
Logical Methods in Computer Science
Volume 16, Issue ?, 2020, pp. ?:1–?:41
https://lmcs.episciences.org/

Submitted Oct. 08, 2019
Published ???. XX, 2020

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR

GIORGIO AUDRITO a, JACOB BEAL b, FERRUCCIO DAMIANI a, DANILO PIANINI c,
AND MIRKO VIROLI c

a Dipartimento di Informatica, University of Torino, Torino, Italy
e-mail address: giorgio.audrito@unito.it
e-mail address: ferruccio.damiani@unito.it

b Raytheon BBN Technologies, Cambridge (MA), USA
e-mail address: jakebeal@ieee.org

c Alma Mater Studiorum–Università di Bologna, Italy
e-mail address: danilo.pianini@unibo.it
e-mail address: mirko.viroli@unibo.it

Abstract. Field-based coordination has been proposed as a model for coordinating
collective adaptive systems, promoting a view of distributed computations as functions
manipulating data structures spread over space and evolving over time, called computational
fields. The field calculus is a formal foundation for field computations, providing specific
constructs for evolution (time) and neighbour interaction (space), which are handled by
separate operators (called rep and nbr, respectively). This approach, however, intrinsically
limits the speed of information propagation that can be achieved by their combined use. In
this paper, we propose a new field-based coordination operator called share, which captures
the space-time nature of field computations in a single operator that declaratively achieves:
(i) observation of neighbours’ values; (ii) reduction to a single local value; and (iii) update
and converse sharing to neighbours of a local variable. We show that for an important
class of self-stabilising computations, share can replace all occurrences of rep and nbr

constructs. In addition to conceptual economy, use of the share operator also allows many
prior field calculus algorithms to be greatly accelerated, which we validate empirically with
simulations of frequently used network propagation and collection algorithms.

Key words and phrases: Aggregate computing, field calculus, information propagation.
This work has been partially supported by Ateneo/CSP project “AP: Aggregate Programming” (http:

//ap-project.di.unito.it/) and by Italian PRIN 2017 project “Fluidware”. This document does not
contain technology or technical data controlled under either U.S. International Traffic in Arms Regulation or
U.S. Export Administration Regulations.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(?:?)2020
© G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli
CC© Creative Commons

https://lmcs.episciences.org/
http://ap-project.di.unito.it/
http://ap-project.di.unito.it/
http://creativecommons.org/about/licenses

?:2 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

1. Introduction

The number and density of networking computing devices distributed throughout our envi-
ronment is continuing to increase rapidly. In order to manage and make effective use of such
systems, there is likewise an increasing need for software engineering paradigms that simplify
the engineering of resilient distributed systems. Aggregate programming [BPV15, VBD+19]
is one such promising approach, providing a layered architecture in which programmers can
describe computations in terms of resilient operations on “aggregate” data structures with
values spread over space and evolving in time.

The foundation of this approach is field computation, formalized by the field calcu-
lus [VAB+18], a terse mathematical model of distributed computation that simultaneously
describes both collective system behavior and the independent, unsynchronized actions of
individual devices that will produce that collective behavior [AVD+19]. In this approach
each construct and reusable component is a pure function from fields to fields—a field is a
map from a set of space-time computational events to a set of values. In prior formulations,
each primitive construct has also handled just one key aspect of computation: hence, one
construct deals with time (i.e, rep, providing field evolution, in the form of periodic state
updates) and one with space (i.e., nbr, handling neighbour interaction, in the form of
reciprocal state sharing).

However, in recent work on the universality of the field calculus, we have identified that
the combination of time evolution and neighbour interaction operators in the original field
calculus induces a delay, limiting the speed of information propagation that can be achieved
efficiently [ABDV18]. This limit is caused by the separation of state sharing (nbr) and state
updates (rep), which means that any information received with a nbr operation has to be
remembered with a rep before it can be shared onward during the next execution of the
nbr operation, as illustrated in Figure 1.

In this paper, we address this limitation by extending the field calculus with the
share construct. Building on the underlying asynchronous protocol of field calculus, this
extension combines time evolution and neighbour interaction into a single new atomic
coordination primitive that simultaneously implements: (i) observation of neighbours’ values;
(ii) reduction to a single local value; and (iii) update of a local variable and sharing of the
updated value with neighbours. The share construct thus allows the effects of information
received from neighbours to be shared immediately after it is incorporated into state, rather
than having to wait for the next round of computation.

Another contribution of this paper is the adaptation of the field calculus operational
semantics in [VAB+18] to model true concurrency, i.e., modelling non-instantaneous compu-
tation rounds. This extension, required to fully capture the semantics of the share construct,
is shown to be conservative with respect to [VAB+18], and extends the applicability of
the calculus by mirroring the denotational semantics [AVD+19] (which was already true
concurrent) on augmented event structures (a novel refined definition capturing physically
realisable aggregate computations).

The remainder of this paper formally develops and experimentally validates these
concepts, expanding on a prior version [ABD+19] with an improved and extended presentation
of the operators, complete formal semantics (including the true concurrent version of the
network semantics in [VAB+18]), analysis of key properties, and additional experimental
validation. Following a review of the field calculus and its motivating context in Section 2,
we introduce the novel network semantics in Section 3, and the share construct in Section 4,

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:3

rep rep rep

nbr nbr nbr

share share share

Device 1 Device 2 Device 3 …

Figure 1: Handling state sharing (nbr) and memory (rep) separately injects a delay while
information “loops around” to where it can be shared (top), while combining state
sharing and memory into the new share operator eliminates that delay (bottom).

along with formal semantics and analysis of the relationship of the share construct with the
combined used of the rep and nbr constructs. We then empirically validate the predicted
acceleration of speed in frequently used network propagation and collection algorithms in
Section 5, and conclude with a summary and discussion of future work in Section 6.

2. Related Work and Background

Programming collective adaptive systems is a challenge that has been recognized and
addressed in a wide variety of different contexts. Despite the wide variety of goals and
starting points, however, the commonalities in underlying challenges have tended to shape
the resulting aggregate programming approaches into several clusters of common approaches,
as enumerated in [BDU+13]: (i) “device-abstraction” methods that abstract and simplify the
programming of individual devices and interactions (e.g., TOTA [MZ09], Hood [WSBC04],
chemical models [VPM+15], “paintable computing” [But02], Meld [ARGL+07]) or entirely
abstract away the network (e.g., BSP [Val90], MapReduce [DG08], Kairos [GGG05]); (ii)
spatial patterning languages that focus on geometric or topological constructs (e.g., Growing
Point Language [Coo99], Origami Shape Language [Nag01], self-healing geometries [CN03,
Kon03], cellular automata patterning [Yam07]); (iii) information summarization languages
that focus on collection and routing of information (e.g., TinyDB [MFHH02], Cougar [YG02],
TinyLime [CGG+05], and Regiment [NW04]); (iv) general purpose space-time computing
models (e.g., StarLisp [LMMD88], MGS [GGMP02, GMCS05], Proto [BB06], aggregate
programming [BPV15]).

?:4 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

The field calculus [VAB+18, AVD+19] belongs to the last of these classes, the general
purpose models. Like other core calculi, such as λ-calculus [Chu32] or Featherweight
Java [IPW01], the field calculus provides a minimal, mathematically tractable programming
language—in this case with the goal of unifying across a broad class of aggregate programming
approaches and providing a principled basis for integration and composition. Indeed, recent
analysis [ABDV18] has determined that the current formulation of field calculus is space-time
universal, meaning that it is able to capture every possible computation over collections
of devices sending messages. Field calculus can thus serve as a unifying abstraction for
programming collective adaptive systems, and results regarding field calculus have potential
implications for all other works in this field. Indeed, all of the algorithms we discuss in this
paper are generalized versions that unify across the common patterns found in all of the
works cited above, as described in [BDU+13, FMSM+13, VAB+18].

In addition to establishing universality, however, the work in [ABDV18] also identified
a key limitation of the current formulation of the field calculus, which we are addressing
in this paper. In particular, the operators for time evolution and neighbour interaction in
field calculus interact such that for most programs either the message size grows with the
distance that information must travel or else information must travel significantly slower
than the maximum potential speed. The remainder of this section provides a brief review of
these key results: Section 2.1 introduces the underlying space-time computational model
used by the field calculus (featuring a novel refined definition of augmented event structure
capturing the physically realisable aggregate computations), Section 2.2 introduces the
notion of self-stabilisation, Section 2.3 provides a review of the field calculus itself, followed
by a review of its device semantics (modeling the local and asynchronous computation that
takes place on a single device) in Section 2.4. The network semantics (modeling the overall
network evolution) will then be presented in Section 3.

2.1. Space-Time Computation. Field calculus considers a computational model in which
a program P is periodically and asynchronously executed by each device δ.1 When an
individual device performs a round of execution, that device follows these steps in order:
(i) collects information from sensors, local memory, and the most recent messages from
neighbours,2 the latter organised into neighbouring value maps φ : δ → v from neighbour
identifiers to neighbour values, (ii) evaluates program P with the information collected as
its input, (iii) stores the results of the computation locally, as well as broadcasting it to
neighbours and possibly feeding it to actuators, and (iv) sleeps until it is time for the next
round of execution. Note that as execution is asynchronous, devices perform executions
independently and without reference to the executions of other devices, except insofar as
they use state that has arrived in messages. Messages, in turn, are assumed to be collected
by some separate thread, independent of execution rounds. Note that the share operator
we discuss in this paper works on top of the above execution model, hence it affects the local
evaluation of the program, which in turn results in the exchange of asynchronous messages.

If we take every such execution as an event ε, then the collection of such executions
across space (i.e., across devices) and time (i.e., over multiple rounds) may be considered as
the execution of a single aggregate machine with a topology based on information exchanges
 . The causal relationship between events may then be formalized as defined in [Lam78]:

1We use δ as a metavariable ranging over a given denumerable set of device identifiers D.
2Stale messages may expire after some timeout.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:5

Definition 2.1 (Event Structure). An event structure 〈E, , <〉 is a countable set of events
E together with a neighbouring relation ⊆ E × E and a causality relation <⊆ E × E,
such that the transitive closure of forms the irreflexive partial order <, and the set
Xε = {ε′ ∈ E | ε′ < ε}∪{ε′ ∈ E | ε ε′} is finite for all ε (i.e., < and are locally finite).

Thus, we say that ε′ is a neighbour of ε iff ε′ ε, and that N (ε) = {ε′ ∈ E | ε′ ε} is
the set of neighbours of ε.

Remark 2.2 (Event Structures and Petri Nets). Event structures for Petri Nets are used to
model a spectrum of possible evolutions of a system, hence include also an incompatibility
relation, discriminating between alternate future histories and modelling non-deterministic
choice. However, following [Lam78], we use event structures to model a “timeless” unitary
history of events, thus avoiding the need for an incompatibility relation.

In aggregate computing, event structures need to be augmented with device identifiers
[AVD+19, ABDV18], as in the following definition.

Definition 2.3 (Augmented Event Structure). Let E = 〈E, , <, d〉 be such that 〈E, , <〉
is an event structure and d : E → D is a mapping from events to the devices where they
happened. We define:

• next : E 7→ E as the partial function3 mapping an event ε to the unique event next(ε)
such that ε next(ε) and d(ε) = d(next(ε)), if such an event exists and is unique; and
• 99K⊆ E × E as the relation such that ε 99K ε′ (ε implicitly precedes ε′) if and only if
ε′ next(ε) and ε′ 6 ε.

We say that E is an augmented event structure if the following coherence constraints are
satisfied:

• linearity: if ε εi for i = 1, 2 and d(ε) = d(ε1) = d(ε2), then ε1 = ε2 = next(ε) (i.e.,
every event ε is a neighbour of at most another one on the same device);
• uniqueness: if εi ε for i = 1, 2 and d(ε1) = d(ε2), then ε1 = ε2 (i.e., neighbours of an

event all happened on different devices);
• impersistence: if ε εi for i = 1, 2 and d(ε1) = d(ε2) = δ, then either ε2 = nextn(ε1)

and ε nextk(ε1) for all k ≤ n, or the same happens swapping ε1 with ε2 (i.e., an event
reaches a contiguous set of events on a same device);
• immediacy: there is no cyclic sequence such that ε1 < ε2 99K ε3 < . . . < ε2n 99K ε1 (i.e.,

explicit causal dependencies < are consistent with implicit time dependencies 99K).

The first two constraints are necessary for defining the semantics of an aggregate program
(denotational semantics in [AVD+19, VBD+19]). The third reflects that messages are not
retrieved after they are first dropped (and in particular, they are all dropped on device
reboots). The last constraint reflects the assumption that communication happens through
broadcast (modeled as happening instantaneously). In this scenario, the explicit causal
dependencies imply additional time dependencies ε 99K ε′: if ε′ was able to reach next(ε) but
not ε, the broadcast of ε′ must have happened after the start of ε (additional details on this
point may be found in the proof of Theorem 3.5 in Appendix A).

Remark 2.4 (On Augmented Event Structures). Augmented event structures were first
implicitly used in [AVD+19] for defining the denotational semantics (with the linearity and
uniqueness constraints only), then formalised in [ABDV18] (without any explicit constraint
embedded in the definition). In this paper, we gathered all necessary constraints to capture

3With A 7→ B we denote the space of partial functions from A into B.

?:6 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

1

2

3

4

5
d
ev
ic
e

time

1 2 3 4 5

1 2 1 2 3 4

1 2 3 4

1 2 3 4 5 6

1 2 3

Figure 2: Example of a space-time augmented event structure, comprising events (circles),
neighbour relations (arrows), devices (ordinate axis). Colors indicate causal
structure with respect to the doubly-circled event (magenta), splitting events into
causal past (red), causal future (cyan) and concurrent (non-ordered, in black). The
numbers written within events represent a sample space-time value (cf. Def. 2.5)
associated with that event structure. Note that the doubly-circled event has 3
neighbouring events: event 1 at the same device (its previous round), event 3 at
device 4, and event 1 at device 2. Figure adapted from [ABDV18].

exactly which augmented event structures correspond to physically plausible executions of
an aggregate system (see Theorem 3.5): this includes both the linearity and uniqueness
from [AVD+19], together with the new impersistence and immediacy constraints.

