
Trading accuracy for speed in approximate consensus

JACOB BEAL

Raytheon BBN Technologies, Cambridge, MA 02138, USA;
e-mail: jakebeal@bbn.com

Abstract

Approximate consensus is an important building block for distributed systems, used overtly or implicitly
in applications as diverse as formation control, sensor fusion, and synchronization. Laplacian-based
consensus, the current dominant approach, is extremely accurate and resilient, but converges slowly.
Comparing Laplacian-based consensus to exact consensus algorithms, relaxing the requirements for
accuracy and resilience should enable a spectrum of algorithms that incrementally tradeoff accuracy and/or
resilience for speed. This manuscript demonstrates that may be so by beginning to populate this spectrum
with a new approach to approximate consensus, Power-Law-Driven Consensus (PLD-consensus), which
accelerates consensus by sending values across long distances using a self-organizing overlay network.
Both a unidirectional and bidirectional algorithm based on this approach are studied. Although both have
the same asymptotic O(diameter) convergence time (vs. O(diameter2) for Laplacian-based), unidirectional
PLD-consensus is faster and more resilient than bidirectional PLD-consensus, but exhibits higher variance
in the converged value.

1 Introduction

Approximate consensus algorithms are an important building block for many distributed algorithms, including
robot formation control (Egerstedt & Hu, 2001), flocking and swarming (Olfati-Saber, 2006), sensor fusion
(Xiao et al., 2005), modular robotics (Yu &Nagpal, 2009), and synchronization (Slotine &Wang, 2005). The
current dominant algorithmic approach to distributed approximate consensus is a Laplacian-based approach in
which each device finds a weighted local average of its own current value with the values held by its neighbors.
In effect, this approach is operating like particle diffusion, such that as the differences between devices
eventually equalize, the network is brought into consensus. Although this approach supports a number of
elegant mathematical results switching (Olfati-Saber & Murray, 2004; Olfati-Saber et al., 2007), including an
exponential rate of convergence (derived from the graph Laplacian) toward the mean value of the network, the
bounds on the rate of convergence are extremely loose. In reality, many cases of Laplacian-based approximate
consensus actually exhibit an extremely slow rate of convergence.

This paper, an extended version of the workshop paper (Beal, 2013), investigates the proposition that
weakening the requirements for accuracy and resilience can enable algorithms providing great increases in
the speed of convergence. In fact, it should be possible to construct an entire spectrum of algorithms
allowing an incremental choice of the best possible speed for a given application’s tolerance of decreased
accuracy and resilience.

This manuscript begins to populate this spectrum with a new approach to approximate consensus,
Power-Law-Driven Consensus (PLD-consensus), based on self-organizing overlay networks.
Two algorithms are studied, unidirectional and bidirectional PLD-consensus, both of which converge in
O(diameter) time at a cost of increased variability in the converged value. Unidirectional PLD-consensus

The Knowledge Engineering Review, page 1 of 18. © Cambridge University Press, 2016
doi:10.1017/S0269888916000175

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

mailto:jakebeal@bbn.com
http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


is fastest and most variable in converged value, while bidirectional PLD-consensus is nearly as fast but
with much less variability.

Following a review of approximate consensus and an investigation of hard limits on approximate
consensus in Section 2, this manuscript presents the new PLD-consensus approach and the unidirectional
and bidirectional algorithms in Section 3. Analysis in Section 4 shows that both PLD-consensus
algorithms are expected to converge in O(diameter) time. Section 5 then compares the new algorithms
with the Laplacian approach in simulation on spatially distributed networks, a class of networks that
appear in many applications (including those listed above) and where Laplacian-based algorithms perform
particularly poorly. These experiments confirm that both PLD-consensus algorithms provide drastically
faster convergence in spatial networks, and demonstrate the tradeoffs between speed and accuracy across
all three algorithms.

2 Approximate consensus challenges and bounds

Consensus is a problem that appears in a wide variety of forms throughout nearly every application in
distributed systems. Variants on consensus may be divided into exact and approximate forms. Exact
consensus is typically associated with ensuring the integrity of data or transactions, and requires that every
non-faulty device select precisely the same decision, often from a finite set of alternatives. There is a long
and rich literature on exact consensus (Lynch, 1996), including a great number of impossibility results
concerning the impossibility of ensuring both progress and safety in the presence of various classes of
fault. Approximate forms of consensus, on the other hand, concern continuous values and are more
typically associated with problems of estimation and control. In all cases, consensus algorithms must aim
to ensure:

∙ Agreement: every device comes to either the same value (exact) or values bounded within some
specified difference (approximate);

∙ Validity: the agreed values are drawn from the initial set of values (exact) or their convex hull
(approximate); and

∙ Progress: agreement is achieved within some finite time.

This paper considers approximate consensus algorithms of the following form: given a real-number
initial local value li(0) for each device i, provide a valid estimate of the mean of li(0) over all devices. These
algorithms are closely related to distributed synchronization (e.g. Kuramoto, 1984; Mirollo & Strogatz,
1990), which is approximate consensus on a cyclic number space. Another close relative is gossip-based
mean estimation (Mosk-Aoyama & Shah, 2008; Shah, 2009), which provides rapid coarse estimation of
means, though it does not attempt to satisfy validity and estimating to within a fixed accuracy requires
message size proportional to the square of the mean.

Currently, approximate consensus is generally implemented using a Laplacian-based approach (Olfati-
Saber et al., 2007) that computes the approximate mean of li(0) by iteratively applying the transformation:

liðtÞ= liðt�1Þ + ϵ
X

j2Nði; tÞ
wði; j; tÞ � ðljðt�1Þ�liðt�1ÞÞ (1)

where Nði; tÞ is the set of graph neighbors of device i at time t, w(i, j, t) is the weight given to neighbor j
by device i at time t, and the constant ε> 0 is the step size of the algorithm. For simplicity, this manuscript
gives only the synchronous specification; only minor modification is required for a more general non-
synchronized algorithm1. Also without loss of generality, this manuscript considers only cases where all
weights are uniformly equal to 1.

Laplacian-based consensus has been proven (Olfati-Saber et al., 2007) to converge toward the mean
value of li(0). Because convergence has been proven to proceed at an exponential rate with respect to the
initial range of li(0), Laplacian-based consensus is often thought of as being ‘fast’, at least in a theoretical
sense. In fact, however, the initial range is only one term of the convergence rate. Convergence rate also

1 In particular, t is replaced with τ(t, i), li (t−1) with li (τ(t−1, i)), and lj (t−1) with ljðmaxt0 fτðt0; jÞ jτðt0; jÞ< τðt; iÞgÞ,
where τ(t, i) is the time at which the tth round executes at device i.

