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Levels of autonomy in synthetic
biology engineering
Jacob Beal* & Miles Rogers

Engineering biological organisms is a
complex, challenging, and often slow
process. Other engineering domains have
addressed such challenges with a combi-
nation of standardization and automation,
enabling a divide-and-conquer approach
to complexity and greatly increasing
productivity. For example, standardization
and automation allow rapid and predict-
able translation of prototypes into fielded
applications (e.g., “design for manufac-
turability”), simplify sharing and reuse of
work between groups, and enable reliable
outsourcing and integration of specialized
subsystems. Although this approach has
also been part of the vision of synthetic
biology, almost since its very inception
(Knight & Sussman, 1998), this vision still
remains largely unrealized (Carbonell
et al, 2019). Despite significant progress
over the last two decades, which have for
example allowed obtaining and editing
DNA sequences in easier and cheaper
ways, the full process of organism engi-
neering is still typically rather slow,
manual, and artisanal.
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P erhaps it is time to take a more

systematic approach to automation in

organism engineering, to better under-

stand the barriers to productivity gains. In

electrical, mechanical, and chemical engi-

neering, where automation and high produc-

tivity have become the norm, the success

has come from breaking down complex

processes into simple, well-understood steps

in a precisely managed environment.

However, when engineering living organ-

isms, we are dealing with complex and

imperfectly understood systems that cannot

be so easily controlled. It may therefore be

more helpful to think beyond automation to

autonomy. While specific definitions of

autonomy vary (e.g., Beer et al, 2014; Kaber,

2018), the general theme is that automation

is any machine taking over actions from a

human, while autonomy is automation oper-

ating with resilience and independence in a

complex open environment.

Levels of autonomy

We would like to begin by proposing a

working definition of autonomy for synthetic

biology engineering, to use both for evaluat-

ing the degree of autonomy offered by

current systems and for considering options

for future development. While there is a

wide variety of definitions and frameworks

regarding autonomy, we propose that a

particularly well suited framework to adapt

is the Levels of Driving Automation (LoDA)

framework, which was developed by SAE

International and is now widely used

throughout the automotive engineering

community. This framework consists of six

levels (0 through 5) of incrementally

increasing autonomy. The lower three levels

in the LoDA framework, that is, no automa-

tion, driver assistance, and partial automa-

tion, can be met by isolated subsystems

supervised by the human driver. The higher

levels, however—conditional automation,

high automation, and full automation—

require that the system be fully integrated

and capable of closed loop operation.

By analogy, we may consider a synthetic

biology investigator as the “driver” of a

laboratory, and the collection of assistive

equipment therein the vehicle that the inves-

tigator navigates toward an intended organ-

ism engineering goal. A laboratory, of

course, does not exist in a vacuum, but

makes use of externally supplied reagents,

instruments, protocols, etc. Such dependen-

cies do not disrupt the notion of autonomy,

but merely imply additional standards and

compatibility requirements, just as with a

vehicle’s analogous use of gasoline, automo-

tive parts, satellite navigation, and so on.

Figure 1 illustrates our proposed levels of

autonomy for synthetic biology, adapting

the concepts from the SAE LoDA to this

domain. The primary axis is the six vertical

levels of increasing degree of autonomy:

• Level 0, No Autonomy: No autonomy is

the current condition of most work in

most laboratories, with essentially all

work carried out by humans.

• Level 1, Investigator Assistance: The first

level of autonomy introduces narrowly

scoped systems assisting with specific labor-

intensive tasks, such as “high-throughput”

assay instruments, pipetting robots, or

specialized software packages. However,

humans are still intimately entangled with

their operation, which typically requires

careful set-up for each task to be executed.

• Level 2, Partial Autonomy: Partially auton-

omous systems provide proactive assis-

tance to the investigator. For example, a

system may validate its operation against

a checklist of potential problems or fill in

details of a more abstract experiment plan.

Since the system needs to reason about its

operations, this level also requires

increased use of standards, calibration,

process controls, and extraction of “intu-

itive” knowledge about the task into a

machine-interpretable form.

• Level 3, Conditional Autonomy: The third

level of autonomy marks a major transi-
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tion, in which the machine is able to

close the design-build-test-loop, running

multiple cycles without human interven-

tion, beginning to interpret routine anal-

yses, and involving humans only in case

of anomalies and at the completion of a

batch. This means that all individual

workflow components must be at least

Level 2, and they also must be inte-

grated and able to adapt to results from

other parts of the workflow. For exam-

ple, if an automatically designed

construct fails in the build or test stages,

the next iteration of design should adapt

at least enough to not propose the same

construct again.

• Level 4, Highly Autonomous Investiga-

tion: At the fourth level, the system is

essentially a laboratory assistant, taking

over all protocol execution and routine

aspects of data analysis, while the human

is still required for interpreting data with

respect to goals and adjusting plans

accordingly.

• Level 5, Machine Investigator: At this

highest level, the human moves from

investigator to manager, essentially

removing themselves from laboratory

operations except for setting goals and

receiving results.