Figure 2 shows an example of such an augmented event structure, showing how these
relations partition events into “causal past”, “causal future”, and non-ordered “concurrent”
subspaces with respect to any given event. Interpreting this in terms of physical devices
and message passing, a physical device is instantiated as a chain of events connected by
relations (representing evolution of state over time with the device carrying state from one
event to the next), and any relation between devices represents information exchange from
the tail neighbour to the head neighbour. Notice that this is a very flexible and permissive
model: there are no assumptions about synchronization, shared identifiers or clocks, or even
regularity of events (though of course these things are not prohibited either).

In principle, an execution at ε can depend on information from any event in its past
and its results can influence any event in its future. As we will see in Section 4.1, however,
this is problematic for the field calculus as it has been previously defined.

Our aggregate constructs then manipulate space-time data values (see Figure 2) that
map events to values for each event in an event structure:

Definition 2.5 (Space-Time Value). Let V be any domain of computational values and
E = 〈E, , <, d〉 be an augmented event structure. A space-time value Φ = 〈E, f〉 is a pair

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:7

comprising the event structure and a function f : E → V that maps the events ε ∈ E to
values v ∈ V.

We can then understand an aggregate computer as a “collective” device manipulating
such space-time values, and the field calculus as a definition of operations defined both
on individual events and simultaneously on aggregate computers, modelled as space-time
functions.

Definition 2.6 (Space-Time Function). Let V(E) = {〈E, f〉 | f : E → V} be the set of
space-time values in an augmented event structure E. Then, an n-ary space-time function
in E is a partial map f : V(E)n 7→ V(E).

2.2. Stabilisation and spatial model. Even though the global interpretation of a program
has to be given in spatio-temporal terms in general, for a relevant class of programs a space-
only representation is also possible. In this representation, event structures, space-time
values and space-time functions are replaced by network graphs, computational fields and
field functions.

Definition 2.7 (Network Graph). A network graph G = 〈D,�〉 is a finite set D of devices
δ together with a reflexive neighbouring relation �⊆ D ×D, i.e., such that δ� δ for each
δ ∈ D. Thus, we say that δ′ is a neighbour of δ iff δ′� δ, and thatN (δ) = {δ′ ∈ D | δ′� δ}
is the set of neighbours of δ.

Notice that � does not necessarily have to be symmetric.

Definition 2.8 (Computational Field). Let V be any domain of computational values and
G = 〈D,�〉 be a network graph. A computational field Ψ = 〈G, g〉 is a pair comprising the
network graph and a function g : D → V mapping devices δ ∈ D to values v ∈ V.

Definition 2.9 (Field Function). Let V(G) = {〈G, g〉 | g : D → V} be the set of compu-
tational fields in a network graph G. Then, an n-ary field function in G is a partial map
g : V(G)n 7→ V(G).

These space-only, time-independent representations are to be interpreted as “limits for
time going to infinity” of their traditional time-dependent counterparts, where the limit is
defined as in the following.

Definition 2.10 (Stabilising Event Structure and Limit). Let E = 〈E, , <, d〉 be an infinite
augmented event structure. We say that E is stabilising to its limit G = 〈D,�〉 = lim E iff
D = {δ | ∃∞ε ∈ E. d(ε) = δ} is the set of devices appearing infinitely often in E, and for all
except finitely many ε ∈ E, the devices of neighbours are the neighbours of the device of ε:{

d(ε′) | ε′ ε
}

=
{
δ′ | δ′� d(ε)

}
Definition 2.11 (Stabilising Value and Limit). Let Φ = 〈E, f〉 be a space-time value on a
stabilising event structure E = 〈E, , <, d〉 with limit G. We say that Φ is stabilising to its
limit Ψ = 〈G, g〉 = lim Φ iff for all except finitely many ε ∈ E, f(ε) = g(d(ε)).

Definition 2.12 (Self-Stabilising Function and Limit). Let f : V(E)n 7→ V(E) be an n-ary
space-time function in a stabilising E with limit G. We say that f is self-stabilising with
limit g : V(G)n 7→ V(G) iff for any 〈Φ1, . . . ,Φn〉 with limit 〈Ψ1, . . . ,Ψn〉, f(Φ1, . . . ,Φn) = Φ
with limit Ψ = g(Ψ1, . . . ,Ψn) = lim Φ.

?:8 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ let x = e in e
∣∣ f(e)

∣∣ if(e){e}{e} expression∣∣ nbr{e}
∣∣ rep(e){(x) => e}

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring value

Figure 3: Abstract syntax of the field calculus, adapted from [VAB+18]

Many of the most commonly used routines in aggregate computing compute self-
stabilising functions, and in fact belong to a self-stabilising class identified in [VAB+18]. In
Section 4.7, we shall prove that the convergence dynamics of this class can be improved by
use of the share construct, without changing the overall limit (see Theorem 4.10).

2.3. Field Calculus. The field calculus is a tiny universal language for computation of space-
time values. Figure 3 gives an abstract syntax for field calculus based on the presentation
in [VAB+18] (covering a subset of the higher-order field calculus in [AVD+19], but including
all of the issues addressed by the share construct). In this syntax, the overbar notation
e indicates a sequence of elements (e.g., e stands for e1, e2, . . . , en), and multiple overbars
are expanded together (e.g., δ 7→ ` stands for δ1 7→ `1, δ2 7→ `2, . . . , δn 7→ `n). There are
four keywords in this syntax: def and if respectively correspond to the standard function
definition and the branching expression constructs, while rep and nbr correspond to the two
peculiar field calculus constructs that are the focus of this paper, respectively responsible
for evolution of state over time and for sharing information between neighbours.

A field calculus program P is a set of function declarations F and the main expression e.
This main expression e simultaneously defines both the aggregate computation executed on
the overall event structure of an aggregate computer and the local computation executed at
each of the individual events therein. An expression e can be:

• A variable x, e.g. a function parameter.
• A value v, which can be of the following two kinds:

– a local value `, defined via data constructor c and arguments `, such as a Boolean,
number, string, pair, tuple, etc;

– A neighbouring (field) value φ that associates neighbour devices δ to local values `, e.g.,
a map of neighbours to the distances to those neighbours.

• A let-expression let x = e0 in e, which is evaluated by first computing the value v0 of
e0 and then yielding as result the value of the expression obtained from e by replacing all
the occurrences of the variable x with the value v0.
• A function call f(e) to either a user-declared function d (declared with the def keyword)

or a built-in function b, such as a mathematical or logical operator, a data structure
operation, or a function returning the value of a sensor.
• A branching expression if(e1){e2} else {e3}, used to split a computation into operations

on two isolated event structures, where/when e1 evaluates to true or false: the result is

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:9

the local value produced by the computation of e2 in the former area, and the local value
produced by the computation of e3 in the latter.
• The nbr{e} construct, where e evaluates to a local value, creates a neighbouring value

mapping neighbours to their latest available result of evaluating e. In particular, each
device δ:
(1) shares its value of e with its neighbours, and
(2) evaluates the expression into a neighbouring value φ mapping each neighbour δ′ of δ

to the latest value that δ′ has shared for e.
Note that within an if branch, sharing is restricted to work on device events within the
subspace of the branch.
• The rep(e1){(x) => e2} construct, where e1 and e2 evaluate to local values, models state

evolution over time: the value of x is initialized to e1, then evolved at each execution by
evaluating e2 where x is the result at previous round.

Thus, for example, distance to the closest member of a set of “source” devices can be
computed with the following simple function:

def mux(b, x, y) { if (b) {x} {y} }

def distanceTo(source) {

rep (infinity) { (d) =>

mux(source, 0, minHood(nbr{d}+nbrRange()))

} }

Here, we use the def construct to define a distanceTo function that takes a Boolean source

variable as input. The rep construct defines a distance estimate d that starts at infinity,
then decreases in one of two ways. If the source variable is true, then the device is currently
a source, and its distance to itself is zero. Otherwise, distance is estimated via the triangle
inequality, taking the minimum of a neighbouring value (built-in function minHood) of the
distance to each neighbour (built-in function nbrRange) plus that neighbour’s distance
estimate nbr{d}. Function mux ensures that all its arguments are evaluated before being
selected.

2.4. Device Semantics. The local and asynchronous computation that takes place on
a single device was formalized in [VAB+18] by a big-step semantics, expressed by the
judgement δ; Θ;σ ` emain ⇓ θ, to be read “expression emain evaluates to θ on device δ
with respect to the locally-available environment Θ and locally-available sensor state σ”.
The result of evaluation is a value-tree θ, which is an ordered tree of values that tracks
the results of all evaluated subexpressions of emain. Such a result is made available to δ’s
neighbours for their subsequent firing (including δ itself, so as to support a form of state
across computation rounds) through asynchronous message passing. The value-trees recently
received as messages from neighbours are then collected into a value-tree environment Θ,
implemented as a map from device identifiers to value-trees (written δ 7→ θ as short for
δ1 7→ θ1, . . . , δn 7→ θn). Intuitively, the outcome of the evaluation will depend on those
value-trees. Figure 4 (top) defines value-trees and value-tree environments.

Example 2.13. The graphical representation of the value trees 6〈2〈〉, 3〈〉〉 and
6〈2〈〉, 3〈7〈〉, 1〈〉, 4〈〉〉〉 is as follows:

6 6

/ \ / \

?:10 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

2 3 2 3

/|\

7 1 4

In the following, for sake of readability, we sometimes write the value v as short for the
value-tree v〈〉. Following this convention, the value-tree 6〈2〈〉, 3〈〉〉 is shortened to 6〈2, 3〉,
and the value-tree 6〈2〈〉, 3〈7〈〉, 4〈〉, 4〈〉〉〉 is shortened to 6〈2, 3〈7, 1, 4〉〉.

Figure 4 (bottom) defines the judgement δ; Θ;σ ` e ⇓ θ, where: (i) δ is the identifier of
the current device; (ii) Θ is the neighbouring value of the value-trees produced by the most
recent evaluation of (an expression corresponding to) e on δ’s neighbours; (iii) e is a closed
run-time expression (i.e., a closed expression that may contain neighbouring values); (iv)
the value-tree θ represents the values computed for all the expressions encountered during
the evaluation of e—in particular the root of the value tree θ, denoted by ρ(θ), is the value
computed for expression e. The auxiliary function ρ is defined in Figure 4 (second frame).

The operational semantics rules are based on rather standard rules for functional
languages, extended so as to be able to evaluate a subexpression e′ of e with respect to the
value-tree environment Θ′ obtained from Θ by extracting the corresponding subtree (when
present) in the value-trees in the range of Θ. This process, called alignment, is modelled
by the auxiliary function π defined in Figure 4 (second frame). This function has two
different behaviors (specified by its subscript or superscript): πi(θ) extracts the i-th subtree
of θ; while π`(θ) extracts the last subtree of θ, if the root of the first subtree of θ is equal
to the local (boolean) value ` (thus implementing a filter specifically designed for the if

construct). Auxiliary functions ρ and π apply pointwise on value-tree environments, as
defined in Figure 4 (second frame, rules for aux ∈ ρ, πi, π`).

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either a local
value or a neighbouring value, respectively: note that in [E-FLD] we take care of restricting
the domain of a neighbouring value to the only set of neighbour devices as reported in Θ.

Rule [E-LET] is fairly standard: it first evaluates e1 and then evaluates the expression
obtained from e2 by replacing all the occurrences of the variable x with the value of e1.

Rule [E-B-APP] models the application of built-in functions. It is used to evaluate
expressions of the form b(e1 · · · en), where n ≥ 0. It produces the value-tree v〈θ1, . . . , θn〉,
where θ1, . . . , θn are the value-trees produced by the evaluation of the actual parameters
e1, . . . , en and v is the value returned by the function. The rule exploits the special auxiliary

function LbMΘ,σ
δ . This function is such that LbMΘ,σ

δ (v) computes the result of applying built-in

function b to values v in the current environment of the device δ.4 In particular: the built-in

0-ary function self gets evaluated to the current device identifier (i.e., LselfMΘ,σ
δ () = δ),

and mathematical operators have their standard meaning, which is independent from δ and

Θ (e.g., L∗MΘ,σ
δ (2, 3) = 6).

Example 2.14. Evaluating the expression ∗(2, 3) produces the value-tree 6〈2, 3〉. The value of
the whole expression, 6, has been computed by using rule [E-B-APP] to evaluate the application
of the multiplication operator ∗ to the values 2 (the root of the first subtree of the value-tree)
and 3 (the root of the second subtree of the value-tree).

The LbMΘ,σ
δ function also encapsulates measurement variables such as nbrRange and

interactions with the external world via sensors and actuators.

