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Abstract 

Computational tools addressing various components of design–build–test–learn (DBTL) loops for the construction of synthetic genetic 
networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that 
together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts 
to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection 
and reproducible data analysis is provided via the previously published Round Trip (RT) test–learn loop. The primary focus of this work 
is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network 
topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In 
addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis 
sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in 
budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible per-
formance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques 
to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more 
robustness and reproducibility across experimental conditions.

Key words: Synthetic logic circuits; design–build–test–learn; flow cytometry; CRISPR; yeast; genetic circuits; machine learning; 
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Graphical Abstract

1. Introduction
The construction of synthetic biology genetic circuits is a growing 
field that holds great promise for producing purpose-built cellu-
lar machines that perform important tasks, such as monitoring 
environmental conditions and producing materials or therapeu-
tics (1–3). The reproducibility of these constructs is of critical 
importance. The most common approaches to achieving repro-
ducibility in results seek to standardize protocols and analyses 
and tightly control experimental conditions. However, in the field 
of synthetic biology, the reproducible function of synthetic genetic 
circuits may be closely tied to the robustness of the construct 
design (4). By incorporating measures of robustness into the design 
principles of synthetic biology, one may be able to generate con-
structs that have functions that are robust to changes in genetic 
components or in experimental conditions, causing increased 
reproducibility across laboratories.

There are many stages in the design of synthetic constructs (5) 
including (i) the choice of circuit structure (also called topology in 
this work), (ii) the DNA sequence design of a genetic parts library, 
(iii) the choice of genetic parts (taken from the parts library) used 
within the modular circuit structure, (iv) the choice of insertion 
points or landing pads in the genome or plasmid and (v) the design 
of the experimental protocol used to assess the resulting design. 
All of these stages are facilitated by the rational application of 
computational tools to reduce experimental time and effort and 
to improve success rate.

Many computational tools are available for different parts of 
the design process. Examples include methods for DNA sequence 
design of genetic parts (6; 7), for parts choice and construction 
into a linear DNA sequence (8–10), for landing pad choice (11) 
and for circuit structure or topology (12). Experimental proto-
cols are generally custom designed for each application, but tools 
exist to facilitate the reproducibility of protocols (13; 14). Some 
tools integrate several stages of the design process together; for 
example, the software tool Cello (15; 16) takes a logic function 
written in the Verilog language and identifies a single circuit 

structure using design principles from electronic circuit design 
that employ NOT and NOR gates. Cello then optimizes the modu-
lar construction of the logic circuit from a parts library to create a 
linear DNA sequence with the desired circuit. Another method (17) 
exhaustively explores fan-out free circuit structures and jointly 
optimizes structure and parts assignment for a specific logic
function.

Design methods are validated by the construction of the pre-
dicted optimal circuit design(s), which are then analyzed for per-
formance. The conjunction of the design stage with the build, 
experimentation and analysis of a synthetically built genetic cir-
cuit forms a design–build–test–learn (DBTL) loop (18), in which the 
results of the analysis can be used to refine the experimental pro-
tocol or to tweak the design. The need for end-to-end tooling of 
DBTL loops, particularly when high-throughput data generation 
is available, is recognized (19).

In this work, a DBTL loop called Design Assemble Round Trip 
(DART) is presented for the rational design of synthetic biology 

genetic logic circuits. In principle, the technology is generaliz-

able to dynamically complex circuit functions beyond logic (20) 

that are of interest to the synthetic biology community (21–23). 

DART is composed of tools for (i) the prediction of robust circuit 

topologies, (ii) prediction of the most effective choice of parts to 

construct the topology, (iii) sequence construction for selected 

designs, (iv) step-by-step instructions for build assembly and (v) 

reproducible experimental submission, data and metadata con-

solidation, data standardization and automated data analysis 
using a previously published test–learn loop called the Round Trip
(RT, (24)).