J . B E A L2

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


depends on both the degree and the diameter of the network, and is much more sharply limited by these,
with the actual asymptotic bound:

Oðlogðmax
i

ðlið0ÞÞ�min
i

ðlið0ÞÞÞ �max
i

Nði; tÞj j � diameter2Þ

Degree limits convergence because the process of convergence is only stable if the constant ε is no
more than 1

j N ði; tÞ j , or in other words the inverse of a device’s number of neighbors. Thus, even for many
small-diameter networks, the reality is that convergence must proceed quite slowly. To understand this
bound, consider a large network where device i has x neighbors, and one of those neighbors j has no other
neighbors and an initial value of lj(0) = 1, while all other devices have initial value 0. The maximum
decrease in value for device j in a single round is ϵ= 1

x in the first round, so it must take at least O(x) rounds
to converge to within any specified error of the mean. Generalizing obtains the bound O maxi Nði; tÞj jð Þ
rounds with respect to degree.

This can have severe consequences for convergence time. For example, an Erdos–Renyi random graph
with n devices has an expected diameter of O(log n) but a binomial degree distribution (Bollobas, 2001).
This means that the highest degree devices have O((n)1/2) neighbors, which limits ϵ ⩽ 1ffiffi

n
p . Thus, the

asymptotic bound on stable convergence in such a network must be O
ffiffiffi
n

pð Þ with respect to degree.
Small-world graphs following the Watts–Strogatz model (Watts & Strogatz, 1998) have the same
asymptotic distribution of distance and degree and thus the same bound. Scale-free networks generated
following the Barabasi–Albert model (Albert & Barabasi, 2002) have even worse properties: they have a
slightly sub-logarithmic diameter, but the devices with the highest degree have degree proportional to n,
meaning that the graph has an effective convergence time of O(n) with respect to degree with Laplacian-
based consensus.

Diameter also limits convergence because the convergence rate depends on the second eigenvalue of
the graph Laplacian (Olfati-Saber et al., 2007). This value is very small for high-diameter mesh networks.
In fact, in Elhage and Beal (2010) the convergence rate of Laplacian-based consensus has been shown to
be O(diameter2) with respect to diameter on spatially distributed networks.

Our investigation in this paper will focus particularly on spatially distributed networks, as approximate
consensus algorithms are frequently needed for such systems, yet they are particularly problematic for
Laplacian-based consensus. Formally, we consider a class of networks in which a set of n devices are
arranged in a graph G = {V, E} and also embedded by a position function p: V→M into a Riemannian
manifold M with distance function d. Edges are assumed to be bidirectional, to have equal weight, and to
not exist for any two vertexes i and j where d(p(i), p(j)) is greater than some threshold. On such networks,
as pointed out above, Laplacian-based consensus has a convergence time ofO(diameter2) (Elhage & Beal,
2010). Worse, it also has a high constant factor due to the restriction on ε caused by the generally large
potential number of neighbors.

When there is no correlation in the distribution of values on devices, this does not matter as much, since
a rough estimate of global values can be made from locally sampled information. When values are
correlated by their location in the network, however, no reasonable estimate of consensus can be made
without moving information over long distances. Since spatial computers often have a large diameter and
values are often highly correlated with location, Laplacian-based consensus is often inadequate for
application needs, and these systems are thus a good case study for developing a spectrum of approximate
consensus algorithms, as well as an immediate application area for faster algorithms enabled by weakened
requirements for accuracy or resilience.

Laplacian-based consensus, however, is only one possible approach to approximate consensus, albeit
one with the highly desirable properties of guaranteed convergence to the mean and of extreme resilience
to a wide range of network faults and changes. Might it be possible to improve on the performance of
Laplacian-based consensus by degrading resilience or convergence to the mean? Let us consider an
approach at the opposite extreme, of maximum speed and minimal resilience. If an arbitrary device is
designated as the root of a spanning tree, the mean value can be computed by summing up the spanning
tree, then propagating the value back out along the same route that it came. Even the smallest disruption to
this process, however, will result in a failure to converge to the mean value or even a failure to converge at all.

Trading accuracy for speed in approximate consensus 3

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


The spanning-tree approach, however, is extremely fast: in the absence of failures, consensus will be
achieved in at most two·diameter rounds. Moreover, the lower bound of O(diameter) is impossible to beat,
since consensus cannot be achieved without information moving across the network at least once.

With these two algorithms, we thus have upper and lower bounds on both speed and resilience,
with Laplacian-based consensus exhibiting extreme resilience and requiring O(diameter2) time, while
‘spanning-tree consensus’ is completely non-resilient and requires Θ(diameter) time, quite close to the lower
bound of Ω(diameter) time. This implies that there should be a spectrum of possible approximate consensus
algorithms filling in the gap between these two extremes, as illustrated in Figure 1. The question is whether
algorithms in the middle can provide the best of both worlds, or if they are restricted to provide only the worst
of either. We will see, however, through the development of two algorithms based on a new approach to
approximate consensus, PLD-consensus, that it is possible to have both speed and resilience. These two
algorithms, while both resilient, make different tradeoffs on the matter of speed vs. accuracy in estimating the
mean of initial values, and begin the process of filling in the spectrum of approximate consensus algorithms
(Table 1).

3 Power-Law-Driven Consensus

If the problems with Laplacian-based consensus come from the high diameter of the network, then one clear
approach to accelerating consensus would be to reduce the effective network diameter through construction of
an overlay network containing long-distance links. Since such overlay links may be many hops long, there
may be long delays across these links, but that delay is only proportional to the diameter of the network.

PLD-consensus is a simple implementation of such an approach based on a 1/f random distribution, also
known as pink noise. Here the 1/f distribution is applied to break symmetry, driving self-organization of
the overlay network, by selecting certain devices to have their values spread over a longer distance.
Under PLD-consensus, devices compete to become ‘dominant’ over one another, drawing their bids for
dominance from the scale-free 1/f distribution. The value of using a scale-free distribution of this sort
is that, no matter the size or arrangement of the network, the scale-free distribution ensures that some

Figure 1 Approximate consensus is currently generally carried out by Laplacian-based approaches, which are
extreme in both their resilience and their slow speed of convergence. An alternate ‘straw-man’ extreme approach is
a spanning-tree consensus, which provides a lower bound on time and minimal resilience. This paper proposes that
there should exist a spectrum of possible approximate consensus algorithms trading off resilience and/or accuracy
for speed, and begins the process of filling in this spectrum with two new algorithms based on Power-Law-Driven
Consensus (PLD-consensus), which are both fast and resilient, at the cost of degrading the precision of the
converged value to varying degrees

J . B E A L4

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


device will soon draw a bid that is larger enough than the bids of all other devices so that it can dominate
the entire network.