4We do not give the explicit definition of LbMΘ,σ
δ (v) for each b in this paper, and leave it as an implementation

detail of the semantics.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:11

Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n π`(v〈θ1, θ2〉) = θ2 if ρ(θ1) = `
πi(θ) = • otherwise π`(θ) = • otherwise

For aux ∈ ρ, πi, π` :

 aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
Syntactic shorthands:

δ;π(Θ);σ ` e ⇓ θ where |e| = n for δ;π1(Θ);σ ` e1 ⇓ θ1 · · · δ;πn(Θ);σ ` en ⇓ θn
ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ; Θ;σ ` e ⇓ θ

[E-LOC]

δ; Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ; Θ;σ ` φ ⇓ φ′〈〉

[E-LET] δ;π1(Θ);σ ` e1 ⇓ θ1 δ;π2(Θ);σ ` e2[x := ρ(θ1)] ⇓ θ2

δ; Θ;σ ` let x = e1 in e2 ⇓ ρ(θ2)〈θ1, θ2〉

[E-B-APP] δ;π(Θ);σ ` e ⇓ θ v = LbMΘ,σ
δ (ρ(θ))

δ; Θ;σ ` b(e) ⇓ v〈θ〉

[E-D-APP] δ;π(Θ);σ ` e ⇓ θ δ; Θ;σ ` body(d)[args(d) := ρ(θ)] ⇓ θ′
δ; Θ;σ ` d(e) ⇓ ρ(θ′)〈θ, θ′〉

[E-NBR] δ;π1(Θ);σ ` e ⇓ θ φ = ρ(π1(Θ))[δ 7→ ρ(θ)]
δ; Θ;σ ` nbr{e} ⇓ φ〈θ〉

[E-REP]
δ;π1(Θ);σ ` e1 ⇓ θ1

δ;π2(Θ);σ ` e2[x := `0] ⇓ θ2
`0 =

{
ρ(π2(Θ))(δ) if δ ∈ dom(Θ)
ρ(θ1) otherwise

δ; Θ;σ ` rep(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

[E-IF] δ;π1(Θ);σ ` e ⇓ θ1 ρ(θ1) ∈ {true, false} δ;πρ(θ1)(Θ);σ ` eρ(θ1) ⇓ θ
δ; Θ;σ ` if(e){etrue}{efalse} ⇓ ρ(θ)〈θ1, θ〉

Figure 4: Big-step operational semantics for expression evaluation, adapted from [VAB+18].

Rule [E-D-APP] models the application of a user-defined function. It is used to evaluate
expressions of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-B-APP] while producing
a value-tree with one more subtree θ′, which is produced by evaluating the body of the

?:12 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

function d (denoted by body(d)) substituting the formal parameters of the function (denoted
by args(d)) with the values obtained evaluating e1, . . . en.

Rule [E-REP] implements internal state evolution through computational rounds: expres-
sion rep(e1){(x) => e2} evaluates to e2[x := v] where v is obtained from e1 on the first
evaluation, and from the previous value of the whole rep-expression on other evaluations.

Example 2.15. To illustrate rule [E-REP], as well as computational rounds, we consider program
rep(1){(x) => *(x, 2)}. The first firing of a device δ is performed against the empty tree
environment. Therefore, according to rule [E-REP], to evaluate rep(1){(x) => *(x, 2)}
means to evaluate the subexpression *(1, 2), obtained from *(x, 2) by replacing x with
1. This produces the value-tree θ = 2〈1, 2〈1, 2〉〉, where root 2 is the overall result as usual,
while its sub-trees are the result of evaluating the first and second argument respectively.
Any subsequent firing of the device δ is performed with respect to a tree environment Θ
that associates to δ the outcome θ of the most recent firing of δ. Therefore, evaluating
rep(1){(x) => *(x, 2)} at the second firing means evaluating the subexpression *(2, 2),
obtained from *(x, 2) by replacing x with 2, which is the root of θ. Hence the results of
computation are 2, 4, 8, and so on.

Rule [E-NBR] models device interaction. It first collects neighbours’ values for expressions
e as φ = ρ(π1(Θ)), then evaluates e in δ and updates the corresponding entry in φ.

Example 2.16. To illustrate rule [E-NBR], consider e′ = minHood(nbr{snsNum()}), where
the 1-ary built-in function minHood returns the lower limit of values in the range of its
neighbouring value argument, and the 0-ary built-in function snsNum returns the numeric
value measured by a sensor. Suppose that the program runs on a network of three devices
δA, δB, and δC where:

• δB and δA are mutually connected, δB and δC are mutually connected, while δA and δC
are not connected;
• snsNum returns 1 on δA, 2 on δB, and 3 on δC ; and
• all devices have an initial empty tree-environment ∅.
Suppose that device δA is the first device that fires: the evaluation of snsNum() on δA yields

1 (by rules [E-LOC] and [E-B-APP], since LsnsNumM∅,σδA () = 1); the evaluation of nbr{snsNum()}
on δA yields (δA 7→ 1)〈1〉 (by rule [E-NBR], since no device has yet communicated with δA);
and the evaluation of e′ on δA yields

θA = 1〈(δA 7→ 1)〈1〉〉
(by rule [E-B-APP], since LminHoodM∅,σδA (δA 7→ 1) = 1). Therefore, at its first firing, device δA
produces the value-tree θA. Similarly, if device δC is the second device that fires, it produces
the value-tree

θC = 3〈(δC 7→ 3)〈3〉〉
Suppose that device δB is the third device that fires. Then the evaluation of e′ on δB is
performed with respect to the environment ΘB = (δA 7→ θA, δC 7→ θC) and the evaluation
of its subexpressions nbr{snsNum()} and snsNum() is performed, respectively, with respect
to the following value-tree environments obtained from ΘB by alignment:

Θ′B = π1(ΘB) = (δA 7→ (δA 7→ 1)〈1〉, δC 7→ (δC 7→ 3)〈3〉)
Θ′′B = π1(Θ′B) = (δA 7→ 1, δC 7→ 3)

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:13

We thus have that LsnsNumMΘ′′B ,σ
δB

() = 2; the evaluation of nbr{snsNum()} on δB with re-

spect to Θ′B produces the value-tree φ〈2〉 where φ = (δA 7→ 1, δB 7→ 2, δC 7→ 3); and

LminHoodMΘB ,σ
δB

(φ) = 1. Therefore the evaluation of e′ on δB produces the value-tree

θB = 1〈φ〈2〉〉. Note that, if the network topology and the values of the sensors will not
change, then: any subsequent firing of device δB will yield a value-tree with root 1 (which
is the minimum of snsNum across δA, δB and δC); any subsequent firing of device δA will
yield a value-tree with root 1 (which is the minimum of snsNum across δA and δB); and any
subsequent firing of device δC will yield a value-tree with root 2 (which is the minimum of
snsNum across δB and δC).

Rule [E-IF] is almost standard, except that it performs domain restriction πtrue(Θ) (resp.
πfalse(Θ)) in order to guarantee that subexpression etrue is not matched against value-trees
obtained from efalse (and vice-versa).

3. Network Semantics

In [VAB+18], the overall network evolution was described in terms of an interleaving network
semantics (INS for short). Unfortunately, the INS is not able to model every possible
message interaction describable by an augmented event structure. Therefore, in this section
we present a novel network semantics that overcomes this limitation. Namely, in Section 3.1
we present a true concurrent network semantics (TCNS for short) and then, in Section 3.2,
we show that the TCNS is

(1) a conservative extension of the INS given in [VAB+18], and
(2) models every possible message interaction describable by an augmented event structure.

Because of (2) the TCNS is adequate for formalizing the relations between the share

construct and the combined use of the rep and nbr constructs.

3.1. True Concurrent Network Semantics. The overall network evolution is formalized
by the nondeterministic small-step operational semantics given in Figure 5 as a transition
system on network configurations N . Figure 5 (top) defines key syntactic elements to this
end. Ψ models the overall status of the devices in the network at a given time, as a map from
device identifiers to value-tree environments. From it, we can define the state of the field at
that time by summarizing the current values held by devices. The activation predicate α
specifies whether each device is currently activated. Then, Stat (a pair of status field and
activation predicate) models overall device status. τ models network topology, namely, a
directed neighbouring graph, as a map from device identifiers to set of identifiers (denoted
as I). Σ models sensor (distributed) state, as a map from device identifiers to (local) sensors
(i.e., sensor name/value maps denoted as σ). Then, Env (a couple of topology and sensor
state) models the system’s environment. Finally, a whole network configuration N is a
couple of a status and environment.

We use the following notation for maps. Let x 7→ y denote a map sending each
element in the sequence x to the same element y. Let m0[m1] denote the map with domain
dom(m0) ∪ dom(m1) coinciding with m1 in the domain of m1 and with m0 otherwise. Let
m0Jm1K (where mi are maps to maps) denote the map with the same domain as m0 made
of x 7→ m0(x)[m1(x)] for all x in the domain of m1, x 7→ m0(x) otherwise.

?:14 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

System configurations and action labels:

Ψ ::= δ 7→ Θ status field

α ::= δ 7→ a with a ∈ {false, true} activation predicate

Stat ::= Ψ, α status

τ ::= δ 7→ I topology

Σ ::= δ 7→ σ sensors-map

Env ::= τ,Σ environment

N ::= 〈Env; Stat〉 network configuration

act ::= δ+
∣∣ δ − ∣∣ env action label

Environment well-formedness:
WFE(τ,Σ) holds iff dom(τ) = dom(Σ) and τ(δ) ⊆ dom(Σ) for all δ ∈ dom(Σ).

Transition rules for network evolution: N
act−−→ N

[N-COMP] α(δ)=false Θ′ = F (Ψ(δ)) δ; Θ′; Σ(δ) ` emain ⇓ θ Θ=Θ′[δ 7→ θ]

〈τ,Σ; Ψ, α〉 δ+−−→ 〈τ,Σ; Ψ[δ 7→ Θ], α[δ 7→ true]〉
[N-SEND] α(δ)=true τ(δ) = δ θ = Ψ(δ)(δ) Θ = δ 7→ θ

〈τ,Σ; Ψ, α〉 δ−−−→ 〈τ,Σ; ΨJδ 7→ ΘK, α[δ 7→ false]〉
[N-ENV] WFE(Env′) Env′ = δ 7→ I, δ 7→ σ Ψ0 = δ 7→ ∅ α0 = δ 7→ false

〈Env; Ψ, α〉 env−−→ 〈Env′; Ψ0[Ψ], α0[α]〉

Figure 5: Small-step operational true concurrent semantics for network evolution.

We consider transitions N
act−−→ N ′ of three kinds: firing starts on a given device (for

which act is δ+ where δ is the corresponding device identifier), firing ends and messages are
sent on a given device (for which act is δ−), and environment changes, where act is the special
label env. This is formalized in Figure 5 (bottom). Rule [N-COMP] (available for sleeping
devices, i.e., with α(δ) = false, and setting them to executing, i.e., α(δ) = true) models a
computation round at device δ: it takes the local value-tree environment filtered out of old
values Θ′ = F (Ψ(δ));5 then by the single device semantics it obtains the device’s value-tree
θ, which is used to update the system configuration of δ to Θ = Θ′[δ 7→ θ]. It is worth
observing that, although this rule updates a device’s system configuration istantaneously, it
models computations taking an arbitrarily long time, since the update is not visible until
the following rule [N-SEND]. Notice also that all values used to compute θ are locally available
(at the beginning of the computation), thus allowing for a fully-distributed implementation
without global knowledge.

Remark 3.1 (On termination of device firing). We shall assume that any device firing is
guaranteed to terminate in any environmental condition. Termination of a device firing is
clearly not decidable, but we shall assume that a decidable subset of the termination fragment
can be identified (e.g., by ruling out recursive user-defined functions or by applying standard

5Function F (Θ) in rule [N-FIR] models a filtering operation that clears out old stored values from the
value-tree environment Θ, implicitly based on space/time tags. Notice that this mechanism allows messages
to persist across rounds.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:15

static analysis techniques for termination). It is worth noticing that this assumption does
not impact the results of this paper, since the programs that are relevant are terminating (a
device performing a firing that does not terminate would be equivalent on a global network
perspective to a shut-down device).

Rule [N-SEND] (available for running devices with α(δ) = true, and setting them to
non-running) models the message sending happening at the end of a computation round at
a device δ. It takes the local value-tree θ = Ψ(δ)(δ) computed by last rule [N-COMP], and
uses it to update neighbours’ δ values of Ψ(δ). Notice that the usage of α ensures that
occurrences of rules [N-COMP] and [N-SEND] for a device are alternated.

Rule [N-ENV] takes into account the change of the environment to a new well-formed
environment Env′—environment well-formedness is specified by the predicate WFE(Env)
in Figure 5 (middle)—thus modelling node mobility as well as changes in environmental
parameters. Let δ be the domain of Env′. We first construct a status field Ψ0 and an
activation predicate α0 associating to all the devices of Env′ the empty context ∅ and the
false activation. Then, we adapt the existing status field Ψ and activation predicate α to the
new set of devices: Ψ0[Ψ], α0[α] automatically handles removal of devices, mapping of new
devices to the empty context and false activation, and retention of existing contexts and
activation in the other devices. We remark that this rule is also used to model communication
failure as topology changes.

Example 3.2. Consider a network of devices with e′ = minHood(nbr{snsNum()}) as introduced
in Example 2.16. The network configuration illustrated at the beginning of Example 2.16
can be generated by applying rule [N-ENV] to the empty network configuration. I.e., we have

〈∅, ∅; ∅, ∅〉 env−−→ 〈Env0; Stat0〉
where Env0 = τ0,Σ0, Stat0 = Ψ0, α0 and

• τ0 = (δA 7→ {δB}, δB 7→ {δA, δC}, δC 7→ {δB}),
• Σ0 = (δA 7→ (snsNum 7→ 1), δB 7→ (snsNum 7→ 2), δC 7→ (snsNum 7→ 3)), and
• Ψ0 = (δA 7→ ∅, δB 7→ ∅, δC 7→ ∅),
• α0 = (δA 7→ false, δB 7→ false, δC 7→ false).

Then, the three firings of devices δA, δC and δB illustrated in Example 2.16 correspond to
the following transitions, respectively.

(1) 〈Env0; Ψ0, α0〉 δA+−−→ 〈Env0; Ψ1, αA〉, where
• θA = 1〈(δA 7→ 1)〈1〉〉;
• Ψ1 = (δA 7→ (δA 7→ θA), δB 7→ ∅, δC 7→ ∅);
• αA = (δA 7→ true, δB 7→ false, δC 7→ false).

(2) 〈Env0; Ψ1, αA〉 δA−−−→ 〈Env0; Ψ2, α0〉, where
• Ψ2 = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA), δC 7→ ∅).

(3) 〈Env0; Ψ2, α0〉 δC+−−−→ 〈Env0; Ψ3, αC〉, where
• θC = 1〈(δC 7→ 3)〈3〉〉;
• Ψ3 = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA), δC 7→ (δC 7→ θC));
• αC = (δA 7→ false, δB 7→ false, δC 7→ true).