The Design Assemble (DA) part of the tool chain is the pri-
mary focus in this work. DA, like Cello, starts with a logic function 
and a library of genetic parts characterized by dosage–response 
curves and ultimately produces a linear DNA sequence. The 
design stage differs from Cello by first screening alternative net-
work topologies—possibly thousands depending on the allowed 
maximum size of the circuit—and scoring them for dynamically 
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robust performance to identify the topologies with the greatest 
predicted robustness in behavior. It was previously shown in (17) 
that varying the circuit topology can result in improved perfor-
mance. The approach presented here differs from (17) by the 
choice of a robustness score based solely on circuit topology that 
reduces the number of parts optimizations required. In partic-
ular, (17) compute distances between simulated flow cytometry 
(FC) distributions for different parts and topology combinations, 
so that topology and parts scores are dependent, while the DA 
design stage has two independent parts. First, a topology robust-
ness score is computed that is a global property of the topology 
independent of parts choice. Second, once the highest ranked 
topologies are identified, parts are assigned to each topology using 
a machine learning technique based on dosage–response FC data.

Each of the highest-scoring topologies with their associated 
parts assignments are referred to as ‘designs’ and are then passed 
to the assemble stage of DA. In this stage, the assigned parts for 
each assembled into a linear sequence using automated build 
software. Automated lab software then increases the reproducibil-
ity of the build stage in DBTL.

Ideally, a genetic construct will function robustly under a vari-
ety of conditions, since in practice it can be difficult to reproduce 
experiments across labs (25). Robust genetic constructs make it 
easier to achieve reproducibility, since they make design perfor-
mance less susceptible to differences between lab conditions. The 
primary purpose of DART is to produce synthetic logic circuit 
designs embedded in cells that perform adequately under the 
widest possible range of conditions and provide reproducible and 
consistent results.

1.1 Software tool chain
DART provides a systematic and standardized approach to build-
ing genetic constructs with desired functional properties. A com-
putational framework was developed that supports the design 
and construction of synthetic logic circuits from a library of 
dosage–response characterized parts, DA (Design Assemble), and 
was attached to an existing tool chain RT (24; 26) that stan-
dardizes data collection, preprocessing and analysis. A diverse 
set of tools was identified, collected and unified to meet the 
needs of cellular circuit construction from design to analysis. 
See Figure 1 for a schematic of the connections between the
tools. 

The RT tool chain supports experimental metadata develop-
ment and maintenance by automating tedious metadata design 
and encoding and by reacting and repairing as deviations arise. 
The RT connects experimental data and subsequent analyses 
with the experimental DA constructs via user-friendly construct 
names. For example, RT users develop experimental requests ref-
erencing the common names for the constructs developed by DA, 
which are automatically resolved against Synthetic Biology Open 
Language (SBOL, (27; 28)) representations of the DA constructs. 
The RT carries these resolved references through the experimental 
process to link constructs to experimental results. The resulting 
data and metadata represent a rich, AI-ready dataset that the RT 
can automatically analyze and present or package for alternative 
analysis tools.

The design and build aspects of DART have not been previously 
used in combination. The design/prediction tools are Dynamic 
Signatures Generated by Regulatory Networks (DSGRN, (20,29,30)) 
and Combinatorial Design Model (CDM, (31; 32)). The build tools 
are DNA Assembly (DASi, (33–35)), the computer-aided process 
planning tool Terrarium (36; 35) and the lab software Aquar-
ium (14; 37).

DSGRN is a flexible and highly scalable tool for analyzing and 
predicting all possible long-term dynamics of a regulatory net-
work. It requires only a network topology with annotations indi-
cating whether regulatory interactions are activating or repress-
ing. The computed dynamics exhaustively describes the possible 
long-term behaviors that the network is capable of exhibiting. 
Although used here to assess the equilibrium values of logic cir-
cuits, DSGRN is not limited to modeling and analysis of logic 
functions; its capabilities greatly exceed that specialized problem. 
Its integration into DA involved the implementation of a user-
friendly DSGRN Design Interface (38) dedicated to the express 
purpose of designing synthetic logic circuits. The DSGRN Design 
Interface incorporates qualitative build constraints in a plain 
language input file. Interpretation of the output circuit topol-
ogy scoring is readily accessible via figures and human-readable 
descriptions of constraints on the interaction of genetic parts, 
and there is also the option of output in machine-readable SBOL2
format (27).

