
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-038 July 20, 2007

Continuous Space-Time Semantics Allow
Adaptive Program Execution
Jonathan Bachrach, Jacob Beal, and Takeshi Fujiwara

Continuous Space-Time Semantics Allow Adaptive Program Execution

Jonathan Bachrach, Jacob Beal, Takeshi Fujiwara
MIT Computer Science and Artificial Intelligence Laboratory

77 Massachusetts Ave, Cambridge, MA, USA
jrb@csail.mit.edu, jakebeal@mit.edu, fujiwara@sophie.q.t.u-tokyo.ac.jp

Abstract

A spatial computer is a collection of devices filling space
whose ability to interact is strongly dependent on their
proximity. Previously, we have showed that programming
such a computer as a continuous space can allow self-
scaling across computers with different device distributions
and can increase robustness against device failure. We
have extended these ideas to time, allowing self-scaling
across computers with different communication and execu-
tion rates. We have used a network of 24 Mica2 Motes to
demonstrate that a program exploiting these ideas shows
minimal difference in behavior as the time between program
steps ranges from 100 ms to 300 ms and on a configuration
with mixed rates.1

1 Introduction

Spatial computers are an increasingly prevalent class of
systems, in which the computer is composed of a collec-
tion of devices that fill space and whose ability to inter-
act is strongly dependent on their proximity. Spatial com-
puters emerge across a wide variety of domains, including
swarm robotics, biofilms, sensor networks, and reconfig-
urable computing.
In previous work, we have advocated abstracting a spa-

tial computer as a continuous, space-filling computational
material, which we call an amorphous medium. Our lan-
guage, Proto[5], provides geometric primitives like neigh-
borhood, density, and distance that make it simple to write
programs that self-scale to spatial computers with different
distributions of devices and that handle some device fail-
ures transparently. For example, a directable plane wave
(Figure 1(a)) takes 31 lines of code and target tracking (Fig-
ure 1(b)) takes 28 lines.
We now take the same approach to time, viewing a com-

putation as a process evolving over continuous time, and

1This work partially supported by NSF Grant #CCF-0621897

(a) Plane Wave (b) Target Tracking

Figure 1. Proto code allows compact descrip-
tions of complicated behaviors.

define continuous time semantics for Proto. An appropri-
ate choice of primitives then makes it possible to write pro-
grams that self-scale to execute equivalently on spatial com-
puters with different communication and execution charac-
teristics.
The core problem is the duality between the continuous

model of space and time and its imperfect simulation using
discrete chunks of execution. The advantage of the contin-
uous model is that it will allow us to talk about aggregates.
Our challenge is to give the user tools for managing and
adapting to the inaccuracies of execution.

2 Related Work

The Proto language is previously described in [5] and
[2] using a discrete time semantics of global rounds of
execution. Proto is built on the dual foundations of the
amorphous medium abstraction for programming in contin-
uous space[4] and the Gooze lightweight stream processing
language[1].
The spatial computing languages closest to Proto are

*LISP[8], which operates on field values similarly but as-
sumes a regular grid of devices, and Regiment[11], which
explicitly implements geometric operations but has a base-
station centered semantics. More foreign approaches in-
clude TinyDB[10], which provides a database view of the

devices making up the computer, and Kairos[7], which op-
erates on the computer as an abstract graph.
Continuous time evolution has been a concern in other

specialized domains of computing, such as multimedia pro-
cessing (see, for example [6]), and is approximated in com-
putational models of chemical and biological computing
such as the Gamma calculus[3] and P-Systems[12].
The fact that computing devices evolve continuously is a

major concern throughout the fields of networking and par-
allel and distributed computing. In these fields, however,
the primary concern is often not to embrace the continuous
evolution of time, but to banish it. This is difficult and, in
many cases, impossible—see, for example, the many asyn-
chronous impossibility results in [9].

3 Space-Time Programs

The key enabling idea for continuous time programming
is the configuration path—a function that specifies the out-
put value at each point in the amorphous medium as a func-
tion of time. We borrow this idea from variational mechan-
ics, particularly the approach in [13]. Pushing the analogy
further, we view the program as an invariant description of
the dynamics of the system. To compute a configuration
path, we need only know the initial state and evolve it for-
ward in time according to the dynamics of the system.
Configuration paths allow us to use continuous time

without giving our outputs continuous values2 This is im-
portant because many familiar programming constructs use
discrete values. For example, a finite state machine changes
from state to state without passing through intermediate
states in the transition. Configuration paths allow us to sep-
arate the quantization of state and time.
We can combine this with our continuous space abstrac-

tion, the amorphous medium, in which the computer is rep-
resented as a manifold where every point is a computational
device. In this combined view, a space-time program spec-
ifies the evolution of a manifold function over time. This
execution can then be approximated with discrete steps on
individual devices.