Dominance decays over both time and space, so this competition results in a partition of the network
into ‘dominance regions’ that shift over time. Values then spread outward from dominant devices through
the regions that they dominate, and each device blends the local dominant value with its own value.

Since this distribution is scale free, the regions of dominance begin small. The regions then expand
rapidly until the entire network is dominated by a single device, effectively reducing diameter and
allowing for rapid convergence. Finally, because dominance decays over time, any dominant device that
fails will eventually be replaced by other dominant devices (though this may take a long time).

We will consider two PLD-consensus algorithms, distinguished by the manner in which the values of
other devices influence the value of a dominant device. In unidirectional PLD-consensus, the overlay
network is used only to carry values from a dominant device to other devices, and is superposed with local
blending by Laplacian-based consensus. Thus the value that the network converges to approximate a local
mean around the dominant device. Bidirectional PLD-consensus also uses the overlay network to gather a
running estimate of the mean value over a device’s region of dominance, and it is this estimated mean that
is disseminated as the dominant value. Because of this additional layer of long-distance communication,
bidirectional PLD-consensus is slower to converge than unidirectional PLD-consensus, but generally
achieves a better estimate of the mean.

3.1 Formal algorithm specification

Having given some intuitions for how PLD-consensus functions, this section now provides a formal
specification of the unidirectional and bidirectional PLD-consensus algorithms. For simplicity, this
specification will be stated in terms of synchronous rounds. In fact, however, there is no requirement for
synchrony: both the overlay construction and blending operations are relaxation methods, meaning that
any local updates (within the stable range) are expected to move the system a whole closer to a converged
state. The algorithm is thus expected to operate well under a wide range of non-synchronous conditions,
and indeed the simulations in Section 5 are non-synchronous.

Let us begin the specification by considering the computation of the dominance overlay. This
sub-algorithm serves two functions: first, determining the relative dominance level of each device and
second, flowing values down the dominance gradient from more dominant to less dominant devices.

The dominance competition state for each device i at each round t is a tuple Si(t) = (di(t), ui(t), vi(t)) of
the current dominance level di(t), a unique identifier ui(t) for the current dominant device, and a dominant

Table 1 Table of variables

Variable Definition

α Blending constant for PLD-consensus dominating value
ε Blending constant for Laplacian-based consensus
li(t) Local estimate of approximate mean for device i at time t
di(t) Dominance level for device i at time t
ui(t) Unique identifier of dominating device for device i at time t
vi(t) Dominant value for device i at time t
si(t) Sum of values at devices farther from dominant device than i at time t
ci(t) (Fractional) count of devices farther from dominant device than i at time t
Si(t) Tuple (di(t), ui(t), vi(t)) of all state for the dominance overlay computation
n Number of devices in network
r Range to neighbors in random unit disc networks
D Network diameter
v Velocity of mobile devices
Nði; tÞ Neighbors of device i at time t

PLD-consensus = Power-Law-Driven Consensus.

Trading accuracy for speed in approximate consensus 5

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


value vi(t). In addition, each device i has a local value li(t), which is its current candidate for a consensus
value, giving a total state of (Si(t), li(t)).

At each round, the algorithm considers three candidate states for the new dominance competition state.
The driven state Sd is:

Sd =
1

Uð0; 1Þ
� �

; i; liðt�1Þ
� �

(2)

where U(0, 1) is a uniform random distribution over the interval (0, 1)2. Taking the inverse of U(0, 1)
produces 1/f noise, giving a power-law distribution of candidate new dominance levels being injected into
the network at each round.

For each neighbor j 2 Nði; tÞ, whereNði; tÞ is the set of neighbors of device i at time t, the neighbor-
derived candidate state Sj is:

Sj = ðdjðt�1Þ�1; ujðt�1Þ; vjðt�1ÞÞ (3)

which takes the neighbor’s most recent value at a decremented dominance level.
Finally, if no neighbor has a higher dominance level, the leader state Sl is:

Sl = ðLi; uiðt�1Þ; liðt�1ÞÞ (4)

where the leader dominance Li is

Li =
diðt�1Þ�1
0

n
if 8j2Nði; tÞ; diðt�1Þ> djðt�1Þ
else (5)

which decrements the old dominance level and inserts the new local value.
The new state is then set to whichever of these three sources has the highest dominance level:

SiðtÞ=maxðSd ∪ Sl ∪ fSj j j 2 Nði; tÞgÞ (6)

where the maximum is computed lexicographically, such that the first elements of a tuple are compared,
then if they are equal the second elements are compared, etc.

Figure 2 shows an example of the regions of dominance produced by this computation. Initially, no
devices are dominant over their neighbors, but as dominance levels are injected via the 1/f noise, regions of
dominance grow rapidly until eventually some device is able to dominate the entire network.

Once the dominance overlay has been established, computation of consensus is relatively straightforward.
Given an initial local value of li(0) at each device i, the value at round t may be computed as a simple
proportional blend:

liðtÞ= α � viðtÞ + ð1�αÞ � liðt�1Þ (7)

where vi(t) is the dominant value as provided from the overlay and α the proportional blending constant. Note,
however, that updating in this way uses only overlay values and no neighbor values at all.

(a) (b) (c) (d)

Figure 2 Visualization of dominance competition driven by 1/f noise, by having each device spread a unique
RGB color. From an initial state where no devices are dominant (a), regions of dominance are expected to grow
rapidly (b, c) until eventually some device is able to dominate the entire network (d)

2 Note that it is important to use the open interval (0, 1) rather than the closed interval [0, 1], so that 0 can never be
selected.

J . B E A L6

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Unidirectional and bidirectional PLD-consensus each add non-locality in a different manner.
Unidirectional PLD-consensus mixes overlay blending and the local blending of Laplacian-based
consensus by the simple expedient of adding the standard Laplacian differential term:

liðtÞ= α � viðtÞ + ð1�αÞ � liðt�1Þ + ϵ
X

j2N ði; tÞ
wði; j; tÞ � ðljðt�1Þ�liðt�1ÞÞ (8)

where ε is the step size for Laplacian-based consensus. PLD-consensus thus makes use of both neighbor
values and values delivered through the overlay, and reduces to pure overlay blending when ε = 0 and to
Laplacian-based consensus when α = 0.