(4) 〈Env0; Ψ3, αC〉 δC−−−−→ 〈Env0; Ψ4, α0〉, where
• Ψ4 = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA, δC 7→ θC), δC 7→ (δC 7→ θC)).

(5) 〈Env0; Ψ4, α0〉 δB+−−−→ 〈Env0; Ψ5, αB〉, where

?:16 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

• θB = 1〈φ〈2〉〉 where φ = (δA 7→ 1, δB 7→ 2, δC 7→ 3);
• Ψ5 = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA, δB 7→ θB, δC 7→ θC), δC 7→ (δC 7→ θC));
• αB = (δA 7→ false, δB 7→ true, δC 7→ false).

(6) 〈Env0; Ψ5, αB〉 δB−−−−→ 〈Env0; Ψ6, α0〉, where
• Ψ6 = (δA 7→ (δA 7→ θA, δB 7→ θB),

δB 7→ (δA 7→ θA, δB 7→ θB, δC 7→ θC),
δC 7→ (δB 7→ θB, δC 7→ θC)),

Notice also that swapping the order of transitions δA− and δC+ would not change the
following results, only their intermediate step Ψ′2, α

′ where:

• Ψ′2 = (δA 7→ (δA 7→ θA), δB 7→ ∅, δC 7→ (δC 7→ θC));
• α′ = (δA 7→ true, δB 7→ false, δC 7→ true).

3.2. Properties of the Network Semantics. The INS given in [VAB+18] can be modeled
by replacing the rules [N-COMP] and [N-SEND] of the TCNS in Figure 5 by the following single
rule [N-FIR] modelling an instantaneous round of computation (including both computing
and sending messages):

[N-FIR] α(δ) = false τ(δ) = δ Θ′ = F (Ψ(δ)) δ; Θ′; Σ(δ) ` emain ⇓ θ Θ = δ 7→ θ

〈τ,Σ; Ψ, α〉 δ−→ 〈τ,Σ; Ψ[δ 7→ Θ′]Jδ 7→ ΘK, α〉
and by considering only network statuses 〈Env; Ψ, α〉 where α = δ 7→ false.6 Notice
that this restriction is consistent since rules [N-FIR] and [N-ENV] both preserve the condition
α = δ 7→ false.

The TCNS is a conservative extension of the INS, extending it to model non-instantaneous
rounds of computations by splitting the computation and sending parts. This is formally
stated by the following theorem.

Theorem 3.3 (TCNS is a conservative extension of INS). Let N = 〈Env; Ψ, α〉 be a TCNS
network configuration such that α(δ) = false. Then a sequence of δ+ and δ− transitions

N
δ+−−→ N ′

δ−−−→ N ′′ (rules [N-COMP], [N-SEND]) leads to the same configuration N ′′ as the single

δ transition N
δ−→ N ′′ (rule [N-FIR]).

Thus, any INS system evolution N1
act−−→ . . .

act−−→ Nn corresponds to an analogous TCNS
system evolution where each δ transition is replaced by a pair of δ+ and δ− transitions.

Proof. Assume that Env = τ,Σ and τ(δ) = δ. Furthermore, suppose that Θ′ = F (Ψ(δ)),
δ; Θ′; Σ(δ) ` emain ⇓ θ, Θ = δ 7→ θ and Θ′′ = Θ′[Θ].

Then by rule [N-COMP], N ′ = 〈Env; Ψ′, α′〉 where Ψ′ = Ψ[δ 7→ Θ′′] = Ψ[δ 7→ Θ′]Jδ 7→ ΘK
and α′ = α[δ 7→ true]. Finally, by rule [N-SEND], N ′′ = 〈Env; Ψ′′, α′′〉 where:

• Ψ′′ = Ψ′Jδ 7→ ΘK = Ψ[δ 7→ Θ′]Jδ 7→ ΘKJδ 7→ ΘK = Ψ[δ 7→ Θ′]Jδ 7→ ΘK
• α′′ = α′[δ 7→ false] = α[δ 7→ true][δ 7→ false] = α.

Thus, N ′′ is the same as in the conclusion of rule [N-FIR].

Notice that every (TCNS or INS) system evolution implies an underlying augmented
event structure (c.f. Definition 2.3) describing its message passing details, as per the following
definition.

6Actually, in the INS rules given in [VAB+18] there is no activation predicate α.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:17

Definition 3.4 (Space-Time Value Underlying a System Evolution). Let S = N0
act1−−→

. . .
actn−−→ Nn with N0 = 〈∅, ∅; ∅, ∅〉 be any system evolution. We say that:

• D = {δ | ∃i. acti = δ + ∨ acti = δ−} are the device identifiers appearing in S;
• Cδ = 〈i ≤ n | acti = δ+〉 are the indexes of transitions applying rule [N-COMP];
• Sδ = 〈i ≤ n | acti = δ−〉 are the indexes of transitions applying rule [N-SEND];
• E =

{
〈δ, i〉 | δ ∈ D ∧ 1 ≤ i ≤

∣∣Cδ∣∣} is the set of events in S;
• d : E → D maps each event ε = 〈δ, i〉 to the device δ where it is happening;

• ε1 ε2 where εk = 〈δk, ik〉 and j1 = Sδ1i1 , j2 = Cδ2i2 if and only if:
– Nj1 has topology τ such that δ2 ∈ τ(δ1) (the message from ε1 reaches δ2),

– there is no j′ ∈ (j1; j2) with j′ ∈ Sδ1 and Nj′ with topology τ such that δ2 ∈ τ(δ1)
(there are no more recent messages from δ1 to ε2),

– for every j′ ∈ (j1; j2] with j′ ∈ Sδ2 and Nj′ with status field Ψ, then δ1 ∈ dom(Ψ(δ2))
(the message from ε1 to δ2 is not filtered out as obsolete before ε2);

• < is the transitive closure of ;
• f : E → V is such that f(〈δ, i〉) = ρ(Ψ(δ)(δ)) where NCδi

= 〈Env; Ψ, α〉.
Then we say that S follows E = 〈E, , <, d〉, and Φ = 〈E, f〉 is the space-time value
underlying to S.

Notice that the E and Φ defined above are unique given S. Furthermore, as stated by
the following theorem, the TCNS is sufficiently expressive to model every possible message
interaction describable by an augmented event structure.

Theorem 3.5 (TCNS completeness). Let E = 〈E, , <, d〉 be an augmented event structure.
Then there exist (infinitely many) system evolutions following E.

Proof. See Appendix A.

Notice as well that this expressiveness is not the case for INS. For example, no INS
system evolution can follow this augmented event structure:

1

2

d
ev
ic
e

time

ǫ11 ǫ12

ǫ21 ǫ22

In fact, the transitions corresponding to εi1 would need to have τ(δi) = {δ1, δ2}, since both
events reach both devices. Then if w.l.o.g. the transition corresponding to ε11 happens before
the one corresponding ε21, since ε11 ε21 does not hold, the transition corresponding to ε21
must filter out the message coming from δ1. If follows that ε11 does not reach ε22 as well, a
contradiction.

4. The Share Construct

Section 4.1 explains and illustrates the problematic interaction between time evolution
and neighbour interaction constructs. Section 4.2 then shows how the share construct
overcomes this problematic interaction. Section 4.3 presents the operational semantics of
the share construct. Section 4.4 introduces automatic rewritings of rep constructs into

?:18 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

share constructs: two preserving the behavior, thus showing that share has the expressive
power to substitute most usages of rep and nbr in programs; and one changing the behavior
(in fact, improving it in many cases). Section 4.5 demonstrates the automatic behavior
improvement for the example in Section 4.1, while estimating the general communication
speed improvement induced by the rewriting. Section 4.6 shows examples for which the
rewriting fails to preserve the intended behavior, and Section 4.7 concludes by showing that
behavior is preserved for the relevant subset of field calculus pinpointed in [VAB+18].

4.1. Problematic Interaction between rep and nbr Constructs. Unfortunately, the
apparently straight-forward combination of state evolution with nbr and state sharing with
rep turns out to contain a hidden delay, which was identified and explained in [ABDV18].
This problem may be illustrated by attempting to construct a simple function that spreads
information from an event as quickly as possible. Let us say there is a Boolean space-time
value condition, and we wish to compute a space-time function ever that returns true
precisely at events where condition is true and in the causal future of those events—i.e.,
spreading out at the maximum theoretical speed throughout the network of devices. One
might expect this could be implemented as follows in field calculus:

def ever1(condition) {

rep (false) { (old) => anyHoodPlusSelf(nbr{old}) || condition }

}

where anyHoodPlusSelf is a built-in function that returns true if any value is true in its
neighbouring value input (including the value old held for the current device). Walking
through the evaluation of this function, however, reveals that there is a hidden delay. In
each round, the old variable is updated, and will become true if either condition is true now
for the current device or if old was true in the previous round for the current device or for
any of its neighbours. Once old becomes true, it stays true for the rest of the computation.
Notice, however, that a neighbouring device does not actually learn that condition is true,
but that old is true. In an event where condition first becomes true, the value of old that
is shared is still false, since the rep does not update its value until after the nbr has already
been evaluated. Only in the next round do neighbours see an updated value of old, meaning
that ever1 is not spreading information fast enough to be a correct implementation of ever.

We might try to improve this routine by directly sharing the value of condition:

def ever2(condition) {

rep (false) { (old) => anyHoodPlusSelf(nbr{old || condition}) }

}

This solves the problem for immediate neighbours, but does not solve the problem for
neighbours of neighbours, which still have to wait an additional round before old is updated
(see Example 4.1 for a sample execution of these functions, showcasing how some devices
realise that condition has become true with a delay).

In fact, in order to avoid delays, communication cannot use rep but only nbr. Since
a single nbr can only reach values in immediate neighbours, in order to reach values in
the arbitrary past of a device, it is necessary to use an arbitrary number of nested nbr

statements (each of them contributing to the total message size exchanged). This can be
achieved by using unbounded recursion, as previously outlined in [ABDV18]:

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:19

def ever3(condition) {

let new = anyHoodPlusSelf(nbr{condition}) in

if (countHood() == 0) { new } { ever3(new) }

}

where countHood counts the number of neighbours, i.e., determining whether any neighbour
has reached the same depth of recursion in the branch. Thus, in ever3, neighbours’ values
of condition are fed to a nested call to ever3 (if there are any); and this process is iterated
until no more values to be considered are present. This function therefore has a recursion
depth equal to the longest sequence of events ε0 . . . ε ending in the current event ε,
inducing a linearly increasing computational time and message size and making the routine
effectively infeasible for long-running systems.

This case study illustrates the more general problem of delays induced by the interaction
of rep and nbr constructs in field calculus, as identified in [ABDV18]. With these constructs,
it is never possible to build computations involving long-range communication that are as
fast as possible and also lightweight in the amount of communication required.

4.2. Beyond rep and nbr. In order to overcome the problematic interaction between rep

and nbr, we propose a new construct that combines aspects of both:

share(e1){(x) => e2}
where: e1 is the initial local expression; x is the state variable, holding a neighbouring
value; e2 is an aggregation expression, taking x and producing a local value; and the whole
expected result is a local value. Informally, at each firing, share works in the following way:

(1) it constructs a neighbouring value φ with the outcomes of its evaluation in neighbouring
events (cf. Def. 2.1)—namely, φ maps the local device to the result of this share at the
previous round (or, if absent, to e1 as with rep), and the neighbouring devices to the
latest available result of this share (involving communication of values as with nbr);
and

(2) it evaluates the aggregation expression e2 by using φ as the value of x to obtain a local
result, which is both sent to neighbours (for their future rounds) and kept locally (for
the next local firing).

So, although the syntactic structure of the share construct is identical to that of rep, the
two constructs differ in the way the construct variable x is interpreted at each firing:

• in rep, the value of x is the local value produced by evaluating the construct in the
previous round, or the result of evaluating e1 if there is no prior-round value;
• in share, instead, x is a neighbouring value comprising that same value for the current

device plus the values of the construct produced by neighbours in their most recent
evaluation (thus share incorporates communication as well).

Moreover, in share, e2 is responsible for aggregating the neighbouring value x into a local
value that is shared with neighbours at the end of the evaluation (thus share incorporates
aggregation as well).

As illustrated by the following example, using the share construct allows to overcome
the problematic interaction between rep and nbr (see Section 4.1).

Example 4.1 (Share Construct). Consider the body of function ever:

?:20 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Assume this program is run on a network of 5 devices, executing rounds according to the
following augmented event structure (condition input values are on the left, output of the
ever function is on the right):

1

2

3

4

5

d
ev
ic
e

time

⊥ ⊤ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊤ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊤ ⊤ ⊥

7→

1

2

3

4

5

d
ev
ic
e

time

⊥ ⊤ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊤ ⊤ ⊤

⊥ ⊤ ⊤ ⊤

⊥ ⊥ ⊤ ⊤ ⊤ ⊤

⊤ ⊤ ⊤

At the first round of any device δ, no messages has been received yet, thus the share

construct is evaluated by substituting old with the neighbouring value δ 7→ ⊥. It follows that
anyHoodPlusSelf(old) is false, hence the result of the whole construct is equal to condition

(which is true only for δ = 5). After the computation is complete, the result of the share

construct is sent to neighbours.
At the second round of device 4, the only message received is a false from device 2 (and

another false persisting from device 4 itself), thus the overall result is still false. At the
third round of device 4, a true message from device 5 joins the pool, switching the overall
result to true. In following rounds, there is always a true message persisting from device 4
itself, so the result stays true. Similar reasoning can be applied to the other devices.

Notice that the outputs of the ever1 (left) and ever2 (right) functions, from Section 4.1,
would instead be:

1

2

3

4

5

d
ev
ic
e

time

⊥ ⊤ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊤

⊥ ⊥ ⊥ ⊥ ⊤ ⊤

⊤ ⊤ ⊤

1

2

3

4

5

d
ev
ic
e

time

⊥ ⊤ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊤ ⊤ ⊤

⊥ ⊥ ⊤ ⊤

⊥ ⊥ ⊤ ⊤ ⊤ ⊤

⊤ ⊤ ⊤

In ever1, devices 3 and 4 converge to > with two rounds of delay; while in ever2 device 3
converges to > with one round of delay. Function ever3, instead, behaves exactly as ever,
although requiring unbounded recursion depth (hence greater computational complexity in
every round).