CDM is a neural-network-based model that makes in silico pre-
dictions of experiments using context and data from a subset 
of conditions and predicts the outcome in all combinations of 
conditions. The application of CDM in this work optimized a com-
bination of genetic parts for a given circuit using training data 
from single parts.

Terrarium bridges the gap between synthetic biology design 
specification and the build process through computer-aided pro-
cess planning. A biological design is encoded as a biological man-
ufacturing file (BMF). Terrarium converts BMFs into executable 
networks of protocols, called workflows. These workflows are 
uploaded to the laboratory software Aquarium, which manages 
laboratory inventory, automates protocol execution and generates 
human-readable instructions to execute the workflows. Terrarium 
has an internal digital model of the laboratory that is periodically 
updated by metadata collected in Aquarium, specifically proto-
col execution time, inventory usage, experimental errors, success 
rates, materials and labor costs. Using this model, Terrarium can 
predict lead times and costs that inform future workflow process 
planning for increased accuracy, economy and efficiency. DASi 
is a subordinate algorithm of Terrarium released as stand-alone 
software that provides assembly instructions for a DNA sequence 
when that sequence does not already exist in lab inventory. It pro-
duces a BMF that is ingested by Terrarium to create a workflow for 
Aquarium.

1.2 Biological Scenario
The main hypothesis is that the benefits of genetic network 
redundancy can outweigh the costs of circuit build complexity 
through increased reproducibility and robustness across experi-
mental conditions. In this work, we define robustness or robust 
performance to mean the ability of a genetic network to produce 
some desired behavior across multiple experimental conditions; 
we define redundancy to be the existence of parallel paths in a net-
work structure (39); we define network complexity to be the number 
of parts used to construct the circuit, or similarly the number of 
nodes and edges in the schematic of a genetic network as shown, 
for example, in Figure 2; and lastly, we define build complexity to 
be the time and cost associated with constructing the synthetic 
network. An example of redundancy can be seen in Figure 2. The 
topology in the lower left quadrant demonstrates parallel paths; 
the paths r1 ⊣ r7 ⊣ GFP and r1 ⊣ r10 ⊣ GFP are redundant in 
that if one path is compromised, the other path is available to 
transmit the incoming signal. In short, a single part’s failure may 
not impact circuit function. A network with built-in redundancy 
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Figure 1. Flowchart showing the details of DART, particularly the integration between DA (introduced here) and RT (24).

has the capacity to exhibit more robust performance (17), but 
increased network complexity leads to greater build
complexity. 

Circuit robustness was examined by comparing the perfor-
mance of simple and complex network topologies of OR and NOR 
synthetic circuits in the yeast Saccharomyces cerevisiae via FC, while 
also testing the predictions for two different sets of parts for each 
topology using CDM. The performance of a circuit is evaluated 
as a circuit’s ability to express fluorescence (ON) or not (OFF) 
as intended by the circuit’s logic given the presence or absence 
of chemical inputs. Logic circuits designed to exhibit OR and 
NOR behavior were chosen based on preliminary data analysis 
in which previously built OR and NOR circuits performed poorly 
((4; 40) and Figure 6 in (24)). See Figure 2 for schematics of the 
designs discussed in this work, where each quadrant shows one 
topology with two CDM designs. The top row shows the sim-
plest topologies that are capable of producing the desired circuit 
behavior. The alternative topologies discovered using the DSGRN 
Design Interface are called DSGRN topologies and shown in the
second row.

The parts labeled with r# are associated with constitutively 
expressed CRISPR gRNA gene products introduced in (41) that 
repress transcription when bound. Inducible versions of these 
parts were built in this study to use in tandem with the pre-
viously built constitutively expressed parts. Specifically, binding 
sites for 𝛽-estradiol (BE) and doxycycline hyclate (Dox) were added 
to the gRNA promoters. In the presence of an inducer, the asso-
ciated gRNA is expressed and represses the production of its 
downstream target, either another gRNA or green fluorescent
protein (GFP).