Bidirectional PLD-consensus, on the other hand, makes use of the dominance overlay in a second way,
to perform a ‘converge-cast’ that sums current values ‘upward’ along the dominance gradient toward the
dominant device to compute an estimate of the current overall mean. To do this, each device i maintains a
tuple (si(t), ci(t)) with an estimate of the sum si of local values and count ci of devices ‘downstream’ of itself
away from the dominant device. The device computes this tuple by summing the tuples received from its
neighbors in each round, adding its own local value li, and sending the new total upstream, splitting both
values between upstream neighbors. Put formally, a device computes:

ðsiðtÞ; ciðtÞÞ= ðliðtÞ; 1Þ +
X

j2N ði; tÞ djðt�1Þ< diðt�1Þj
1

Ujðt�1Þ sjðt�1Þ; 1
Ujðt�1Þ cjðt�1Þ

� �
(9)

assuming that tuples are added as vectors and where Uj(t) is the number of upstream neighbors of device
j at time t:

UjðtÞ= j fk 2 Nðj; tÞ jdjðtÞ< dkðtÞg j (10)

The estimated mean of devices downstream of device i is then si(t)/ci(t). At a dominant device, this
covers the entire network, and this value is taken as the value to be propagated from dominant devices
rather than li(t). Bidirectional PLD-consensus thus acts much like a spanning tree in estimating and
broadcasting mean, except that there is more redundancy because there are potentially many paths
simultaneously operating both toward and away from its root at the dominant device.

The estimate of the mean computed by bidirectional PLD-consensus will, of course, be lagged
and out of date, but nevertheless, as we will see, allows bidirectional PLD-consensus to generally
arrive much closer to the true network mean than unidirectional PLD-consensus, since information about
device values moves toward a dominant device as fast as the information about the dominant device
propagates outward.

4 Analysis

In order to analyze the convergence time for PLD-consensus, let us consider two portions of the algorithm
independently. First, we determine the time it takes before some device i comes to dominate the network.
More precisely, we aim to determine a bound on the time t at which all devices j are expected to hold the
same unique identifier uj(t) = i. We can then determine the time required, once a device i dominates the
network, for all other devices to converge to its value.

First, let us consider the criteria for a device i to dominate the network at time t. The intuition here is
that, because the distribution of dominance values being generated is heavy-tailed, there is a high
probability that some device will generate a value that is much higher than all of the others that have ever
been generated.

Dominance decreases by 1 across each hop and time step, so a device i can only dominate the
network if it generates a value for di(t) that is significantly higher than the values that any other device
generates, and this situation remains the case for long enough for its identifier to propagate across the
network. Thus, in a network of diameter D, device i has the potential to become dominant withinD rounds
if it is the case that:

8j≠ idiðtÞ> djðtÞ + hði; jÞ (11)

where h(i, j) is the distance in hops from i to j. Let us compute the probability of having such a single value

Trading accuracy for speed in approximate consensus 7

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


much higher than the rest. The likelihood of such being generated for some device i in the first round in the
range D ⋅ (x+ 2)⩾ di(t)>D·(x+ 1) for some integer x, may be bounded below by:

Pðround 1 x�highÞ⩾ n � PðDðx + 2Þ⩾ diðtÞ>Dðx + 1ÞÞ � Pðdj≠ i ⩽DxÞ (12)

Pðround 1 x�highÞ⩾ n � 1
Dðx + 1Þ�

1
Dðx + 2Þ

� �
� 1� 1

Dx

� �n�1

(13)

Pðround 1 x�highÞ⩾ n � 1
Dðx + 1Þðx + 2Þ � 1� 1

Dx

� �n�1

(14)

Since it takes D rounds for an identifier to propagate across the network, the likelihood that the other
devices keep generating lower values for long enough for device i to become dominant is:

Pðround 1 x�dominanceÞ⩾Pðround 1 x�highÞ � 1� 1
Dx

� �Dðn�1Þ
(15)

What if the very high value is generated sometime between the first round and some later round Dk,
rather than only in the first round? We can bound the likelihood of this event by adding another Dk rounds
of lower values and chances for higher values, for an equation of:

Pðround Dk x�dominanceÞ⩾ n � 1� 1� 1
Dðx + 1Þðx + 2Þ

� �Dk
 !

� 1� 1
Dx

� �Dðn�1Þ +Dkðn�1Þ
(16)

which may be simplified to the slightly lower bound:

Pðround Dk x�dominanceÞ⩾ n � 1� 1� 1
Dðx + 1Þðx + 2Þ

� �Dk
 !

� 1� 1
Dx

� �Dðk + 1Þn
(17)

Note that two of the exponential terms match the compound interest identity:

lim
D!1

1 +
a

D

� �bD
= eab (18)

such that as D rises, the probability converges to:

Pðround Dk x�dominanceÞ⩾ n � 1�e�
k

ðx + 1Þðx + 2Þ
� �

� e�ðk + 1Þn
x (19)

Multiplying through, we obtain the expression:

Pðround Dk x�dominanceÞ⩾ ne�
ðk + 1Þn

x �ne�
ðk + 1Þn

x � k
ðx + 1Þðx + 2Þ (20)

Numerical evaluation shows that for any fixed k and n, the cumulative sum with respect to x forms a
sigmoid representing a lower bound on the likelihood of a dominant value (in any range) being generated
by round Dk (Figure 3(a)). This value is significant even for k = 1 and small n, rising slowly with n and
rapidly with k (Figure 3(b)). Overall, the numerical trend is consistent with convergence with high
probability in O(D) time.

Once there is a single dominant value in the network, arriving at every device within O(D) rounds,
every round it moves every device at least one step toward consensus by blending with that device’s value
at rate α. Unlike with Laplacian-based consensus, the value of α is not constrained by neighborhood size,
since there is only a single dominant value to blend with. Thus, the network as a whole moves toward
consensus exponentially with a time constant of O(D).

It remains only to ensure that feedback to the dominant value is stable. For unidirectional
PLD-consensus, this is determined by the ε parameter of Laplacian-based consensus, which is constrained
by neighborhood size: as long as this bound is observed, it is impossible for the estimated mean to depart
from the initial range of li(0). For bidirectional PLD-consensus, the inclusion of the weighting term in the
converge-cast means that even if values are lost or repeated the estimated mean cannot escape the bounds
of the minimum and maximum value in the network.

J . B E A L8

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Note, however, that nothing is guaranteed about the eventual value that either PLD-consensus
algorithm will converge to. In either case, it is possible to construct a network and execution pattern so as
to ensure that a value arbitrarily far from the mean is chosen. Consider, for example, a network of n devices
with a linear topology, where all of the devices are strung out into a single long chain. If one end device has
value n and all others have value 0, and dominance emerges in a pattern moving away from the n device,
such that it is always blending with incoming zero values, then for the first n rounds it will move toward 0
while all other devices stay at 0. Thus, although the mean value of the network is 1, the consensus value
must be less than (1− α)n. In practice, however, we will find that bidirectional PLD-consensus often
converges to values close to the true mean.