4 Space and Time Operations

Using the configuration path model allows us to choose a
few critical space-time primitives that make it simple to ap-
proximate a global continuous program using discrete steps
on individual devices. By limiting space/time interaction to
a few simple mechanisms, Proto allows the programmer to
write succinct global programs that compile to an efficient
implementation. Due to limited space, we will not explain
Proto or how these operations are actually implemented.

2Alternatives like derivatives and continuous-time feedback control do
not allow this.

Space Restriction Conditional code needs to be thought
of differently when programming an aggregate rather than
a single device, since in general different devices may need
to take different branches. We handle this by providing a
restrict operation, which limits the region of space where a
piece of code is being evaluated. An ordinary branch is then
implemented with a pair of restrict operations, one for the
“true” branch and one for the “false” branch.

Incremental Evolution The evolution of program state
over time is expressed incrementally, using a feedback loop
construction letfed. The programmer controls evolution
with two expressions: an initial state (used at the beginning
or when a branch begins to run) and an incremental configu-
ration path that takes the current state and a time difference
dt and returns the state evolved forward by dt.

Field/Summary Operations The family of
field/summary operations select data across continu-
ous regions of space-time, compute with that data, then
summarize into a single value (e.g. the minimum value in
the region or the integral over the region). There are two
sets of field/summary operations: one for neighborhood
and one for histories.
Neighborhood operations use values from the past light-

cone of a point (implying message-passing in the discrete
approximation) and give access to the computer’s geometry
through special operators. In the discrete approximation,
the relationship between space and time may break down at
short distances, so we provide independent nbr-range and
nbr-lag operators that allow automatic compensation.
History operations are like neighborhood operations, but

select values from the past of a single point rather than
across a neighborhood. A history extends backward in time
for as long as the value is defined; when a value becomes
undefined due to the start of execution or space restriction,
the history terminates. Because the past is fixed, the history
operations are effectively just stereotyped feedback loops.

Evaluation Rate Although programs are specified in
terms of continuous evolution, when they finally run they
will be approximated with a sequence of discrete incre-
ments. If the size of each increment is too large, however,
a program might get into trouble in any number of ways,
from going unstable to breaking its specifications.
Consider, for example, running collision avoidance code

on a swarm of robots. If the code is evaluated too infre-
quently, the robot may not have time enough to brake before
slamming into an obstacle.
Rather than try to figure out a safe interval automatically,

we give the programmer simple operations to limit incre-
ment size. The programmer can specify increment limits
either in terms of frequency with min-freq or in terms of

2

−60 −40 −20 0 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial offset (time compensated)

O
ut

pu
t

100 ms
model fit

(a) 100 ms

−60 −40 −20 0 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial offset (time compensated)

O
ut

pu
t

300 ms
model fit

(b) 300 ms

−60 −40 −20 0 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial offset (time compensated)

O
ut

pu
t

mixed
model fit

(c) 100/200/300 ms

Figure 2. Spatial frequency of a plane wave is minimally affected by differences in execution rate.

Figure 3. Experimental deployment of 24
Mica2 motes organized as three randomized
rows of eight.

period with max-period. These point controls may then be
composed to control the execution of the entire program.

5 Example and Verification

In order to verify our approach, we ran our plane wave
application[5] with different processor update speeds and
measured the impact on the application output. The plane
wave application allows one to direct the angle of a planar
wave by placing markers in the network.
We verified the code by executing it on 24 Mica2 motes

arranged in three randomized rows of eight as shown in Fig-
ure 3. The leftmost mote in the middle row was set to be the
destination, the rightmost in the middle set to be the source,
the space period of the wave set to be 10 (20� cm) and the
time period of the wave set to be 1 (2� seconds).
The motes were provided with coordinates and their ra-

dio range software limited to 9cm, allowing us to record
data through a single logging device. The motes were then
run with three different evolution increments: (a) all motes
running at one update every 100 milliseconds, (b) all at 300
ms, and (c) a mixed population with five at 100 ms, five at
200 ms and the rest running at 300ms.