The inducible and constitutively expressed gRNA parts were 
combined into circuits that act as sensors. For example, OR 
logic is realized when the absence of both inducers is associated 
with the absence of fluorescence while the presence of either 
inducer causes the production of GFP. In other words, the OR 

circuit acts as a sensor to signal the presence of one or both
molecules.

1.3 Major contributions
The assessment of circuit performance was based on FC data. The 
FC samples frequently expressed bimodal distributions spanning 
the ON and OFF fluorescence states. Given the lack of resources 
available to repeat the experiments, a machine learning method 
called Binary Event Prediction was developed to separate each 
bimodal distribution into an OFF distribution and ON distribu-
tion. The sample was then classified as primarily ON or OFF 
depending on which distribution had greater mass. Using this 
technique, useful information was extracted from suboptimal
data.

After separation of bimodality, the analysis showed that most 
of the builds responded with better performance than a null 
model. However, the performance of the engineered switches 
was not consistent with the CDM predictions of which parts 
would lead to high-performing circuits and which parts would 
lead to low-performing circuits, likely due to assumptions that 
were placed on the CDM method for this application. DSGRN 
predictions were partially fulfilled in that DSGRN NOR topol-
ogy outperformed the simple NOR topology, but no appreciable 
difference existed between the DSGRN and simple OR topolo-
gies. There is, therefore, evidence that a more complex cir-
cuit may at times exhibit greater success across experimental
conditions.

2. Methods
2.1 Design tools
DSGRN Design Interface. DSGRN is a theoretical frame-
work (20), and Python package (29) has been used in multiple 
applications to fully characterize the behavior of genetic net-
works (42–44). DSGRN permits a user to comprehensively describe 
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Figure 2. The designs for the built circuits, with one topology and two CDM designs in each quadrant. Pointed arrows → denote an activating effect on 
transcription and blunt arrows ⊣ denote a repressive effect on transcription. Upper left: The simple NOR topology published in (41), re-engineered with 
two different collections of guide RNA (gRNA)-inducible parts. The one on the left is predicted by CDM to perform worse than the one on the right. 
Lower left: The DSGRN NOR circuit predicted by DSGRN to perform more robustly than the simple NOR circuit, with the two CDM-predicted gRNA 
arrangements. Upper right: The simple OR topology published in (41), with CDM-selected parts assignments. Lower right: The DSGRN OR designs 
predicted to perform more robustly than the simple OR designs. Scoring: The difference in CDM scores between the low and high designs is shown in 
each row above the corresponding topology. Topology robustness scores predicted by DSGRN for the NOR and OR circuit topologies are shown in each 
row below the corresponding topology. These numerical scores should be interpreted ordinally rather than as absolute values with specific 
interpretations.

the long-term dynamical behavior of a network topology. In the 
context of this paper, it predicts the equilibrium behavior of a 
logic circuit under DSGRN parameterizations. A DSGRN parame-
terization is actually a large region of high-dimensional parameter 
space across which equilibrium behavior is constant. This is a 
finite decomposition of high-dimensional parameter space, called 
the DSGRN parameter graph, so that DSGRN exhaustively predicts 
all behaviors available to a network topology. To predict the robust-
ness of a dynamical behavior, DSGRN computes the percentage of 
the finite number of regions in the DSGRN parameter graph that 
exhibit the behavior of interest.

While powerful and flexible, DSGRN currently requires cus-
tom scripting to ask specific questions, such as the enumera-
tion of the range of behaviors of a synthetic biology construct. 
A wrapper Python package dsgrn_design_interface (38) was 
written to permit a plain language interface for a non-expert 
user to design a collection of feed-forward network topologies 
that satisfy a desired logic circuit behavior. Using this tool, thou-
sands of network topologies can be screened for the desired logic
behavior.