5 Experimental validation

This section presents experimental validation of the two PLD-consensus algorithms in simulation,
providing a quantitative comparison of the tradeoffs between speed and accuracy for these two algorithms
vs. Laplacian-based consensus under a range of different configurations and conditions of execution.
In particular, Section 5.1 illustrates the convergence dynamics of the various algorithms with a detailed
presentation of a single test case. Section 5.2 then quantifies the convergence process, while Section 5.3,
5.4, and 5.5 examine how convergence is affected by network diameter, device mobility, and choice of
algorithm parameters, respectively.

These experiments use implementations of both the unidirectional and bidirectional PLD-consensus
algorithm in Proto (Beal & Bachrach, 2006) (MIT Proto), as well as a Proto implementation of Laplacian-
based consensus. The code for all three algorithms is listed in Appendix 1. Proto was a desirable language
for implementation and experimental validation for two reasons: first, Proto’s programming model allows
a concise and direct implementation of the mathematical specification given in the previous section, and,
second, the network simulator distributed with MIT Proto made it simple to run and analyze experiments
on large spatially distributed networks.

Except where otherwise noted, all experiments are run with the following parameters: the network
consists of 1000 devices distributed uniformly randomly in a 100 × 100m rectangle. Devices use a unit
disk model of communication, broadcasting to all other devices within r meters, where r is computed to
give an expected 10 neighbors per device. The algorithms are run for 1000 rounds of partially synchronous
execution, in which all devices execute rounds with equal frequency and randomly offset phase.
The PLD-consensus algorithms are run with α = 0.02; unidirectional PLD-consensus is run with ε = 0, in
order to focus investigation on the overlay-based portion of the algorithm’s action. Laplacian-based
consensus is run with a step size of ε = 0.02. For each experimental condition, 10 trials are run (which is
sufficient for comparing behaviors of well-behaved algorithm properties).

(a) (b)

Figure 3 Numerical evaluation of Equation (21) shows (a) that cumulative probability with respect to x forms a
sigmoid representing a lower bound on the likelihood of a dominant value in round Dk, and (b) summing over the
range x = 1 to 108 for various n and k demonstrates low sensitivity to network size and rapid convergence with k

Trading accuracy for speed in approximate consensus 9

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


The analysis of convergence statistics uses an arbitrary threshold of ‘good-enough’ approximate
consensus, since approximate consensus can never achieve a perfect equality of values. In addition, with
random graphs and mobile devices some fraction of devices may be disconnected—either mostly or
entirely—from the bulk of the network and thus unable to effectively participate in consensus. To exclude
the values of such devices from our analysis, the devices with the top and bottom 2.5% of values are
ignored3. A network will thus be considered to have converged if the difference between the minimum and
maximum value within the median 95% of devices is<1% of the initial difference (e.g.<0.01 if all devices
start with values between 0 and 1).

5.1 Illustrative comparison of algorithms

Let us begin with an illustrative comparison of Laplacian-based consensus and the two PLD-consensus
algorithms, to provide an initial intuition of the difference between these approaches.

This experiment uses a set of 1000 devices distributed uniformly randomly in a 400× 100m rectangle. The
broadcast communication radius r is chosen to give ~15 expected neighbors per device (r = 13.8m). Devices
are initialized to one of two values based on their spatial location, with devices in the left hand side of the plane
given an initial value li(0) = 30, and on the right hand side li(0) = 100, producing a highly spatially correlated
distribution. To have the purest comparison of PLD-consensus and Laplacian-based consensus, this
experiment considers the case of α = 0.01 and ε = 0 for PLD-consensus, meaning that only dominance
overlay values are used, and compares against a step size of ε = 0.01 for Laplacian-based consensus.

Figure 4 shows the evolution of values held by the various devices over time during a single trial run.
Although all three cases begin the same, both PLD-consensus algorithms converge rapidly within a few
hundred rounds (the unidirectional significantly faster than the bidirectional), while even after 5000 rounds
of computation Laplacian-based consensus is nowhere near convergence, with a difference of 41.5
between the minimum and maximum of the median 95%—more than half of the initial value difference.

The tradeoff for the faster convergence of PLD-consensus, however, is a decreased accuracy in finding
the overall mean value. In this case, the Laplacian consensus values at t = 5000 have a mean of 63.47,
which is quite close to the true mean of 63.6 (the mean is slightly shifted from the expected 65 due to the
random positioning of devices). The converged value of bidirectional PLD-consensus is somewhat farther
off, at 55.27, and unidirectional PLD-consensus has converged to a value of 30.14, which is nearly equal to
one of the original extremes.

Although this illustration is only a single example, it nicely illustrates the tradeoff in accuracy vs. speed
amongst the three algorithms.

5.2 Convergence rate

For a more thorough comparison of convergence rate, let us compare the evolution of value distributions in
the two PLD-consensus algorithms and Laplacian-based consensus. For this experiment, trials were run
for two initial distribution conditions: a homogeneous random condition in which each device’s initial
value li(t) is drawn uniformly randomly from the interval [0, 1], and a spatially correlated condition in
which devices in the left half of the distribution start with li(t) = 0 and devices in the right half start with
value li(t) = 1. Values were then recorded every 10 rounds for 1000 rounds.

Figure 5 plots the difference between highest and lowest value in the median 95% against time. In both
cases, both PLD-consensus algorithms clearly greatly outperform Laplacian-based consensus. Under the
homogeneous condition, Laplacian-based consensus initially converges more quickly than either PLD-
consensus algorithm, but greatly slows when further convergence requires equalization of values over
many hops. With spatially correlated initial values, Laplacian-based consensus has barely even begun to

3 This fraction is selected based on the connectivity parameters used for simulations, such that it excludes all
disconnected devices in all static data sets considered. The obvious alternative of measuring only the largest graph
component is not used because it does not apply well to the case of mobile devices that transiently connect and
disconnect.

J . B E A L10

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


converge by t = 1000, and will not complete its convergence for many thousands of rounds more, as seen
in the prior illustrative comparison.