4.3. Operational Semantics. Formal operational semantics for the share construct is
presented in Figure 6 (bottom frame), as an extension to the semantics given in Section 2.4.
The evaluation rule is based on the auxiliary functions given in Figure 6 (top frame), plus
the auxiliary functions in Figure 4 (second frame). In particular, we use the notation φ0[φ1]

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:21

Auxiliary functions:

φ0[φ1] = φ2 where φ2(δ) =

{
φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

Rule for expression evaluation:

[E-SHARE]
δ;π1(Θ);σ ` e1 ⇓ θ1 φ′ = ρ(π2(Θ)) φ = (δ 7→ ρ(θ1))[φ′]
δ;π2(Θ);σ ` e2[x := φ] ⇓ θ2

δ; Θ;σ ` share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

Figure 6: Operational semantics for the share construct.

to represent “field update”, so that its result φ2 has dom(φ2) = dom(φ0) ∪ dom(φ1) and
coincides with φ1 on its domain, or with φ0 otherwise.

The evaluation rule [E-SHARE] produces a value-tree with two branches (for e1 and e2

respectively). First, it evaluates e1 with respect to the corresponding branches of neighbours
π1(Θ) obtaining θ1. Then, it collects the results for the construct from neighbours into the
neighbouring value φ′ = ρ(π2(Θ)). In case φ′ does not have an entry for δ, ρ(θ1) is used
obtaining φ = (δ 7→ ρ(θ1))[φ′]. Finally, φ is substituted for x in the evaluation of e2 (with
respect to the corresponding branches of neighbours π2(Θ)) obtaining θ2, setting ρ(θ2) to be
the overall value.

Example 4.2 (Operational Semantics). Consider the body of function ever:

def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Suppose that device δ = 0 first executes a round of computation without neighbours
(i.e., Θ is empty), and with condition equal to false. The evaluation of the share

construct proceeds by evaluating false into θ1 = false〈〉, gathering neighbour values
into φ′ = • (no values are present), and adding the value for the current device obtaining
φ = (0 7→ false)[•] = 0 7→ false. Finally, the evaluation completes by storing in θ2 the
result of anyHoodPlusSelf(0 7→ false)||false (which is false〈. . .〉7). At the end of the
round, device 0 sends a broadcast message containing the result of its overall evaluation,
and thus including θ0 = false〈false, false〈. . .〉〉.

Suppose now that device δ = 1 receives the broadcast message and then executes a round
of computation where condition is true. The evaluation of the share constructs starts
similarly as before with θ1 = false〈〉, φ′ = 0 7→ false, φ = 0 7→ false, 1 7→ false. Then
the body of the share is evaluated as anyHoodPlusSelf(0 7→ false, 1 7→ false)||true
into θ2, which is true〈. . .〉. At the end of the round, device 1 broadcasts the result of its
overall evaluation, including θ1 = true〈false, true〈. . .〉〉.

Then, suppose that device δ = 0 receives the broadcast from device 1 and then performs
another round of computation with condition equal to false. As before, θ1 = false〈〉, φ =
φ′ = 0 7→ false, 1 7→ true and the body is evaluated as anyHoodPlusSelf(0 7→ false, 1 7→
true)||false which produces true〈. . .〉 for an overall result of θ2 = true〈false, true〈. . .〉〉.

Finally, suppose that device δ = 1 does not receive that broadcast and discards 0 from its
list of neighbours before performing another round of computation with condition equal to

7We omit the part of the value tree that are produced by semantic rules not included in this paper, and
refer to[VAB+18, Electronic Appendix] for the missing parts.

?:22 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

false. Then, θ1 = false〈〉, φ′ = 1 7→ true, φ = (1 7→ false)[1 7→ true] = 1 7→ true, and
the body is evaluated as anyHoodPlusSelf(1 7→ true)||false which produces true〈. . .〉.

4.4. Automatic Rewritings of rep Constructs into share Constructs. The share

construct can be automatically incorporated into programs using rep and nbr in a few ways.
First, we may want to rewrite a program while maintaining the behavior unchanged, thus
showing that the expressive power of share is enough to replace other constructs to some
extent. In particular, we can fully replace the rep construct through the following rewriting,
expressed through the notation e[e1 := e′1, . . . , en := e′n] representing an expression e

in which the distinct subexpressions e1, . . . , en have been simultaneously replaced by the
corresponding expressions e′1, . . . , e

′
n—if ei is a subexpression of ej (for some i 6= j) then

the occurrences ej are replaced by e′j .

Rewriting 4.3 (rep-elimination).

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x)]}
where localHood is a built-in operator that given a neighbouring value φ returns the local
value φ(δ) for the current device.

Theorem 4.4. Rewriting 4.3 preserves the program behavior.

Proof. Correctness follows since the value φ(δ) in the neighbouring value φ substituted for
x in the share construct corresponds exactly to the value that is substituted for x in the
corresponding rep construct.

In addition to eliminating rep occurrences, the share construct is able to factor out
many common usages of the nbr construct as well (even though not all of them), as per the
following equivalent rewriting. For ease of presentation, we extend the syntax of share to
handling multiple input-output values: share(e1, e2){(x1, x2) => e′1, e

′
2}, to be interpreted

as a shorthand for a single-argument construct where the multiple input-output values have
been gathered into a tuple (unpacking them before computing e′1, e

′
2 and then packing their

result).

Rewriting 4.5 (nbr-elimination).

rep(e1){(x) => e2} −→
fst(share(e1, e1){(x, y) =>

e2[x := localHood(x), nbr{x} := localChange(y, localHood(x))],

localHood(x)

})
where y is a fresh variable and localChange(φ, `) updates the value of φ for the current
device δ with `, returning φ[δ 7→ `].

Theorem 4.6. Rewriting 4.5 preserves the program behavior.

Proof. We prove by induction that the two components of the share translation correspond
to the rep current and previous results (respectively, using e1 if no such previous value
is available). On initial rounds of evaluation, the share construct evaluates to e2[x :=
e1, nbr{x} := nbr{e1}], e1 (by substituting x, y by e1), as the rep construct. On other

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:23

rounds, the second component of share is localHood(x), which is the previous result of the
first component of share, which is the previous result of the rep construct by inductive
hypothesis. Furthermore, the first component of share is e2 with arguments localHood(x)
(again, the previous result of the rep construct) and localChange(y, localHood(x)), which
is the neighbours’ values for the second argument together with the previous value of the
rep construct for the current device. On the other hand, nbr{x} is the neighbours’ values
for the old value of the rep construct, together with the local previous value of the rep
construct. By inductive hypothesis, the two things coincide, concluding the proof.

However, a more interesting rewriting is the following non-equivalent one, which for
many algorithms is able to automatically improve the communication speed while preserving
the overall meaning.

Rewriting 4.7 (non-equivalent).

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x), nbr{x} := x]}
In particular, we shall see in Section 4.5 how this rewriting translates the inefficient ever1

routine into a program equivalent to ever3, and in Section 4.7 that this rewriting preserves
the eventual behavior of a whole fragment of field calculus programs, while improving its
efficiency. In particular, the improvement in communication speed can be estimated to
be at least three-fold (see Section 4.5). Unfortunately, programs may exist for which this
translation fails to preserve the intended meaning (see Section 4.6). This usually happens
for time-based algorithms where the one-round delay is incorporated into the logic of the
algorithm, or weakly characterised functions which may need reduced responsiveness for
allowing results to stabilise. Thus, better performing alternatives using share may still exist
after the program logic has been accordingly fixed.

4.5. The share Construct Improves Communication Speed. To illustrate how share

solves the problem illustrated in Section 4.1, let us once again consider the ever function
discussed in that section, for propagating when a condition Boolean has ever become true.
By applying Rewriting 4.7 to the ever1 function introduced in Section 4.1 we obtain exactly
the ever function introduced in Section 4.3:

def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Function ever is simultaneously (i) compact and readable, even more so than ever1 and
ever2 (note that we no longer need to include the nbr construct); (ii) lightweight, as it
involves the communication of a single Boolean value each round and few operations; and
(iii) optimally efficient in communication speed, since it is true for any event ε with a causal
predecessor ε′ ≤ ε where condition was true. In particular

• in such an event ε′ the overall share construct is true, since it goes to

anyHoodPlusSelf(old) || true

regardless of the values in old;
• in any subsequent event ε′′ (i.e. ε′ ε′′) the share construct is true since the field value
old contains a true value (the one coming from ε′), and
• the same holds for further following events ε by inductive arguments.

?:24 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

In field calculus without share, such optimal communication speed can be achieved only
through unbounded recursion, as argued in [ABDV18] and reviewed above in Section 4.1.

As a further example of successful application of Rewriting 4.7, consider the following
routine where maxHoodPlusSelf is a built-in function returning the maximum value in the
range of a numeric neighbouring value.

def sharedcounter1() {

rep (0) { (old) => max(maxHoodPlusSelf(nbr{old}), rep(0){(c)=>c+1}) }

}

This function computes a local counter through rep(0)\{(c)=>c+1\} and then uses it to
compute the maximum number of rounds a device in the network has performed (even
though information about the number of rounds for other devices propagates at reduced
speed). If we rewrite this function by eliminating the first rep through Rewriting 4.7, we
obtain:

def sharedcounter2() {

share (0) { (old) => max(maxHoodPlusSelf(old), rep(0){(c)=>c+1}) }

}

where information about the number of rounds for other devices is propagated to neighbours
at the full multi-path speed allowed by share. It is worth observing that eliminating the
remaining rep by further applying Rewriting 4.7 would produce the same result of applying
Rewriting 1, i.e:

def sharedcounter() {

share (0) { (old) => max(maxHoodPlusSelf(old), share(0){(c)=>localHood(c)+1}) }

}

and therefore would not affect the information propagation speed.
The average improvement in communication speed of a routine being converted from the

usage of rep + nbr to share according to Rewriting 4.7 can also be statistically estimated,
depending on the communication pattern used by the routine.

An algorithm follows a single-path communication pattern if its outcome in an event
depends essentially on the value of a single selected neighbour: prototypical examples of such
algorithms are distance estimations [ADV17, ADV18, ACDV17], which are computed out of
the value of the single neighbour on the optimal path to the source. In this case, letting T
be the average interval between subsequent rounds, the expected communication delay of an
hop is T/2 with share (since it can randomly vary from 0 to T) and T/2 + T = 3/2T with
rep + nbr (since a full additional round T is wasted in this case). Thus, the usage of share
allows for an expected three-fold improvement in communication speed for these algorithms.

An algorithm follows a multi-path communication pattern if its outcome in an event is
obtained from the values of all neighbours: prototypical examples of such algorithms are data
collections [ABDV19], especially when they are idempotent (e.g. minimums or maximums).
In this case, the existence of a single communication path ε0 . . . ε is sufficient for the
value in ε0 to be taken into account in ε. Even though the delay of any one of such paths
follows the same distribution as for single-path algorithms (0 to T per step with share, T
to 2T per step with rep + nbr), the overall delay is minimized among each existing path. It
follows that for sufficiently large numbers of paths, the delay is closer to the minimum of a
single hop (0 with share, T with rep + nbr) resulting in an even larger improvement.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:25

4.6. Limitations of the Automatic Rewriting. In the previous section, we showed how
the non-equivalent rewriting of rep+nbr statements into share statements is able to improve
the performance of algorithms, both in the specific case of the ever and sharedcounter

functions, and statistically for the communication speed of general algorithms. However,
this procedure may not work for all functions: for example, consider the following routine

def fragilesharedcounter() {

rep (0) { (old) => maxHoodPlusSelf(nbr{old})+1 }

}

that, if the scheduling of computation rounds is sufficiently regular across the network, is able
to approximate the maximum number of rounds a device in the network has performed (even
though information about the number of rounds for other devices propagates at reduced
speed). If we rewrite this function through Rewriting 4.7, we obtain:

def fragilesharedcounter1() {

share (0) { (old) => maxHoodPlusSelf(old)+1 }

}

which does not approximate the same quantity. Instead, it computes the maximum length
of a path of messages reaching the current event, which may be unboundedly higher than
round counts in case of dense networks.

In fact, the fragile shared counter function is a paradigmatic example of rewriting failure:
it is a time-based function, whose results are strongly altered by removing the one-round
wait generated by rep + nbr. Another class of programs for which the rewriting fails is that
of functions with weakly defined behavior, usually based on heuristics, for which the increase
in responsiveness may increase the fluctuations in results (or even prevent stabilisation to a
meaningful value).

4.7. The share Construct Preserves Self-stabilisation. In this section, we prove that
the automatic rewriting is able to improve an important class of functions with strongly
defined behavior: the self-stabilising fragment of field calculus identified in [VAB+18].
Functions complying to the syntactic and semantic restrictions imposed by this fragment are
guaranteed to be self-stabilising, that is, whenever the function inputs and network structure
stop changing, the output values will eventually converge to a value which only depends on
the limit inputs and network structure (and not on what happened before the convergence
of the network). This property captures the ability of a function to react to input changes,
self-adjusting to the new correct value, and is thus a commonly used notion for strongly
defining the behavior of a distributed function.

Definition 2.10 formalises the notion of self-stabilisation for space-time functions. This
definition can be translated to field calculus functions and expressions by means of Definition
3.4, as in the following definition:

Definition 4.8 (Stabilising Expression). A field calculus expression e is stabilising with
limit Ψ on G iff for any system evolution S of program e following E with limit G, the
space-time value Φ corresponding to S is stabilising with limit Ψ. Similarly, a field calculus
function f(x1, . . . , xn) is self-stabilising with limit g : V(G)n 7→ V(G) iff given any stabilising
〈e1, . . . , en〉 with limit 〈Ψ1, . . . ,Ψn〉, f(e1, . . . , en) is stabilising with limit Ψ = g(Ψ1, . . . ,Ψn).