The input is a configuration file in JavaScript Object Nota-
tion (JSON) format, where the user specifies the desired circuit, 
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whether the inducible inputs are activated or repressed, the size 
of the network topology and the local logic of individual parts that 
are available to build the circuit (i.e. independent or dependent 
repressors or activators). The output is a collection of files accessi-
ble through an automatically generated Jupyter notebook that can 
be browsed for final choices of network topologies. An SBOL2 (28) 
formatted document can be created for any of the desired topolo-
gies. Comprehensive documentation is provided. Currently, the 
DSGRN Design Interface provides only limited access to the full 
functionality of DSGRN. An extension to support the design of 
larger circuits, such as those in (16), would be straightforward.

Given the user inputs, a DSGRN design parameter or set of 
parameters is identified that is consistent with the local logic of 
the parts. A successful output topology is one that exhibits the 
desired logic behavior at a design parameter. The neighboring 
parameters to the design parameters in the DSGRN parameter 
graph are well-defined and are associated with small malfunc-
tions in the intended operation of the circuit. Each successful 
output topology is accompanied by a numerical score that ranks 
networks according to their predicted robustness based on these 
neighbors. For some successful network, let D be the number of 
design parameters with the correct equilibrium behavior, let N be 
the number of neighbors of all design parameters, let Nc be the 
number of these neighbors that exhibit the correct logic and let 
E be the number of essential DSGRN parameters (42). Then the 
topology robustness score (e.g. Figure 2) assigned to the network 
is a value between 0 and 1 defined by 

𝑆 = 𝐷 + 𝑁𝑐
𝐸 + 𝑁

.

Under this scoring paradigm, a network with a million parame-
ters and S = 0.5 is ranked the same as a network with a thousand 
parameters and S = 0.5. This normalization over parameter space 
permits the direct comparison of networks with vastly different 
complexity. See (30) for a similar scoring method in another design 
application of DSGRN.

Combinatorial Design Model. Experiment and circuit designs 
are often additive, namely, single conditions are combined to elicit 
a collective response. For a circuit constructed of multiple parts, 
the challenge is to select the best combination of parts that pro-
duces the best response (e.g. the largest dynamic range). While 
there are tools that exist to support this task, such as Cello (16), 
they require a thorough characterization of every part (e.g. a titra-
tion of inducer for each part) to construct the circuit. The CDM 
is a neural-network-based model that is trained with a subset of 
conditions and predicts the left out conditions (31; 32). The condi-
tions need not cover a full range of titrations, but the predictions 
will then be limited to only the combinations of inducer concen-
trations and gates tested. For this effort, ON/OFF conditions for 
each part were tested and the FC distributions were predicted 
over all combinations of inducers and parts (e.g. Figure S9 in the 
Supplementary Data).

Currently, the best use of CDM is to have tested a full topology 
and only swap out parts. In this manuscript, we side-stepped that 
assumption by analytically combining independent parts predic-
tions into a normalization procedure. An end-to-end model would 
have returned results more consistent with the original intent of 
CDM. The original usage case for CDM also does not consider the 
order of parts, so swapping the positions of r1 and r2 does not 
impact CDM results. The same normalization procedure was used 
here to overcome this assumption.

The normalization procedure altering CDM output for full 
topologies is reported in detail in Supplementary Section 6 
(Figures S10–S20). Briefly, CDM predictions are combined in mul-
tiple stages, each stage aligned with a given topology. For exam-
ple, the six-node DSGRN NOR topology with two input nodes, 
an intermediate node and two nodes with promoters at the GFP 
coding region had a three-stage model corresponding to each of 
these layers. At each layer, a measure of deviation of the pre-
dicted fold change was computed, with details of normalization 
varying at each stage. Since CDM scores change with topology 
size, it is more comparable to look at differences between high 
and low scores as in Figure 2, rather than to interpret absolute
scores.