Both PLD-consensus algorithms converge rapidly in both the homogeneous and spatially correlated
conditions. Bidirectional PLD-consensus shows much more regularity in its convergence in the
homogeneous case, likely due to the fact that in this condition the mean can be approximated well with

(a) (b)

(c) (d)

Figure 4 Power-Law-Driven Consensus (PLD-consensus) vs. Laplacian-based consensus on a mesh network of 1000
devices with ~15 neighbors each. The devices are shown as gray dots distributed in a plane, viewed at an angle,
with their current values for consensus showed as the height of colored dots above the plane: red for unidirectional
PLD-consensus, blue for bidirectional PLD-consensus, and green for Laplacian-based consensus. From an initial
spatially correlated distribution (a), both unidirectional and bidirectional PLD-consensus begin to converge rapidly (b).
Both forms of PLD-consensus converge within a few hundred rounds (c), with bidirectional much closer to the true
mean than unidirectional. Laplacian-based consensus is guaranteed to eventually arrive at the true mean, but even after
5000 rounds it is far from converged, retaining more than half of its initial range of values (d)

101 102 103 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rounds

M
in

/M
ax

 D
iff

er
en

tia
l

Homogeneous Random Initial Values

Unidirectional
Bidirectional
Laplacian
±2 std. dev.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rounds

M
in

/M
ax

 D
iff

er
en

tia
l

Spatially Correlated Initial Values

Unidirectional
Bidirectional
Laplacian
±2 std. dev.

(a) (b)

Figure 5 Both Power-Law-Driven Consensus (PLD-consensus) algorithms progress toward convergence at
similar rates and much faster than Laplacian-based consensus, though Laplacian-based consensus initially
progresses more quickly when initial values are homogeneously randomly distributed (a). Unidirectional PLD-
consensus converges more quickly than bidirectional when values are spatially correlated (b), but there is a high
degree of variance in both

Trading accuracy for speed in approximate consensus 11

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


information from only a few hops distance. In the spatially correlated case, unidirectional progresses
significantly faster than bidirectional, due to fact that information only needs to move one way in the
overlay network. There is a significant amount of variance in the convergence of both, however, due to the
random progress of overlay network construction.

5.3 Scaling with network diameter

The poor scaling of Laplacian-based consensus as network diameter increases has already been
demonstrated in Elhage and Beal (2010) and discussed above. According to the analysis in Section 4, the
time for both PLD-consensus algorithms to converge should be O(diameter), but this analysis did
not establish whether the constant on this time is likely to be large or small. The next experiment validates
that the O(diameter) estimate is correct, and also shows that the constant is small.

To test this, both PLD-consensus algorithms and Laplacian-based consensus were run for 5000 rounds with
spatially correlated initial values on networks with dimensions of Xmeters width by 20meters, where the width
X ranged from 50 to 1000m in steps of 50. Devices were distributed at constant density, ranging in number
from 125 to 2500. For communication, r was set to provide an expected 20 neighbors (7.14m)—this higher
value was necessary to ensure that such a long thin random network had a high probability of being connected.
The diameter of the network thus ranges from at least 7 hops to at least 140 hops. Devices in the left half of the
distribution start with li(t) = 0 and devices in the right half start with value li(t) = 1.

For this experiment, convergence of both PLD-consensus algorithms is universal, while Laplacian-based
consensus, as expected, is only able to converge within 5000 rounds for the three lowest diameter networks.
Figure 6 shows the scaling of convergence time with respect to network width X: as predicted by our analysis,
the convergence time of both PLD-consensus algorithms increases approximately linearly with the diameter,
atop an approximately constant base convergence time determined by the blending rate. Bidirectional
PLD-consensus is, however, significantly slower than unidirectional PLD-consensus.

5.4 Scaling with mobility

In many consensus applications, the participating devices are not stationary. This could both be helpful in
lowering the effective diameter of the network and problematic in scrambling the structure of the overlay.
To investigate the effect of mobility, both PLD-consensus algorithms and Laplacian-based consensus
were run with spatially correlated initial values and devices moving at a range of velocities v varying

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Width

C
on

ve
rg

en
ce

 T
im

e

Unidirectional
Bidirectional
Laplacian
±2 std. dev.

Figure 6 With spatially correlated distributions, convergence time for both Power-Law-Driven Consensus
algorithms increases linearly with the width of the network. Laplacian consensus cannot converge in a reasonable
number of rounds except in the smallest of networks

J . B E A L12

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


from 0.01 to 2.0m s−1. Each device moves toward a randomly chosen point in space at velocity v, and upon
reaching it (within quantization error) chooses a new point to move toward. Devices in the left half of the
distribution start with li(t) = 0 and devices in the right half start with value li(t) = 1. Each trial was run for
2000 rounds.

Two communication radii rwere chosen to investigate two qualitatively different mobility scenarios: in
the first, r is set to give an expected 10 neighbors (5.6m), resulting in a network that is generally well
connected. In this network, it is almost always possible for values to flow, and the question is whether the
overlay is adaptable enough to move them efficiently despite being disrupted by the ongoing changes in
neighbor relations. For the second scenario, r is set to given an expected two neighbors (2.5m), resulting in
a network that is generally disconnected into very small components. In this network, values must be
ferried to their destinations by the movement of devices, depending on persistence of dominance after the
overlay becomes disconnected.

Laplacian-based consensus is known to perform correctly in both cases, though, as usual, it can be very
slow to converge. The PLD-consensus algorithms are expected to have two limiting modes of behavior:
at low velocities, the overlay should not be disrupted enough to significantly affect the convergence rate.
At high enough velocities, the overlay becomes irrelevant, as devices are so well mixed that every device
frequently becomes a direct neighbor of the dominant device. At intermediate velocities, however, it is not
immediately clear what to expect.

Figure 7 shows the results of this experiment: with the connected network, both PLD-consensus
algorithms always converge rapidly for every trial (unidirectional slightly faster than bidirectional, as
usual), indicating that the disruptions caused by changes in the overlay network are not a significant
problem. In both cases, the convergence time appears to be dominated more by the blending constant α
than by the diameter of the network.

With the disconnected network, unidirectional consensus converges much more rapidly than bidirectional
consensus. This is likely due to the fact that changes of the members in a connected component can create large
perturbations in the mean estimated by converge-cast, but have little effect on broadcast of the dominant value.

Once again, as may be expected, Laplacian-based consensus performs quite poorly in both scenarios,
converging within 2000 rounds only for the highest velocities, where the rate at which devices mix is high
enough to allow their values to blend rapidly even for Laplacian-based consensus. Surprisingly,
Laplacian-based consensus performs better in the disconnected case than the connected case.