?:26 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

s ::= x
∣∣ v

∣∣ let x = s in s
∣∣ f(s)

∣∣ if(s){s}{s}
∣∣ nbr{s} self-stab. expr. with rep∣∣ rep(e){(x) => fC(nbr{x}, nbr{s}, e)}∣∣ rep(e){(x) => f(mux(nbrlt(s), nbr{x}, s), s)}∣∣ rep(e){(x) => fR(minHoodLoc(fMP(nbr{x}, s), s), x, e)}

s ::= x
∣∣ v

∣∣ let x = s in s
∣∣ f(s)

∣∣ if(s){s}{s}
∣∣ nbr{s} self-stab. expr. with share∣∣ share(e){(x) => fC(x, nbr{s}, e)}∣∣ share(e){(x) => f(mux(nbrlt(s), x, s), s)}∣∣ share(e){(x) => fR(minHoodLoc(fMP(x, s), s), localHood(x), e)}

Figure 7: Syntax of the self-stabilising fragment of field calculus introduced in [VAB+18],
together with its translation through Rewriting 4.7. Self-stabilising expressions s

occurring inside rep and share statements cannot contain free occurrences of the
share-bound variable x.

For example, function ever is not self-stabilising: if the inputs stabilise to being false
everywhere, the function output could still be true if some past input was indeed true. As
a positive example, the following function is self-stabilising, and computes the hop-count
distance from the closest device where source is true.

def hopcount(source) {

share (infinity) { (old) => mux(source, 0, minHood(old)+1) }

}

Here, minHood computes the minimum in the range of a numeric neighbouring value (excluding
the current device), while mux (multiplexer) selects between its second and third argument
according to the value of the first (similarly as if, but evaluating all arguments).

A rewriting of the self-stabilising fragment with share is given in Figure 7, defining a
class s of self-stabilising expressions, which may be:

• any expression not containing a share or rep construct, comprising built-in functions;
• three special forms of share-constructs, called converging, acyclic and minimising pattern

(respectively), defined by restricting both the syntax and the semantic of relevant functional
parameters.

We recall here a brief description of the patterns: for a more detailed presentation, the
interested reader may refer to [VAB+18]. The semantic restrictions on functions are the
following.

Converging (C): A function f(φ, ψ, v) is said converging iff, for every device δ, its return
value is closer to ψ(δ) than the maximal distance of φ to ψ.

Monotonic non-decreasing (M): a stateless8 function f(x, x) with arguments of local
type is M iff whenever `1 ≤ `2, also f(`1, `) ≤ f(`2, `).

Progressive (P): a stateless function f(x, x) with arguments of local type is P iff f(`, `) > `
or f(`, `) = > (where > denotes the unique maximal element of the relevant type).

Raising (R): a function f(`1, `2, v) is raising with respect to total partial orders <, C
iff: (i) f(`, `, v) = `; (ii) f(`1, `2, v) ≥ min(`1, `2); (iii) either f(`1, `2, v) B `2 or
f(`1, `2, v) = `1.

8A function f(x) is stateless iff its outputs depend only on its inputs and not on other external factors.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:27

Hence, the three patterns can be described as follows.

Converging: In this pattern, variable x is repeatedly updated through function fC and
a self-stabilising value s. The function fC may also have additional (not necessarily
self-stabilising) inputs e. If the range of the metric granting convergence of fC is a well-
founded set9 of real numbers, the pattern self-stabilises since it gradually approaches
the value given by s.

Acyclic: In this pattern, the neighbourhood’s values for x are first filtered through a
self-stabilising partially ordered “potential”, keeping only values held in devices with
lower potential (thus in particular discarding the device’s own value of x). This is ac-
complished by the built-in function nbrlt, which returns a field of booleans selecting the
neighbours with lower argument values, and could be defined as def nbrlt(x) {nbr{x} <
x}.

The filtered values are then combined by a function f (possibly together with other
values obtained from self-stabilising expressions) to form the new value for x. No
semantic restrictions are posed in this pattern, and intuitively it self-stabilises since
there are no cyclic dependencies between devices.

Minimising: In this pattern, the neighbourhood’s values for x are first increased by a
monotonic progressive function fMP (possibly depending also on other self-stabilising
inputs). As specified above, fMP needs to operate on local values: in this pattern it is
therefore implicitly promoted to operate (pointwise) on fields.

Afterwards, the minimum among those values and a local self-stabilising value is
then selected by function minHoodLoc(φ, `) (which selects the “minimum” in φ[δ 7→ `]).
Finally, this minimum is fed to the raising function fR together with the old value for
x (and possibly any other inputs e), obtaining a result that is higher than at least one
of the two parameters. We assume that the partial orders <, C are noetherian,10 so
that the raising function is required to eventually conform to the given minimum.

Intuitively, this pattern self-stabilises since it computes the minimum among the
local values ` after being increased by fMP along every possible path (and the effect of
the raising function can be proved to be negligible).

For expressions in the self-stabilising fragment, we can prove that the non-equivalent
rewriting preserves the limit behavior, and thus may be safely applied in most cases.
Furthermore, the rewriting reduces the number of full rounds of execution required for
stabilisation.

Definition 4.9 (Full Round of Execution). Let E = 〈E, , <, d〉 be an augmented event
structure and E0 ⊆ E be a set of events such that whenever ε′ < ε ∈ E0 with d(ε′) = d(ε),
then ε′ ∈ E0. Define r : E → N as:

r(ε) =

{
0 if ε ∈ E0

min {r(ε′) + 1 | ε′ ε} otherwise

Then, we say that the n-th full round of execution after E0 comprises all events ε ∈ E such
that r(ε) = n. If omitted, we assume E0 to be the <-closure of the finite set of events ε not
satisfying the equality in Definition 2.10.

9An ordered set is well-founded iff it does not contain any infinite descending chain.
10A partial order is noetherian iff it does not contain any infinite ascending chains.

?:28 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

Notice that function r above is weakly increasing on the linear sequence of events on a
given device: r(ε) ≤ r(ε′) ≤ r(ε) + 1 whenever ε ε′ and d(ε) = d(ε′).

Theorem 4.10. Assume that every built-in operator is self-stabilising. Then closed expres-
sions s as in Figure 7 self-stabilise to the same limit for rep + nbr as their rewritings with
share, the latter with a tighter bound on the number of full rounds of execution of a network
needed before stabilisation.

Proof. See Appendix B.

5. Application and Empirical Validation

Having developed the share construct and shown that it should be able to significantly
improve the performance of field calculus programs, we have also applied this development
by extending the Protelis [PVB15] implementation of field calculus to support share (the
implementation is a simple addition of another keyword and accompanying implementation
code following the semantics expressed above). We have further upgraded every function
in the protelis-lang library [FPBV17] with an applicable rep/nbr combination to use
the share construct instead, thereby also improving every program that makes use of these
libraries of resilient functions. The official Protelis distribution includes these changes to the
language and the library into the main distribution, starting with version 11.0.0. To validate
the efficacy of both our analysis and its applied implementation, we empirically validate the
improvements in performance for a number of these upgraded functions in simulation.

5.1. Evaluation Setup. We experimentally validate the improvements of the share con-
struct through two simulation examples. In both, we deploy a number of mobile devices,
computing rounds asynchronously at a frequency of 1 ±0.1 Hz, and communicating within
a range of 75 meters. Mobile devices were selected because they pose a further challenge
with respect to static ones: in fact, while in a statically deployed system only the transient
to stability can be measured, in a dynamic situation the coordination system must cope
with continuous, small disruptions by continuously adapting to an evolving situation. All
aggregate programs have been written in Protelis [PVB15] and simulations performed in the
Alchemist environment [PMV13]. All the results reported in this paper are the average of
200 simulations with different seeds, which lead to different initial device locations, different
waypoint generation, and different round frequency. Data generated by the simulator has
been processed with Xarray [HH17] and matplotlib [Hun07]. For the sake of brevity, we do
not report the actual code in this paper; however, to guarantee complete reproducibility, the
execution of the experiments has been entirely automated, and all the resources have been
made publicly available along with instructions.11

In the first scenario, we position 2000 mobile devices into a corridor room with sides of,
respectively, 200m and 2000m. Two devices are “sources” and are fixed, while the remaining
1998 are free to move within the corridor randomly. We experiment with different locations
for the two fixed devices, ranging from the opposite ends of the corridor to a distance
of 100m. At every point of time, only one of the two sources is active, switching at 80

11Experiments are separated in two blocks, available on two separate repositories:
https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/

https://github.com/DanySK/Experiment-2019-LMCS-Share

https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/
https://github.com/DanySK/Experiment-2019-LMCS-Share

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:29

seconds and 200 seconds (i.e., the active one gets disabled, the disabled one is re-enabled).
Devices are programmed to compute a field yielding everywhere the farthest distance from
any device to the current active source. In order to do so, they apply three widely-used
general coordination operations [FMSM+13, VAB+18]: estimation of shortest-path distances,
accumulation of values across a region, and broadcast via local spreading. In particular, we
use the following specific algorithmic variants:

(1) devices compute a potential field measuring the distance from the active source through
BIS [ADV18] (bisGradient routine in protelis:coord:spreading);

(2) devices then accumulate the maximum distance value descending the potential towards
the source, through Parametric Weighted Multi-Path C [ABDV19] (an optimized version
of C in protelis:coord:accumulation);

(3) finally, devices broadcast the accumulated value along the potential, somewhat similar
to the chemotaxis coordination pattern [FMSM+13], from the source to every other
device in the system (an optimized version of the broadcast algorithm available in
protelis:coord:spreading, which tags values from the source with a timestamp and
propagates them by selecting more recent values).

The choice of the algorithms to be used in validation is critical. The usage of share is able
to directly improve the performance of algorithms with solid theoretical guarantees; however,
it may also exacerbate errors and instabilities for more ad-hoc algorithms, by allowing them
to propagate quicker and more freely, preventing (or slowing down) the stabilization of the
algorithm result whenever the network configuration and input is not constant. Of the set
of available algorithms for spreading and collecting data, we thus selected variants with
smoother recovery from perturbation: optimal single-path distance estimation (BIS gradient
[ADV18]), optimal multi-path broadcast [VAB+18], and the latest version of data collection
(parametric weighted multi-path [ABDV19], fine-tuning the weight function).

We are interested in measuring the error of each step (namely, in distance vs. the
true values), together with the lag through which these values were generated (namely,
by propagating a time-stamp together with values, and computing the difference with the
current time). We call this measurement error error in distance, as it indicates how far the
distance estimation is from reality. Likewise, we call the measured information lag error in
time, as it indicates how long it takes for information to flow across the network from the
source to other devices. Moreover, we want to inspect how the improvements introduced
by share accumulate across the composition of algorithms. To do so, we measure the error
in two conditions: (i) composite behavior, in which each step is fed the result computed by
the previous step, and (ii) individual behavior, in which each step is fed an ideal result for
the previous step, as provided by an oracle.

Figure 8 shows the results from this scenario. Observing the behavior of the individual
computations, it is immediately clear how the share-based version of the algorithm provides
faster recovery from network input discontinuities and lower errors at the limit. These effects
are exacerbated when multiple algorithms are composed to build aggregate applications.
The only counterexample is the limit of distance estimations, for which rep is marginally
better, with a relative error less than 1% lower than that of share.

Moreover, notice that the collection algorithm with rep was not able to recover from
changes at all, as shown by the linearly increasing delay in time (and the absence of spikes
in distance error). The known weakness of multi-path collection strategies, that is, failing to

?:30 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

0 50 100 150 200 250 300
simulated time (s)

0
100

101

102

103

di
st

an
ce

 e
rro

r

single computations, error in distance

0 50 100 150 200 250 300
simulated time (s)

0

100

101

102

tim
e

er
ro

r

single computations, error in time

0 50 100 150 200 250 300
simulated time (s)

0
100

101

102

103

di
st

an
ce

 e
rro

r

stack computations, error in distance

0 50 100 150 200 250 300
simulated time (s)

0

100

101

102

tim
e

er
ro

r

stack computations, error in time

rep-broadcast
rep-collection
rep-distance

share-broadcast
share-collection
share-distance

Figure 8: Performance in the corridor scenario, for both individual algorithms (top) and the
composite computation (bottom). Vertical axis is linear in [0, 1] and logarithmic
above. Charts on the left column show distance error, while the right column
shows time error. The versions of the algorithms implemented with share (warm
colours) produce significantly less error and converge significantly faster in case of
large disruptions than with rep (cold colours). Peaks at t=80s and t=200s are
due to the algorithm re-stabilizing as a consequence of the active source switching
between the two opposite nodes.

react to changes due to the creation of information loops, proved to be much more relevant
and invalidating with rep than with share.

Further details on the improvements introduced by share are depicted in Figure 9,
which shows both the lag between two selected devices and how such lag is influenced
by the distance between them. Algorithms implemented on share provide, as expected,
significantly lower network lags, and the effect is more pronounced as the distance between
nodes increases: in fact, even though network lags expectedly scale linearly in both cases,
rep-based versions accumulate lag much more quickly.