2.2 Build tools
Aquarium. For plasmid and yeast construction, Aquarium soft-
ware (14; 37) was used to manage inventory, experimental work-
flows and protocol execution. The input to Aquarium is a workflow 
or a linked set of protocols. During the execution of a workflow, 
data and metadata are logged and tracked to a database, which is 
used for future automated planning. Aquarium workflows are exe-
cuted by technicians following on-screen instructions generated 
by Aquarium. Occasionally, the same protocol is executed by mul-
tiple technicians at the same time or sequentially (one technician 
leaving and another starting where the other left off). Technicians 
were trained beforehand, but had various skill levels and experi-
ence. During the execution of the protocols for the build steps and 
parts library dosage–response experiments conducted at the UW 
BIOFAB (45), technicians were unaware of project goals and were 
instructed to exactly follow the steps and instructions provided by 
Aquarium.

Terrarium. There are two inputs to the computer-assisted pro-
cess planning software Terrarium (36): metadata from previously 
run Aquarium workflows and a biological design encoded in a 
BMF using the JSON standard. A BMF defines three components: 
(i) the laboratory configuration, (ii) relationships between biolog-
ical sub-components in a given design and (iii) biological defini-
tions, which include the type of biological sample (yeast, bacteria, 
DNA, sequences, etc.). Terrarium uses lab inventory information 
from the BMF plus metadata from previously executed Aquarium 
workflows to generate a model of the laboratory. This enables 
predictions for lead time, costs, labor and predictions of experi-
mental errors for proposed workflows that permit the creation of 
an optimized Aquarium workflow.

DASi. In some cases, the sequence provided in a BMF is not avail-
able in the laboratory as inventory. In these cases, DNA sequences 
can be created in the laboratory by a combination of DNA sub-
cloning or DNA synthesis from outside vendors. For this type 
of planning, Terrarium uses a planning subroutine, DASi (33), 
to automatically generate an economical DNA cloning assembly 
plan from sequences, using available lab inventory whenever pos-
sible. DASi has flexible input requirements for a DNA sequence 
and may be either a string of characters, a GenBank file, an 
SBOL file or a BMF. Unlike other cloning automation software, 
DASi does not require further design specifications beyond the 
DNA sequence to effectively create DNA assembly plans. Once 
an assembly is returned from DASi, the output file can be con-
verted into a BMF that is processed by Terrarium into a validated 
Aquarium workflow.
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2.3 Round Trip
DART relies upon the RT tool chain (24) to test assembled designs 
and then process experimental data. The RT accomplishes this by 
accepting a semi-structured Experimental Request (ER). The ER 
represents human-readable descriptions of the experiment and 
a set of structured tables that describe controls, builds, reagents, 
conditions and measurements. The RT uses a tool called the Intent 
Parser (46) to resolve human-readable terms to their represen-
tations in SBOL, including their design and assembly. The Intent 
Parser validates the ER and converts the experimental description 
into a machine-readable format that goes through experimental 
planning. The experimental planner, XPlan (13), partitions and 
allocates the requested builds, conditions and measurements to 
experimental runs that are launched at a laboratory with com-
patible software.

The RT processes the data through three main steps: (i) 
database ingest, (ii) standardization and versioning and (iii) auto-
mated analysis. The database ingest, a process called Extract–
Transform–Load (ETL), checks that the measurements requested 
in the ER are fulfilled by each experimental run and then stores 
the data and metadata in a database called the data catalog. 
The Data Converge (DC) tool converts the data catalog records 
for each experiment into several standardized and versioned data 
products. These versioned products, such as data frames of log-
transformed FC events or per sample absorbance measurements, 
provide a standard schema across experiments that use differ-
ent builds, reagents and protocols. The standardization provides 
a common format, which enables generic analysis tools that 
can apply to many different experiments without extensive per-
experiment customization. The versioning supports more effec-
tive analyst-to-analyst comparisons that are based upon the same 
version of the data. The RT uses a final tool called the Precom-
puted Data Table (PDT) (47) to apply a suite of analysis tools to the 
standardized dataframes. Each analysis tool (described in Meth-
ods) processes the data to pre-compute (rather than have the user 
manually compute) the resulting data. The resulting analyses, in 
conjunction with any ad hoc analyses performed by the user, can 
be used to inform additional experiments with the RT or inform 
new designs with the DA components.