5.5 Effect of α and ε parameters

The final experiment considers the effects of the blending parameters α and ε. For both of these parameters,
there is a tension between speed and accuracy: the higher they are, the faster the network moves toward

(a) (b)

Figure 7 When the network is well connected, device mobility has little effect on convergence of either Power-
Law-Driven Consensus algorithm. When the network is largely disconnected, however, higher mobility is beneficial: the
flexibility of the overlay construction allows values to flow effectively even across gaps in connectivity where they must
be ferried by moving devices. Laplacian-based consensus performs poorly except at high velocities, where the motion of
devices mixes them well. (a) Percentage converging and (b) time of convergence

Trading accuracy for speed in approximate consensus 13

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


convergence, but if they are too high then they will degrade the efficacy of the algorithms. As is well
known, when ε is too high, Laplacian-based consensus becomes unstable and values will diverge. When α
is too high, there is less opportunity for the dominant value to be brought toward the mean by information
flowing from other devices in the network.

To study the effect of varying α, both PLD-consensus algorithms were run with both homogeneous
random values and spatially correlated initial values. For the uniform random case, initial values are
chosen randomly on the interval [0, 1]; for the spatially correlated case, devices in the left half of the
distribution start with li(t) = 0 and devices in the right half start with value li(t) = 1. For these trials, ε = 0
and α ranges geometrically from 0.001 to 1.0 at five values per decade, running 30 trials per condition. The
experiment for the effect of ε on unidirectional PLD-consensus is the same, except that α = 0.02 and
ε ranges from 0.001 to 1.0. Finally, for comparison with α variation, Laplacian-based consensus is run
with a step size ε that is varied identically.

Figure 8 shows the results of varying α. Both PLD-consensus algorithms converge reliably for
all but the lowest α. For those trials that converge, the convergence time for low α is close to inversely
proportional to α, indicating that convergence is dominated by blend rate. For high α, convergence time is
nearly flat, indicating that convergence is dominated by diameter, which regulates overlay construction
and the time for values to propagate to and from the dominant device. As expected, once diameter begins
to dominate, unidirectional PLD-consensus is significantly faster than bidirectional PLD-consensus.
Laplacian-based consensus, on the other hand only converges at all for a few moderate-alpha trials: with
low α it converges too slowly and with high α it becomes unstable and values diverge rapidly.

Variation of ε (not shown) produces no significant effect on either the convergence time or on the
converged value of unidirectional PLD-consensus, until around ε = 0.1, where the Laplacian component
becomes unstable and values diverge. These results indicate that the Laplacian component is likely to be
operating so slowly on spatially correlated distributions as to have no measurable effect at the diameter
studied by this experiment; only at lower α or diameter is there likely to be a significant effect.

Finally, consider the actual values converged to by the various algorithms. As previously noted,
Laplacian-based consensus is guaranteed to converge to the mean value over all devices, once it finally
converges. As noted in the analysis in Section 4, however, there can be no similar guarantee for either
PLD-consensus algorithm. With a balanced distribution such as those considered in this experiment,
however, we may expect that the distribution of converged values to still be centered on the mean, since
any device is equally likely to become dominant. Figure 9(a) shows that this is in fact the case in this
experiment for all conditions and all values of α. The variation of the mean is another story, and it is here
that bidirectional PLD-consensus has a strong advantage over unidirectional. With both correlated and
uncorrelated initial values, bidirectional PLD-consensus may be expected to converge much more closely

(a) (b)

Figure 8 Power-Law-Driven Consensus (PLD-consensus) converges reliably within 1000 rounds for all α⩾ 0.01
(a): the apparent ‘non-converging’ cases are caused by outlier random graphs with more disconnected devices than
usual. Laplacian-based consensus, on the other hand, only barely converges within 1000 rounds for a few trials
with intermediate values of ε. Lines are plotted with a small vertical displacement to enhance visibility. For cases
where PLD-consensus converges, the convergence time (b) is be dominated by blend rate for low α and by
diameter (regulating overlay construction and value relay) for high α

J . B E A L14

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


to the mean than unidirectional PLD-consensus. With homogeneous random values, where a good
estimate of the overall mean may be taken from the values of nearby devices, bidirectional PLD-consensus
performs very well indeed. As the value of α rises, however, there is less opportunity for distant devices to
send information about their values toward the dominant device before it is wiped out by the information
begin broadcast from there, and the advantage of bidirectional over unidirectional PLD-consensus lessens.

6 Contributions and future work

This paper argues that relaxing the requirements for accuracy and resilience in approximate consensus, relative
to Laplacian-based consensus, enables a spectrum of algorithms that incrementally tradeoff accuracy and/or
resilience for speed. This argument is supported by the introduction of two new approximate consensus
algorithms based on self-organizing overlays, unidirectional and bidirectional PLD-consensus. Both operate in
O(diameter) time rather than O(diameter2) for Laplacian-based consensus, with the unidirectional algorithm
being faster but likely to be farther from the true mean than the bidirectional algorithm.

No one of these approaches is clearly better than the others. For some applications it may be very important
to get a good estimate of the mean: for example, when executing motion planning in modular robotics,
approximate consensus can be used to obtain critical physical quantities such as the system’s center of mass. In
a case such as this, accuracy of the converged value dominates and Laplacian consensus is likely to be the best
approach unless the number of devices in the robot is very large. In other cases, accuracy is less important.
For example, when synchronizing transmitters for distributed MIMO, the value arrived at by approximate
consensus is fairly unimportant, but it is critical that the consensus be fast and stable. In such a case,
unidirectional PLD-consensus can deliver extremely fast convergence. Yet other applications may be in-
between and best served by bidirectional PLD-consensus or other intermediate algorithms yet to be discovered.

The work presented in this paper thus makes two contributions. First, it may be applied directly to
improve the performance of consensus-based applications for which one of the two PLD-consensus
algorithms is appropriate. Second, it forms a basis for investigation of the more general spectrum of
approximate consensus algorithms. The PLD-consensus approach sets markers in the ground for one set of
tradeoffs. There should exist other algorithms that provide better precision while still improving
significantly over the performance of Laplacian-based consensus. Similarly, the PLD-consensus
algorithms are designed only for short-term one-shot consensus, and will not work as well for situations
where a value needs to be tracked over time or where the dominant device leaves the network and another
must take its place. There is a rich space of possible algorithms trading off a number of such factors, and it

(a) (b)

Figure 9 Unlike Laplacian consensus, Power-Law-Driven Consensus (PLD-consensus) will not generally
converge to the mean of all initial device values. With a balanced distribution, however, the mean of the converged
values over many trials will still likely be close to the true mean, as demonstrated in (a). The standard deviation of
converged value (b) depends on how far information can move before a dominant device emerges and drives the
system to convergence. Here, bidirectional PLD-consensus always performs much better than unidirectional, since
it gathers information more quickly and from farther away. With homogeneous random values, even very short
ranges can capture a reasonable approximation of the mean. When values are spatially correlated, higher α results
in more variance, as devices move toward a broadcast value before their own inputs can reach a dominant device

Trading accuracy for speed in approximate consensus 15

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


is to be expected that further investigation in this area will benefit any number of algorithms that depend on
approximate consensus phenomena.

