260.

http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3B5199A2B2A498E3AD8F187D4F384305s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib3B5199A2B2A498E3AD8F187D4F384305s1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib720799F562CF6779ED3FA90FF069AE6Fs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib720799F562CF6779ED3FA90FF069AE6Fs1
https://doi.org/10.1145/3179994
https://doi.org/10.1145/3179994
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib355AD902EC93ABDE1B9DA27ADC8E2A9Bs1
http://refhub.elsevier.com/S2352-2208(19)30032-X/bib355AD902EC93ABDE1B9DA27ADC8E2A9Bs1

	From distributed coordination to field calculus and aggregate computing
	1 Introduction
	2 Coordination, self-organisation, and fields
	2.1 Coordination towards self-organisation
	Generative communication
	Programmable coordination rules
	Distribution
	Self-organising coordination

	2.2 Multi-agent and collective adaptive systems
	2.3 Field-based coordination
	2.4 Spatial computing approaches: towards the field calculus

	3 Field calculus
	3.1 Basic calculus
	3.2 Operational semantics, typing and basic properties
	3.3 Denotational semantics
	3.4 Behavioural properties
	3.5 Language extension: the higher-order field calculus

	4 From field calculus to aggregate computing
	4.1 Protelis: a DSL for field calculus
	4.2 ScaFi: an API for the Scala programming ecosystem
	4.3 Aggregate programming

	5 Perspectives and roadmap
	5.1 Elaboration of libraries
	5.2 Understanding and controlling dynamics and feedback
	5.3 Mobility of devices and processes
	5.4 Software platforms
	5.5 Non-functional requirements
	5.5.1 Safety
	5.5.2 Security
	5.5.3 Privacy
	5.5.4 Efficiency and sustainability

	5.6 Applications and pragmatics
	5.6.1 Pervasive computing, IoT, smart-cities
	5.6.2 Robot swarms, unmanned aerial vehicles
	5.6.3 Agent-based planning
	5.6.4 Networked systems management
	5.6.5 Other application domains

	6 Conclusions
	References