In this work, the experimental planning tools automatically 
launched experimental runs at the Strateos (48) robotic cloud lab-
oratory. Each run produced data that Strateos uploaded to the 
Texas Advanced Computing Center (TACC) (49) infrastructure for 
RT processing and analysis. TACC provided the Synergistic Dis-
covery and Design Environment (SD2E; (50)) on which the various 
components of the RT are integrated. RT packages (and other 
Synergistic Discovery and Design (SD2) packages) are also freely 
available at (51).

2.4 Experimental process
Build complexity. The genetic circuits required a series of 
sequential genomic events to integrate the genetic parts into the 
yeast strains, where each event is called a ‘layer’. Each layer 
required the construction of a new integrant (either linear or plas-
mid DNA), followed by a yeast transformation event, a selection 
event (selecting the right transformants from the transformed 
yeast on antibiotic or auxotrophic media) and finally a quality con-
trol (QC) validation step (polymerase chain reaction (PCR) using 
a primer specific for the genomic DNA just outside the inser-
tion location and validating that the size of the fragment DNA 
is correct). It took about 1–2 working weeks to complete each 
step, depending on whether the integration was successful and 

the availability of Aquarium research technicians. To save on 
build time, sequential transformations were completed in hap-
loid strains and the circuit was assembled by ‘mating’ alpha and 
A strains to create a final diploid strain. The mating itself required 
a selection step, creating the need for at least two other selection 
markers to select for the new diploid strain (for example, the A 
strain may contain a HIS+ marker and the alpha may contain 
a LEU+ marker; selection will occur with HIS- and LEU- media). 
Part of build complexity is that there were a limited number of 
selectable markers available (four auxotrophic markers that are 
very good selectable markers: LEU, HIS, TRP and URA and three 
antibiotic markers that are fairly poor selectable markers, in that 
it is difficult to get the correct concentration of antibiotic to elimi-
nate false positives and false negatives when selecting for colonies 
on a plate).

Beyond the build time and selection marker limitations, there 
was also the issue of DNA similarity. A number of unexpected and 
unsuccessful integration events were encountered during this and 
other projects that used the CRISPR gRNA parts. The hypothesis is 
that this is due to the extreme similarity between the parts, i.e. dif-
ferent promoters and gRNAs that are similar by ~2 kb and only 
differ by ~60 bp. As more and more highly similar synthetic parts 
in the haploid strain are incorporated, the likelihood of success-
ful integration event validated by QC seemed to decrease as the 
number of layers increased, possibly because the process relied 
on homologous recombination to accomplish the genomic inte-
gration; the more highly similar DNA available in the genome, the 
more likely the DNA integrate at the wrong locus. Because of this 
known difficulty, three different build plans for each circuit were 
created with shuffled transformation order for the haploids before 
diploid mating. Most of the time, only one of these build plans was 
successful.

Plasmid construction. Backbone and insert fragments were 
amplified with PCR, gel extracted, purified and assembled using 
Gibson assembly (52) using standardized assembly linkers. Back-
bones contained a high-copy Escherichia coli origin of repli-
cation and ampicillin resistance for propagation. The yeast 
expression cassettes were flanked upstream and downstream 
by approximately 500 bases of chromosomal homology to the 
yeast genome and PmeI restriction sites for linearization before 
transformations. Plasmids were sequence-verified using Sanger
sequencing.

Build construction. Yeast builds were constructed using genomic 
integration from linearized DNA into the CEN.PK113-7D strain 
of S. cerevisiae. Integrative plasmids were linearized using PmeI 
digestion (37C, 30 min) to cut upstream and downstream of the 
chromosomal homology. Unpurified, linearized DNA was trans-
formed into yeast cells using a standard lithium acetate protocol 
(53). Build selection was performed on solid synthetic-complete 
(SC) using auxotrophic or antibiotic markers. Diagnostic colony 
PCR was performed to verify integration into the proper locus. 
Builds were picked from single colonies and stored long-term at -
80

∘
C in a sterilized 30% glycerol and media solution. Build retrieval 

was performed by plating glycerol stocks onto solid media plates 
(YPAD) grown for 2–3 days at 30