Acknowledgments

This work is partially supported by the United States Air Force and DARPA under Contract No. FA8750-
10-C-0242. The US Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the US Government.

Appendix 1: Proto code for algorithms

This appendix contains code listings for implementations of all three algorithms examined in this paper:
Laplacian-based consensus, unidirectional PLD-consensus, and bidirectional PLD-consensus. Algorithms
are implemented in the Proto (Proto Developers, 2005–2014; Beal & Bachrach, 2006) spatial computing
language. Listings show comments in blue, state variables in green, and Proto keywords in magenta.

Appendix 1.1: Laplacian-based consensus

Appendix 1.2: Unidirectional PLD-consensus
Dominance overlay

Unidirectional PLD-consensus

J . B E A L16

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Appendix 1.3: Bidirectional PLD-Consensus
Dominance overlay: For bidirectional PLD-consensus, two different sets of values move over the same
overlay. Thus, rather than computing dominance and moving values down the dominance gradient as a
single operation, the algorithm first computes dominance, then independently moves values toward and
away from dominant devices.

Estimating mean value upward on dominance gradient

Trading accuracy for speed in approximate consensus 17

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Spreading information outward on dominance gradient

Bidirectional PLD-consensus: Now all of three ingredients are put together to create bidirectional PLD-
consensus: computation of the dominance overlay, estimating mean inward on the overlay, broadcasting the
estimate outward on the overlay, and blending with the estimate to achieve approximate consensus.

References

Albert, R. & Barabasi, A.-L. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97.
Beal, J. 2013. Accelerating approximate consensus with self-organizing overlays. In Spatial Computing Workshop.
Beal, J. & Bachrach, J. 2006. Infrastructure for engineered emergence in sensor/actuator networks. IEEE Intelligent

Systems 21, 10–19.
Bollobas, B. 2001. Random Graphs, 2nd edition. Cambridge University Press.
Egerstedt, M. & Hu, X. 2001. Formation constrained multi-agent control. IEEE Transactions on Robotics and

Automation 17(6), 947–951.
Elhage, N. & Beal, J. 2010. Laplacian-based consensus on spatial computers. In AAMAS 2010.
Kuramoto, Y. 1984. Chemical Oscillators, Waves, and Turbulence. Springer-Verlag.
Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann.
Mirollo, R. E. & Strogatz, S. H. 1990. Synchronization of pulse-coupled biological oscillators. SIAM Journal

on Applied Mathematics 50(6), 1645–1662.
Mosk-Aoyama, D. & Shah, D. 2008. Fast distributed algorithms for computing separable functions. IEEE Transactions on

Information Theory 54(7), 2997–3007.
Olfati-Saber, R. 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on

Automatic Control 51(3), 401–420.
Olfati-Saber, R., Fax, J. A. & Murray, R. M. 2007. Consensus and cooperation in networked multi-agent systems.

Proceedings of the IEEE 95(1), 215–233.
Olfati-Saber, R. & Murray, R. 2004. Consensus problems in networks of agents with switching topology and

time-delays. IEEE Transactions on Automatic Control 49(9), 1520–1533.
Proto Developers 2005–2014. MIT Proto, software. http://proto.bbn.com/.
Shah, D. 2009. Gossip Algorithms. Now Publishers Inc.
Slotine, J.-J. & Wang, W. 2005. A study of synchronization and group cooperation using partial contraction theory.

Cooperative Control 309, 207–228.
Watts, D. J. & Strogatz, S. H. 1998. Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442.
Xiao, L., Boyd, S. & Lall, S. 2005. A scheme for asynchronous distributed sensor fusion based on average consensus.

In Fourth International Symposium on Information Processing in Sensor Networks.
Yu, C.-H. & Nagpal, R. 2009. Self-adapting modular robotics: a generalized distributed consensus framework.

In International Conference on Robotics and Automation (ICRA).

J . B E A L18

http://dx.doi.org/10.1017/S0269888916000175
Downloaded from http:/www.cambridge.org/core. IP address: 129.255.225.167, on 21 Nov 2016 at 15:15:19, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://proto.bbn.com/
http://dx.doi.org/10.1017/S0269888916000175
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

	Trading accuracy for speed in approximate consensus
	1Introduction
	2Approximate consensus challenges and bounds
	3Power-Law-Driven Consensus
	Figure 1Approximate consensus is currently generally carried out by Laplacian-based approaches, which are extreme in both their resilience and their slow speed of convergence.
	3.1Formal algorithm specification

	Table 1Table of variables
	Figure 2Visualization of dominance competition driven by 1&#x002F;f noise, by having each device spread a unique RGB color.
	4Analysis
	5Experimental validation
	Figure 3Numerical evaluation of Equation (21) shows (a) that cumulative probability with respect to x forms a sigmoid representing a lower bound on the likelihood of a dominant value in round Dk, and (b) summing over the range x��&#x003D;��1 to 108 for va
	5.1Illustrative comparison of algorithms
	5.2Convergence rate

	Figure 4Power-Law-Driven Consensus (PLD-consensus) vs.
	Figure 5Both Power-Law-Driven Consensus (PLD-consensus) algorithms progress toward convergence at similar rates and much faster than Laplacian-based consensus, though Laplacian-based consensus initially progresses more quickly when initial values are homo
	5.3Scaling with network diameter
	5.4Scaling with mobility

	Figure 6With spatially correlated distributions, convergence time for both Power-Law-Driven Consensus algorithms increases linearly with the width of the network.
	5.5Effect of &#x03B1; and &#x03B5; parameters

	Figure 7When the network is well connected, device mobility has little effect on convergence of either Power-Law-Driven Consensus algorithm.
	Figure 8Power-Law-Driven Consensus (PLD-consensus) converges reliably within 1000 rounds for all &#x03B1;�&#x2A7E;�0.01 (a): the apparent &#x2018;non-converging&#x2019; cases are caused by outlier random graphs with more disconnected devices than usual.
	6Contributions and future work
	Figure 9Unlike Laplacian consensus, Power-Law-Driven Consensus (PLD-consensus) will not generally converge to the mean of all initial device values.
	Acknowledgments
	ACKNOWLEDGEMENTS
	Appendix 1: Proto code for algorithms
	References