In the second example, we deploy 500 devices in a city center, and let them move
as though being carried by pedestrians, moving at walking speed (1.4ms) towards random
waypoints along roads open to pedestrian traffic (using map data from OpenStreetMaps
[HW08]). In this scenario, devices must self-organize service management regions with a
radius of at most 200 meters, creating a Voronoi partition as shown in Figure 10 (functions
S and voronoiPatitioningWithMetric from protelis:coord:sparsechoice). We evaluate
performance by measuring the number of partitions generated by the algorithm, and the
average and maximum node distance error, where the error for a node n measures how
far a node is beyond of the maximum boundary for its cluster. This is computed as
en = max(0, d(n, ln) − r), where d computes the distance between two devices, ln is the
leader for the cluster n belongs to, and r is the maximum allowed radius of the cluster.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:31

0 50 100 150 200 250 300
Simulation time (s)

5

10

15

20

25

Pa
ck

et
 d

el
ay

 (s
)

rep vs. share performance, broadcast

rep-single
rep
share-single
share

0 50 100 150 200 250 300
Simulation time (s)

5

10

15

20

25

Pa
ck

et
 d

el
ay

 (s
)

rep vs. share performance, accumulation

rep-single
rep
share-single
share

250 500 750 1000 1250 1500 1750 2000
Distance between source and destination (m)

0

5

10

15

20

25

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

rep vs. share performance, broadcast
rep-single
rep
share-single
share

250 500 750 1000 1250 1500 1750 2000
Distance between source and destination (m)

0

5

10

15

20

25

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

rep vs. share performance, accumulation
rep-single
rep
share-single
share

Figure 9: Performance in the corridor scenario, showing on top the packet lag between
the two fixed devices for the scenario in which they are at opposite ends of the
corridor, and on the bottom how the average packet lag changes with the distance
between such devices. Broadcast data is on the left, accumulation on the right.
Thinner lines depict mean ± standard deviation. Darker lines depict “stacked”
computations, namely, they use respectively rep-based or share-based algorithms
to compute distances; lighter lines depict “single” computations, where distances
are provided by an oracle. The versions of the algorithms implemented with share

(warm colours) stabilize faster, and once stabilized they provide much lower network
lags. The effect stacks when multiple algorithms are used together, as shown by
the chart on packet delay in accumulation (top right): the collection algorithm
using the distance computed with rep requires a longer time for stabilization,
after which it provides the same performance (in terms of lag) as the version
relying on an oracle. Bottom charts show how both implementations scale linearly
with the distance between devices (hence, for a network, linearly in its diameter);
however, for rep-based algorithms scaling is noticeably worse. Perturbations at
t=80s and t=200s are due to the algorithm re-stabilizing as a consequence of the
active source switching between the two opposite nodes

Figure 11 shows the results from this scenario, which also confirm the benefits of faster
communication with share. The algorithm implemented with share has much lower error,
mainly due to faster convergence of the distance estimates, and consequent higher accuracy
in measuring the distance from the partition leader. Simultaneously, it creates a marginally
lower number of partitions, by reducing the amount of occasional single-device regions which
arise during convergence and re-organization.

?:32 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

Figure 10: Snapshots of the Voronoi partitioning scenario using share (left) or rep (right).
Colored dots are simulated devices, with each region having a different colour.
Faster communication with share leads to a higher accuracy in distance estima-
tion, allowing the share implementation to perform a better division into regions
and preventing regions from expanding beyond their limits: note the mixing of
colours on the right.

0 100 200 300 400 500 600
simulated time (s)

0

10 1

100

101

102

di
st

an
ce

 e
rro

r

rep[Mean]
rep[Max]

share[Mean]
share[Max]

0 100 200 300 400 500 600
simulated time (s)

102

le
ad

er
s c

ou
nt

rep share

Figure 11: Performance in the Voronoi partition scenario: error in distance on the left,
leaders count with time on the right. Vertical axis is linear in [0, 0.1] and
logarithmic elsewhere. The version implemented with share has much lower
error: the mean error is negligible, and the most incorrect value, after an initial
convergence phase, is close to two orders of magnitude lower than with rep, as
faster communication leads to more accurate distance estimates. The leader
count shows that the systems create a comparable number of partitions, with
the share-based featuring faster convergence to a marginally lower number due
to increased consistency in partitioning.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:33

6. Conclusion and Future Work

We have introduced a novel primitive for field-based coordination, share, allowing declarative
expression of unified and coherent operation mechanisms for state-preservation, communica-
tion to neighbours, and aggregation of received messages. More specifically, we have shown
that this primitive significantly accelerated field calculus programs involving spreading of
information, that programs can be automatically rewritten to use share, and that transfor-
mation to use share preserves the key convergence property of self-stabilization. Finally,
we have made this construct available for use in applications through an extension of the
Protelis field calculus implementation and its accompanying libraries, and have empirically
validated the expected improvements in performance through experiments in simulation.
Indeed, through this distribution the share construct is already being used in industrial
applications (e.g., [PDB+19, ST20]). In these applications, every use of rep + nbr has been
replaced by share. This replacement has been effected in two ways: first, by use of the
new version of the Protelis library and second, by direct conversion of all application code
using rep + nbr following the speed-improving Rewriting 3 from Section 4.4. Anecdotal
reports of system performance from these applications show improvement consistent with the
results in this paper. The impact of this work is thus to significantly increase the pragmatic
applicability of a wide range of results from aggregate computing.

In future work, we plan to study for which algorithms the usage of share may lead to
increased instability, thus fine-tuning the choice of rep and nbr over share in the Protelis
library. Furthermore, we intend to fully analyze the consequences of share for improvement of
space-time universality [ABDV18], self-adaption [BVPD17], real-time properties [ADVB18],
and variants of the semantics [ADVC16] of the field calculus. It also appears likely that the
field calculus can be simplified by the elimination of both rep and nbr by finding a mapping
by which share can also be used to implement any usage of nbr. Finally, we believe that the
improvements in performance will also have positive consequences for nearly all current and
future applications that are making use of the field calculus and its implementations and
derivatives. As such, it can also suggest alternative formulations or new operators in other
field-based coordination languages, such as [MZ09, WSBC04, VPM+15, LLM17, VPB12].

Acknowledgements. We thank the anonymous COORDINATION 2019 referees for their
comments and suggestions on improving the presentation.

References

[ABD+19] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli. The share
operator for field-based coordination. In Coordination Models and Languages, volume 11533 of
Lecture Notes in Computer Science, pages 54–71. Springer, 2019.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-time universality
of field calculus. In Coordination Models and Languages, volume 10852 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2018.

[ABDV19] Giorgio Audrito, Sergio Bergamini, Ferruccio Damiani, and Mirko Viroli. Effective collective
summarisation of distributed data in mobile multi-agent systems. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2019.

[ACDV17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. Compositional blocks
for optimal self-healing gradients. In 11th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2017), pages 91–100. IEEE, 2017.

?:34 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

[ADV17] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. Optimally-self-healing distributed gradient
structures through bounded information speed. In Coordination Models and Languages, volume
10319 of LNCS, pages 59–77. Springer, 2017.

[ADV18] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. Optimal single-path information propa-
gation in gradient-based algorithms. Science of Computer Programming, 166:146–166, 2018.

[ADVB18] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Enrico Bini. Distributed real-time shortest-
paths computations with the field calculus. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 23–34. IEEE Computer Society, 2018.

[ADVC16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei. Run-time management
of computation domains in field calculus. In 1st International Workshops on Foundations and
Applications of Self* Systems (FAS*W), pages 192–197. IEEE, 2016.

[ARGL+07] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanab-
han Pillai. Meld: A declarative approach to programming ensembles. In IEEE International
Conference on Intelligent Robots and Systems (IROS ’07), pages 2794–2800, 2007.

[AVD+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. A higher-
order calculus of computational fields. ACM Transactions on Computational Logic (TOCL),
20(1):5:1–5:55, 2019.

[BB06] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intelligent Systems, 21:10–19, March/April 2006.

[BDU+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Organizing the
aggregate: Languages for spatial computing. In Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, chapter 16, pages 436–501. IGI Global, 2013.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for the Internet of Things.
IEEE Computer, 48(9), 2015.

[But02] William Butera. Programming a Paintable Computer. PhD thesis, MIT, Cambridge, USA, 2002.
[BVPD17] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. Self-adaptation to device

distribution in the Internet of Things. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 12(3):12:1–12:29, 2017.

[CGG+05] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti, Amy L. Murphy, and
Gian Pietro Picco. Mobile data collection in sensor networks: The tinylime middleware. Elsevier
Pervasive and Mobile Computing Journal, 4:446–469, 2005.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–
366, 1932.

[CN03] Lauren Clement and Radhika Nagpal. Self-assembly and self-repairing topologies. In Workshop
on Adaptability in Multi-Agent Systems, RoboCup Australian Open, 2003.

[Coo99] Daniel Coore. Botanical Computing: A Developmental Approach to Generating Inter connect
Topologies on an Amorphous Computer. PhD thesis, MIT, Cambridge, MA, USA, 1999.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[FMSM+13] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli,
and Josep Llúıs Arcos. Description and composition of bio-inspired design patterns: a complete
overview. Natural Computing, 12(1):43–67, 2013.

[FPBV17] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. Towards a foundational api for
resilient distributed systems design. In 2017 IEEE 2nd International Workshops on Foundations
and Applications of Self* Systems (FAS* W), pages 27–32. IEEE, 2017.

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-programming
wireless sensor networks using kairos. In Distributed Computing in Sensor Systems (DCOSS),
pages 126–140, 2005.

[GGMP02] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw Prusinkiewicz. Compu-
tational models for integrative and developmental biology. Technical Report 72-2002, U. d’Evry,
LaMI, 2002.

[GMCS05] Jean-Louis Giavitto, Olivier Michel, Julien Cohen, and Antoine Spicher. Computations in space
and space in computations. In Unconventional Programming Paradigms, volume 3566 of Lecture
Notes in Computer Science, pages 137–152. Springer, Berlin, 2005.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:35

[HH17] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and datasets in Python. Journal of Open
Research Software, 5(1), 2017.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,
9(3):90–95, 2007.

[HW08] M. Haklay and P. Weber. OpenStreetMap: User-generated street maps. IEEE Pervasive
Computing, 7(4):12–18, oct 2008.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3),
2001.

[Kon03] Attila Kondacs. Biologically-inspired self-assembly of 2d shapes, using global-to-local compilation.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 633–638. Morgan
Kaufmann Publishers Inc., 2003.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

[LLM17] Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. Asynchronous distributed execution
of fixpoint-based computational fields. Logical Methods in Computer Science, 13(1), 2017.

[LMMD88] C. Lasser, J.P. Massar, J. Miney, and L. Dayton. Starlisp Reference Manual. Thinking Machines
Corporation, 1988.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: A Tiny
AGgregation Service for Ad-hoc Sensor Networks. SIGOPS Oper. Syst. Rev., 36:131–146, 2002.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing applica-
tions: The tota approach. ACM Transactions on Software Engineering Methodologies (TOSEM),
18(4):1–56, 2009.

[Nag01] Radhika Nagpal. Programmable Self-Assembly: Constructing Global Shape using Biologically-
inspired Local Interactions and Origami Mathematics. PhD thesis, MIT, Cambridge, MA, USA,
2001.

[NW04] Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor
networks. In Workshop on Data Management for Sensor Networks, DMSN ’04, pages 78–87.
ACM, 2004.

[PDB+19] Aaron Paulos, Soura Dasgupta, Jacob Beal, Yuanqiu Mo, Khoi Hoang, Lyles J Bryan, Partha
Pal, Richard Schantz, Jon Schewe, Ramesh Sitaraman, et al. A framework for self-adaptive
dispersal of computing services. In 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS* W), pages 98–103. IEEE, 2019.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of computational
systems with ALCHEMIST. J. Simulation, 7(3):202–215, 2013.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: Practical aggregate programming. In
ACM Symposium on Applied Computing 2015, pages 1846–1853, April 2015.

[ST20] Swarm tactics: A collection of technologies for developing, simulating and executing swarm
tactics at scale. http://www.swarmtactics.com/, 2020. Accessed: April 3, 2020.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Engineering
resilient collective adaptive systems by self-stabilisation. ACM Transactions on Modelling and
Computer Simulation (TOMACS), 28(2):16:1–16:28, 2018.

[Val90] Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo
Pianini. From distributed coordination to field calculus and aggregate computing. Journal of
Logical and Algebraic Methods in Programming, 109, 2019. Article 100486.

[VPB12] Mirko Viroli, Danilo Pianini, and Jacob Beal. Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In Marjan Sirjani, editor, Coordination Languages and
Models, volume 7274 of LNCS, pages 212–229. Springer-Verlag, June 2012. Proceedings of
the 14th Conference of Coordination Models and Languages (Coordination 2012),Stockholm
(Sweden), 14-15 June.

[VPM+15] Mirko Viroli, Danilo Pianini, Sara Montagna, Graeme Stevenson, and Franco Zambonelli. A
coordination model of pervasive service ecosystems. Science of Computer Programming, 110:3 –
22, 2015.

http://www.swarmtactics.com/

?:36 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

[WSBC04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neighborhood
abstraction for sensor networks. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM Press, 2004.

[Yam07] Daniel Yamins. A Theory of Local-to-Global Algorithms for One-Dimensional Spatial Multi-Agent
Systems. PhD thesis, Harvard, Cambridge, MA, USA, 2007.

[YG02] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Record, 31:9–18, 2002.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:37

Appendix A. Proof of TCNS Completeness

In this section, we prove that the TCNS is able to capture the message passing details of
any augmented event structure.
Restatement of Theorem 3.5 (TCNS Completeness). Let E = 〈E, , <, d〉 be an
augmented event structure. Then there exist (infinitely many) system evolutions following E.

Proof. Define a set T = {εc | ε ∈ E} ∪ {εs | ε ∈ E}, including two elements εc, εs for every
event ε (representing the computation and send phase of the event). Define on T as:

(1) εs1 εc2 for each pair of neighbour events ε1 ε2;
(2) εc1 εs2 for each pair of time-dependent events ε1 99K ε2;12

(3) εc εs for each event ε ∈ E.

First, we prove that the relation on T is acyclic due to the immediacy property. Notice
that always alternates between computation and send elements of T , and in a chain
of every other transition must be of type (1). Suppose then by contradiction that
εs1 εc2 . . . εc2n εs1 is a cycle in T . If no transition of type (2) is present, the cycle
in T corresponds to a cycle ε2 ε4 . . . ε2n ε2 in E which is a contradiction. Then
some transitions of type (2) must be present: assume they are εc2ki εs2ki+1 corresponding
to ε2ki 99K ε2ki+1 for i ≤ m and m ≤ n, ki ≤ n increasing. Then εs2ki+1 . . . εc2ki+1

corresponds to a chain ε2ki+1 . . . ε2ki+1
in E, hence in particular εs2ki+1 < εc2ki+1

. Thus

ε2k1 99K ε2k1+1 < ε2k2 99K . . . < ε2k1 is a cyclic sequence contradicting immediacy, concluding
the proof of the claim that is acyclic on T .