Orthogonally, we may also consider the

scope of a system’s applicability. At the lower

levels, scope may refer to how much of a

workflow is covered by a system. Scope may

also refer to the system’s versatility in applica-

bility: a narrowly scoped system might only

apply a certain test protocol, while a more

broadly scoped system might apply to a wide

range of build or test protocols.

This does not necessarily mean that we

expect to achieve all of these levels. For

example, Level 5 autonomy might well

likely require rather sophisticated Artificial

Intelligence. Nevertheless, having this

framework in hand will allow a more quan-

titative assessment of the current state-of-

the-art and will indicate key barriers to

improved productivity.

State-of-the-Art

A number of projects have demonstrated

that high levels of autonomy are indeed

possible in synthetic biology. For example,

Level 3 autonomy has been demonstrated

with organic synthesis via an integrated flu-

idic system and machine learning classifier

(Granda et al, 2018) and in other chemical

investigations via a mobile robotic system

and Bayesian sample design (Burger et al,

2020). The “Adam” and “Eve” robotic

science systems (King et al, 2009) arguably

attain Level 4 autonomy, via systems biol-

ogy knowledge representations that allow

both experiment configuration from mecha-

nistic hypotheses and hypothesis adjustment

from results.

However, just as with early demonstra-

tions of autonomous vehicle navigation,

there is a sizable gap between demonstrating

that high-level autonomy is possible and

actually increasing the level of autonomy

that is broadly deployed. These demonstra-

tions, while impressive, are still fragile,

narrow in scope, and require considerable

prior investment in configuration and cura-

tion to set up an experimental program.

Returning once again to the vehicle analogy,

the prior systems are all still driving on a

closed test course and not the open and

unpredictable urban environment of most

synthetic biology research.

At present, any automation is generally

provided at the level of components and

partial systems. The commonly discussed

notion of a design-build-test-learn engineer-

ing cycle can be useful in understanding the

challenges in moving from the current state-

of-the-art to a more generally available high-

level autonomy. Figure 2 illustrates this

cycle, coloring components by the highest

level of broadly available automation. It also

includes two other commonly elided

aspects: configuration and curation. Config-

uration connects the output from one engi-

neering phase to the inputs of another

engineering phase, such as setting up a

test phase experiment using genetic

constructs from a build phase plus infor-

mation about their design intention and

hypotheses from the preceding design and

learn phases. Curation provides the

machine-interpretable information required

for both execution and configuration, such

as protocols to be used in a test and the

inventory of available equipment,

constructs, strains, and reagents.

Increasing scope
of applicability

Increasing
degree of
autonomy

LEVEL 5

Machine investigator
Humans only set goals and receive results.

LEVEL 4

Highly-autonomous investigation
All protocol execution and data analysis by machines.

Humans handle interpretation of data with respect to goals.

LEVEL 3

Conditional autonomy
Machine can do ‘closed loop’ experiment batches, making

interpretations of routine analyses, flagging anomalies for humans.

LEVEL 2

Partial autonomy
Higher-level control: automated checklists, experiment details.

Requires machine interpretable calibrated data/designs, process controls.

LEVEL 1

Investigator assistance
Machines handle specialized protocol tasks, routinize curation.

LEVEL 0

No autonomy
All experiment design, execution, and interpretation handled by

humans. Data cannot be readily compared.
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Figure 1. Levels of autonomy in synthetic biology workflows, incrementally rising from no
autonomy to fully autonomous machine investigation.
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Significant automation capabilities have

been developed for each of the four primary

phases: design, build, test, and learn. At

least in some domains, there are systems

providing Level 2 partial autonomy, such

that a well-configured system can perform

significant reasoning about tasks it executes,

validate its operation, and provide meaning-

ful debugging assistance to a human

operator.

For example, Cello (Nielsen et al, 2016)

(Fig 3A) automates the design of a class of

genetic information processing circuits,

given a specification of a desired logic func-

tion and library of device models, using

those models to guide design and predict

expected behavior. Notably, while Cello is

not the first tool that in principle allows such

a design process—others include BioCom-

piler, GEC, and GenoCAD—the success of

Cello circuit design is largely due to its

creators’ curation of library of high-quality

device characterization data, which is still a

largely manual process with at best Level 1

automation. Similarly, Autoprotocol (Miles

& Lee, 2018) (Fig 3B) provides automation

for build and test protocol execution.

However, authoring new protocol scripts is

a complex process often requiring significant

expertise and multiple iterations. The same

authoring challenge exists with all other

current protocol automation platforms, such

as Aquarium, Antha, and the OpenTrons

API. In the learn phase, we find analysis

packages like TASBE Flow Analytics (Beal

et al, 2019) (Fig 3C), which carries out auto-

mated processing and quality control assess-

ment of flow cytometry data, using

heuristics and a checklist of common issues

to effectively implement partial autonomy in

analysis. Similar automation exists for other

assays, such as the Galaxy workflow

environment for bioinformatics and omics,

or microscopy packages such as SuperSegger

and FogBank. Nevertheless, organizing data

for analysis is largely manual, and interpre-

tation of results with respect to background

knowledge and experimental goals is still

left entirely to human experts.