We gathered data by logging messages sent for approxi-
mately 12 wave cycles, ending up with approximately 1600
messages over approximately 80 seconds. Many messages
apparently sent do not appear in the log, likely due to in-
terference between messages. The motes nearest to the log-
ging device are represented preferentially in the logs, with a
maximum of 214 messages for a nearby mote, a minimum
of 28 messages for a distant mote, and medians of 48.5 for
run (a), 60 for (b) and 58.5 for (c).
Figure 4 shows that the motes synchronized to the same

time frequency in all three runs. We plot time minus phase
against output, which should re-align the outputs, then fit
it against a sine function where phase and frequency are
the free parameters. For run (a), the best fit frequency is
1.024, with RMSE 0.156, for run (b), the best fit is 1.026,
with RMSE 0.161 and for run (c), the best fit is 1.024, with
RMSE 0.135. This shows that the frequency of the wave is
not affected by execution rate.3
Figure 2 shows that the motes also synchronized to the

same spatial frequency in all three runs. We plot output
against position (compensated for time offset using our pre-
vious fit), then fit it as before. For run (a), the best fit fre-
quency is 0.0974, with RMSE 0.1519, for run (b), the best
fit is 0.1021, with RMSE 0.1606 and for run (c), the best fit
is 0.1001, with RMSE 0.1338. Although not as precise as
the time fit, the space fit shows that impact from differences
in execution rate is minimal.
Finally, Figure 5 shows interpolated space time plots for

the first 400 samples of the three experiments. Although
the interpolation is noisy due to missing data, visual inspec-
tion shows that the individual waves at least appear decently
regular.

6 Conclusion

We advocate modelling computation on a spatial com-
puter using continuous space and time. Using this abstrac-

3The slight speed-up comes from a naive time synchronization method.

3

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Time−Phase

O
ut

pu
t

100ms step
model fit

(a) 100 ms

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time−Phase

O
ut

pu
t

300ms step
model fit

(b) 300 ms

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Time−Phase

O
ut

pu
t

 mixed step
model fit

(c) 100/200/300 ms

Figure 4. The time frequency of the plane wave is not affected by differences in execution rate.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

0

0.5

1

Displacement from Source (cm)

O
ut

pu
t

Relative Time (s)

(a) 100 ms

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

0

0.5

1

Displacement from Source (cm)

O
ut

pu
t

Relative Time (s)

(b) 300 ms

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

0

0.5

1

Displacement from Source (cm)

O
ut

pu
t

Relative Time (s)

(c) 100/200/300 ms

Figure 5. Interpolated space-time waves for the first 400 samples of each experiment show that
individual waves are fairly regular (though the interpolation is noisy due to missing data).

tion with an appropriate choice of primitives allows pro-
grams to scale automatically to spatial computers with dif-
ferent communication and execution characteristics. We
have modified the Proto spatial computing language to
demonstrated scaling on a network of Mica2 Motes.
The work presented in this paper represents only the be-

ginning of investigation into continuous space/time mod-
els of computation. Changing to a continuous model of
time does not resolve problems so much as it exposes them.
There are many open problems at every level: how best to
describe and control aggregate behavior, how best to repre-
sent discrete issues in the continuous abstraction, and how
to manage trade-offs between cost, efficiency and accuracy
in discrete approximation.
Finally, the problems driving this model are not unique

to our approach to spatial computers, but derive from basic
issues of time and communication. Perhaps other languages
for controlling aggregates could benefit from incorporating
ideas of continuous state evolution, either in improving their
expressiveness or decreasing the cost of implementation by
relaxing constraints.

References

[1] J. Bachrach. Gooze: a stream processing language. In
Lightweight Languages 2004, November 2004.

[2] J. Bachrach and J. Beal. Programming a sensor network as
an amorphous medium. In DCOSS 2006 Posters, June 2006.

[3] J.-P. Banatre, P. Fradet, and D. L. Metayer. Gamma and the
chemical reaction model: Fifteen years after. InWMP, pages
17–44, 2000.

[4] J. Beal. Programming an amorphous computational
medium. In Unconventional Programming Paradigms In-
ternational Workshop, 2004.

[5] J. Beal and J. Bachrach. Infrastructure for engineered emer-
gence in sensor/actuator networks. IEEE Intelligent Systems,
pages 10–19, March/April 2006.

[6] C. Elliott. Functional images. In The Fun of Programming,
“Cornerstones of Computing” series. Palgrave, Mar. 2003.

[7] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks using airos. In
DCOSS, pages 126–140, 2005.

[8] C. Lasser, J. Massar, J. Miney, and L. Dayton. Starlisp Ref-
erence Manual. Thinking Machines Corporation, 1988.

[9] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
[10] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler.

Supporting aggregate queries over ad-hoc wireless sensor
networks. In Workshop on Mobile Computing and Systems
Applications, 2002.

[11] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In First Interna-
tional Workshop on Data Management for Sensor Networks
(DMSN), Aug. 2004.

[12] G. Paun. Membrane Computing: An Introduction. Springer-
Verlag, Berlin, 2002.

[13] G. J. Sussman and J. Wisdom. Structure and interpretation
of classical mechanics. MIT Press, Cambridge, MA, USA,
2001.

4