Since is acyclic on T , there exists at least one ordering of T = 〈εx1
1 , . . . , ε

x`
` 〉 compatible

with , i.e. such that εxii ε
xj
j ⇒ i < j. Define by induction a system evolution Si for

i ≤ ` translating the elements of T (in order), starting from the empty system evolution
without transitions S0 = 〈∅, ∅; ∅, ∅〉.

Consider a step i ≤ ` and let δi = d(εi). If xi = c (we are at a computation element of

T), add the following two transitions Si = Si−1
env−−→ N ′

δi+−−→ N ′′:

• first, an env transition inserting δi into the domain of the final system configuration in
Si−1 (if not already present);
• then, a δi+ transition representing the computation, where the filter F clears out from

the value-tree environment Ψ(δi) the value trees corresponding to devices not in X =
{d(ε′) | ε′ εi}.

If xi = s (we are at a send element of T), add the following three transitions to the system

Si = Si−1
env−−→ N ′

δi−−−→ N ′′
env−−→ N ′′′:

• first, an env transition setting τ(δi) to Y = {d(ε′) | εi ε′}, possibly adding devices in
Y to the domain of the system configuration if not already present;
• secondly, a δi− transition;
• finally, another env transition, which removes δi from the domain of the system configura-

tion if next(εi) does not exist, or it does nothing if next(εi) exists.

Then, the system evolution S` follows E (c.f. Definition 3.4). Notice that many system
evolutions may follow E: besides the existence of many different linearisations of T according
to , env transitions can be added in an unbounded number of ways.

12We recall that ε1 99K ε2 iff ε2 next(ε1) and ε2 6 ε1 (c.f. Definition 2.3).

?:38 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

Appendix B. Proof of Self-Stabilisation

In this section, we prove Theorem 4.10. First, we prove the result for the minimising pattern
(Lemma B.1), since it is technically more involved than the proof for the remainder of the
fragment. We then prove a stronger form of the desired result (Lemma B.2) more suited for
inductive reasoning, which in turn implies Theorem 4.10.

Given a closed self-stabilising expression s, we denote with JsK = Ψ = δ 7→ v the
self-stabilising limit value of this expression in a given network graph G (c.f. Definition 4.8),
attained for every system evolution S of a network following an E with limit G. Let:

srmin = rep(e){(x) => fR(minHoodLoc(fMP(nbr{x}, sr), sr), x, e)}
ssmin = share(e){(x) => fR(minHoodLoc(fMP(x, ss), ss), localHood(x), e)}

be corresponding minimising patterns such that JsrK = JssK = Ψ, JsrK = JssK = Ψ. Let
P = δ be a path in the network (a sequence of pairwise connected devices), and define its
weight as the result of picking the eventual value `1 = Ψ(δ1) of sr in the first device δ1, and
repeatedly passing it to subsequent devices through the monotonic progressive function,
so that `i+1 = fMP(`i, v) where v is the result of projecting fields in Ψ(δi+1) to their δi
component (leaving local values untouched). Notice that the weight is well-defined since
function fMP is required to be stateless. Finally, let Ψout be such that Ψout(δ) = `δ is the
minimum weight for a path P ending in δ.

Lemma B.1. Let srmin, ssmin be corresponding minimising patterns, whose sub-expressions
stabilise within nr, ns full rounds of execution (respectively) with nr ≥ ns. Then they both
stabilise to Ψout, with a bound on the number of full rounds of execution which is greater for
srmin than for ssmin.

Proof. Let `δ be the minimal weight for a path P ending in δ, and let δ0, δ1, . . . be the list
of all devices δ ordered by increasing `δ. Notice that the path P of minimal weight `δi for
device i can only pass through nodes such that `δj ≤ `δi (thus s.t. j < i). In fact, whenever
a path P contains a node j the weight of its prefix until j is at least `δj ; thus any longer
prefix has weight strictly greater than `δj since fMP is progressive.

Let S be a system evolution following E = 〈E, , <, d〉 with limit G. We now prove
by complete induction on i that after a certain number of full rounds of execution nri , n

s
i

expressions srmin, ssmin stabilise to `δi in device δi and assume values ≥ `δi in devices δj with
j ≥ i.

By inductive hypothesis, assume that devices δj with j < i are all self-stabilised from a
certain number of full rounds of execution nri−1, nsi−1. Thus, their limit values are available
to neighbours after nri−1 + 2, nsi−1 + 1 full rounds of execution respectively. Consider the

evaluation of the expressions srmin, ssmin in a device δk with k ≥ i. Since the local argument
` of minHoodLoc is also the weight of the single-node path P = δk, it has to be at least
` ≥ `δk ≥ `δi . Similarly, the restriction φ′ of the field argument φ of minHoodLoc to devices
δj with j < i has to be at least φ′ ≥ `δk ≥ `δi since it corresponds to weights of (not
necessarily minimal) paths P ending in δk (obtained by extending a minimal path for a
device δj with j < i with the additional node δk). Finally, the complementary restriction φ′′

of φ to devices δj with j ≥ i is strictly greater than the minimum value for whole srmin, ssmin

expression among all devices δj with j ≥ i (delayed by one round for rep + share), since
fMP is progressive.

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:39

It follows that as long as the minimum value for the whole expressions among non-stable
devices is lower than `δi , the result of the minHoodLoc subexpression is strictly greater than
this minimum value. The same holds for the overall value, since it is obtained by combining
the output of minHoodLoc with the previous value for x through the rising function fR, and
a rising function has to be equal to the first argument (the minHoodLoc result strictly greater
than the minimum), or B than the second. In the latter case, it also needs to be greater or
equal to the first argument (again, strictly greater than the minimum) or strictly greater
than the second argument13 (not below the minimum value).

Thus, every full round of execution (two full rounds for rep+nbr, in order to allow value
changes to be received) the minimum value among non-stable devices has to increase, until
it eventually surpasses `δi since < is noetherian. This happens within at most nri−1 + 2x,
nsi−1 + x full rounds of execution respectively, where x is the length of the longest increasing
sequence between `δi−1 and `δi (longest sequence up to `δi if i = 0). From that point on,
that minimum cannot drop below `δi , and the output of minHoodLoc in δi stabilises to `δi .
In fact, if P is a path of minimum weight for δi, then either:

• P = δi, so that `δi is exactly the local argument of the minHoodLoc operator, hence also
the output of it (since the field argument is greater than `δi).
• P = Q, δi where Q ends in δj with j < i. Since fMP is monotonic non-decreasing, the

weight of Q′, δi (where Q′ is minimal for δj) is not greater than that of P ; in other words,
P ′ = Q′, δi is also a path of minimum weight. It follows that φ(δj) (where φ is the field
argument of the minHoodLoc operator) is exactly `δi .

Since the order C is noetherian, the rising function on δi has to select its first argument
in a number of rounds y at most equal to the longest increasing sequence from `δi . Thus, it
will select the output of the minHoodLoc subexpression, which is `δi , after nri−1 + 2x + y,
nsi−1 + x+ y full rounds of execution. From that point on, the minimising expression will

have self-stabilised on device δi to `δi , and every device δj with j ≥ i will attain values ≥ `δi ,
concluding the inductive step and the proof.

Let Ψ be a computational field. We write s[x := Ψ] to indicate an aggregate process in
which each device is computing a possibly different substitution s[x := Ψ(δ)] of the same
expression.

Lemma B.2. Assume that every built-in operator is self-stabilising. Let sr be an expression
in the self-stabilising fragment of [VAB+18], ss its non-equivalent translation with share,
and Ψ be a sequence of computational fields on G of the same length as the free variables
x occurring in sr, ss. Then sr[x := Ψ], ss[x := Ψ] self-stabilise to the same limit, and the
second does so with a smaller bound on the number of full rounds of execution.

Proof. Let S be a system evolution following E = 〈E, , <, d〉 with limit G. The proof
proceeds by induction on the syntax of expressions and programs. The given expressions sr,
ss could be:

• A variable xi, so that sr[x := Ψ] = ss[x := Ψ] = Ψi are already self-stabilised and identical.
• A value v, so that sr[x := Ψ] = ss[x := Ψ] = v are already self-stabilised and identical.
• A let-expression let x = sr1 in sr2, let x = ss1 in ss2. By inductive hypothesis, the

sub-expressions sr1, ss1 stabilise to Ψ within nr1 ≥ ns1 full rounds of execution. After that,
let x = s1 in s2 evaluates to the same value as the expression s2[x := Ψ] which is

13It cannot be equal to the second argument, as it is B-greater than it.

?:40 G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli Vol. 16:?

self-stabilising by inductive hypothesis in a number of full rounds of execution nr2 ≥ ns2.
Thus, the whole let-expression stabilises within nr1 +nr2 ≥ ns1 +ns2 full rounds of execution.
• A functional application fr(sr), fs(ss). By inductive hypothesis, all expressions sr, ss

self-stabilise to Ψ after a certain amount of full rounds of execution (lower for ss). After
stabilisation of the arguments, if fr = fs = f is a built-in function then f(sr), f(ss)
stabilises by the assumption on built-ins with the same number of additional full rounds
of execution. Otherwise, fr(sr), fs(sr) evaluate to the same value of the expression
body(fr)[args(fr) := Ψ] (resp. with fs) which are self-stabilising in a number of full rounds
of executions lower for fs by inductive hypothesis.
• A conditional sr = if(sr1){sr2}{sr3}, ss = if(ss1){ss2}{ss3}. By inductive hypothesis,

expressions sr1, ss1 self-stabilise to Ψguard (with fewer rounds for share). Let Gtrue be the
sub-graph consisting of devices δ such that Ψguard(δ) = true, and analogously Gfalse.
Assume that sr2, ss2 self-stabilise to Ψtrue in Gtrue and sr3, ss3 to Ψfalse in Gfalse (with
fewer rounds for share). Since a conditional is computed in isolation in the above defined
sub-environments, sr, ss self-stabilise to Ψ = Ψtrue ∪Ψfalse (with fewer rounds for share).
• A neighbourhood field construction nbr{sr}, nbr{ss}. By inductive hypothesis, expres-

sions sr, ss self-stabilise to Ψ after some rounds of computation (fewer for share). Then
nbr{sr}, nbr{ss} self-stabilise to the corresponding Ψ′ after one additional full round of
execution, where Ψ′(δ) is Ψ restricted to N (δ).
• A converging pattern src, s

s
c:

src = rep(e){(x) => fC(nbr{x}, nbr{sr}, e)}
ssc = share(e){(x) => fC(x, nbr{ss}, e)}

By inductive hypothesis, sr, ss self-stabilise (the latter with fewer rounds) to a same
Ψ. Given any index n, let drn, dsn be the maximum distances src −Ψ(d(ε)), ssc −Ψ(d(ε))
realised during events ε of the n-th full round of execution.

We prove that dsn is strictly decreasing with n, while drn ≥ drn−1, drn > drn+2 strictly
decreases every two rounds. Since distances are computed on a well-founded set, it will
follow that they will became zero for a sufficiently large n (smaller for share), thus src, s

s
c

stabilise as well to the same Ψ (with fewer rounds for share).
Consider an event on the n-th full round of execution. Thus, neighbours events belong to

rounds of execution ≥ n−1, hence their distance with Ψ is at most drn−2, dsn−1 respectively.

It follows that the output of the converging function fC must be strictly closer to Ψ than
drn−2, dsn−1 respectively, concluding the proof.
• An acyclic pattern sra, s

s
a:

sra = rep(e){(x) => fr(mux(nbrlt(srp), nbr{x}, sr), sr)}
ssa = share(e){(x) => fs(mux(nbrlt(ssp), x, s

s), ss)}
By inductive hypothesis, sr, ss self-stabilise (the latter with fewer rounds) to a same Ψ,
and similarly for srp, s

s
p with Ψp and sr, ss with Ψ.

Let ε be any firing in the first full round of execution (after stabilisation of sub-
expressions) of the device δ0 of minimal potential Ψp(δ0) in the network. Since Ψp(δ0) is
minimal, nbrlt(srp), nbrlt(ssp) are false and the mux-expression reduces to sr, ss and the
whole sra, s

s
a to fr(sr, sr), fs(ss, ss), which self-stabilises by inductive hypothesis (with

fewer rounds for share).

Vol. 16:? FIELD-BASED COORDINATION WITH THE SHARE OPERATOR ?:41

Let now ε be any firing in the first (second for rep) full round of execution after
stabilisation of δ0 of the device δ1 of second minimal potential Ψp(δ1). Then the mux-
expression in δ1 only (possibly) depends on the value of the device of minimal potential,
which is already self-stabilised and available to neighbours. Thus by inductive hypothesis
sra, s

s
a self-stabilises also in δ1 (with fewer rounds for share). By repeating the same

reasoning on all devices in order of increasing potential, we obtain a final number of rounds
(smaller for share) after which all devices have self-stabilised.
• A minimising rep: this case is proved for closed expressions in Lemma B.1, and its

generalisation to open expressions is straightforward.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Related Work and Background
	2.1. Space-Time Computation
	2.2. Stabilisation and spatial model
	2.3. Field Calculus
	2.4. Device Semantics

	3. Network Semantics
	3.1. True Concurrent Network Semantics
	3.2. Properties of the Network Semantics

	4. The Share Construct
	4.1. Problematic Interaction between rep and nbr Constructs
	4.2. Beyond rep and nbr
	4.3. Operational Semantics
	4.4. Automatic Rewritings of rep Constructs into share Constructs
	4.5. The share Construct Improves Communication Speed
	4.6. Limitations of the Automatic Rewriting
	4.7. The share Construct Preserves Self-stabilisation

	5. Application and Empirical Validation
	5.1. Evaluation Setup

	6. Conclusion and Future Work
	References
	Appendix A. Proof of TCNS Completeness
	Appendix B. Proof of Self-Stabilisation