In sum, while automation is available

for any given phase, the current state-of-

the-art consistently falls short when it

comes to the configuration of phase-to-

phase interconnections and curation of

information to satisfy preconditions for

execution. Some representational standards

have already been developed to address

configuration and curation challenges, for

example, SBML for composable models of

learned information, SBOL for linking

between design information and the rest of

the engineering cycle, and workflow inte-

grations have been demonstrated making

use of these standards.

Nevertheless, three major gaps still

remain unaddressed. First, there is not yet

any standard representation for protocols

and protocol interfaces, complementary to

SBOL and SBML. Such a representation is

needed for configuration of build and test

automation within larger workflows.

Second, curation of information into stan-

dard representations—a precondition for

automation—is still a slow and highly

manual process, requiring rare joint exper-

tise in both knowledge representations and

the particular application domain targets

of curation. Level 2 (partial autonomy)

tools are needed in order to act as assistive

partners to domain experts, thereby lower-

ing the barriers to curation and decreasing

the need for knowledge representation

expertise. Finally, there is not yet a critical

mass of automation-enabled tools to form

an effective marketplace for automated

workflows. While such a marketplace

effectively exists within the learn phase for

bioinformatics tooling, a sufficiency of

Level 1 and Level 2 automation tools in

other domains need to be adapted to use

standard representations in order to facili-

tate workflow integration by non-special-

ists across larger portions of the

engineering cycle.

In sum, at present, autonomy in synthetic

biology has been demonstrated as high as

Level 4 (highly autonomous investigation).

While higher levels of autonomy should

benefit investigators by allowing faster and

more effective engineering, nearly all
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Figure 2. State of the art in autonomy for design-build-test-learn cycle.
State-of-the-art in synthetic biology autonomy, showing both the core design-build-test-learn cycle and also
the configuration required to connect between stages and the curation required enable autonomy for each
stage and its configuration. Color indicates maximum autonomy level available via publicly available
reusable components, per the levels shown in Figure 1. At best, current systems are attaining partial
autonomy (Level 2) in isolated portions of the cycle, with major gaps regarding stage-to-stage connections
and curation.
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investigations are still minimally automated,

at best having only fragments of a workflow

even as high as Level 2 (partial autonomy).

From autonomy to society

The gaps noted above, protocol representa-

tion, lightweight curation, and automation

Markets, all point to the critical role that open

standards must play in enabling autonomy in

synthetic biology. For any business involving

technological innovation, Joy’s Law is the

principle that: “No matter who you are, most

of the smartest people work for someone

else.” This reflects the fact that the expertise

needed for complex problems is diverse,

highly specialized, and difficult to transfer.

Research and development in synthetic biol-

ogy is a particular extreme in this respect,

given its wildly diverse and interdisciplinary

nature. Thus, unlike autonomous driving,

high-level autonomy in synthetic biology is a

problem that needs to be solved not once but

countless times, as every laboratory has its

own particular set of needs, goals, protocols,

and available equipment.

Closed or bespoke systems, like those

that have achieved high levels of autonomy

in the past, simply cannot bring to bear the

level of marketplace resources that can be

marshaled with the aid of open standards.

Once a critical mass is reached, network

effects will incentivize widespread adoption

of standards, as investigators make use of

that marketplace to obtain a competitive

edge and as tool providers aim for sales

within it. At that point, we should expect an
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Figure 3. Examples of level of autonomy analysis for synthetic biology tools.
Example level of autonomy analysis for state-of-the-art partially autonomous (Level 2) systems in synthetic biology, indicating level by color as in Fig 1: (A) Cello (Nielsen
et al, 2016) genetic circuit design software, (B) Autoprotocol (Miles & Lee, 2018) for build and test protocol automation, and (C) TASBE Flow Analytics (Beal et al, 2019) for
learning from analysis of flow cytometry data. Note that collectively such systems cover nearly all of the design-build-test-loop, but are effectively isolated in current
practice by gaps in curation and configuration.
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exponential take-off in the impact of

synthetic biology and a wholesale global

transformation, much as with the manufac-

turing revolution set off by electrical stan-

dards at the end of the 19th century and the

informational revolution set off by computer

network standards at the end of the 20th

century.

Until that point, however, the field is in a

tentative state, vulnerable to being stifled by

monopolistic capture (intentional or emer-

gent), by rent-taking outside forces, or by

intellectual property gridlock. The synthetic

biology community thus needs to make

active choices to promote markets based on

open biological standards. Individual practi-

tioners should look for ways to gain advan-

tage through becoming early adopters.

Companies should join open standards

consortia or create them in those areas

where none exist at present. Investors

should look for ways to leverage standards

in market plays. Finally, professional soci-

eties should advocate for funding supporting

open standards, and government agencies

and program managers should explicitly

support standards development and adop-

tion within their portfolios.

In the coming decades, those societies

that invest in open standards for synthetic

biology will experience vast gains in biologi-

cal productivity and the corresponding

economic and societal benefits. It behooves

all of us to look for ways that we can contri-

bute to bringing that future into being.
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