∘
C and picking single colonies 

for liquid culture. All yeast cultures and assays were grown at 
30

∘
C with shaking at 275 RPM. Builds consisted of both individual 

inducible parts and full circuits. Individual parts were character-
ized via dosage–response FC experiments to confirm functional 
response to inducer presence.
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Plate layout for circuits. Each 96-well plate had eight data rows, 
one for each build. The columns had five different inducer con-
centrations, two replicates for each, as well as two columns for 
controls. Each plate had one of three media: standard (Synthetic 
Complete, SC), rich (Yeast Extract Peptone with 2% Dextrose, YEP) 
or slow (Synthetic Complete with 1% Sorbitol, SB) and one logical 
input transition (see Tables S1–S2 in the Supplementary Data).

Automated Laboratory. The Strateos robotic cloud lab (48) pro-
vides three main functions to DART: (i) the development of repli-
cable, robotically executed experimental protocols, (ii) the execu-
tion of requested experimental runs and (iii) the delivery of the 
measurement data to the SD2E platform on TACC.

The protocols developed as part of this and related projects 
are variations of high-throughput screening with 96-well plates. 
Each protocol involves commanding a robotic workcell to incubate 
samples overnight and then dilute, apply reagents and gather a 
time series of plate reader and FC measurements. Strateos exe-
cutes experimental runs that it receives from the RT. Each run 
references a container that includes the samples that include the 
various designs developed by DA components. Users ship these 
containers to Strateos and create container metadata describ-
ing each sample. The RT’s XPlan planner allocates the requested 
samples in each ER to the container aliquots using this meta-
data. The Strateos platform validates each requested experimen-
tal run, constructs a sequence of Autoprotocol (54) instructions 
and informs the RT of the run identifier. After completing the pro-
tocol, the Strateos platform uploads the experimental data and 
metadata referenced by the run identifier. The RT then ingests the 
run data as described above.

2.5 Analysis tools
Precomputed Data Table. The PDT is a component of RT and 
is responsible for executing a suite of analyses on data products 
generated by DC (briefly described in Round Trip) and storing and 
versioning the respective results. The PDT provides DART with 
(i) rapid, consistent analysis of data of different types and from 
different experiments and (ii) the ability to automatically add 
additional data features (results from analyses) for higher-level 
analyses and modeling. These two features enable an increase 
in the rate at which DART can be iterated as actionable results 
are available within hours of data availability and more advanced 
analyses can be applied sooner. The PDT contains several types 
of analyses and not all are executed on all available data due to 
incompatibility of analysis types and data types. The next three 
subsections are descriptions of the analyses that the PDT was pro-
grammed to execute for the experiments at hand. The full suite of 
analyses is listed in (24).

Binary Event Prediction. The Binary Event Prediction (BEP) 
tool (47; 55) employs the random forest classifier implemented in 
the Python package scikit-learn (56) to predict whether an event 
within a FC sample corresponds to a ‘high’ or a ‘low’ signal, in the 
same sense as digital logic. Properly interpreting FC data collected 
from cells expressing a fluorescent protein requires the use of a 
positive and a negative control. In the case of the current exper-
iments, the positive controls are cells that constitutively express 
GFP and the negative controls are cells that do not express GFP due 
to the lack of the GFP coding sequence. Using these controls, BEP 
develops the classifier for each pair of high/positive and low/neg-
ative controls. The tool trains the classifier on all FC events for the 
high/positive and low/negative controls, labeling each respective 

event as either 0 (low) or 1 (high), and then uses it to predict for 
each event within each sample whether the event is low or high.

Compared to techniques that define a linear threshold to a 
single FC channel measuring GFP to separate low and high, BEP 
constructs a multidimensional nonlinear threshold (represented 
as a random forest). The classifier not only subsumes the thresh-
old method but also incorporates all FC channels, such as forward 
scatter, side scatter and other color channels. The inputs to BEP 
are all FC channel measurements for each event and the output 
of BEP is the proportion of events per sample that are predicted to 
be ON vs OFF.

In the redesign effort described above, bimodality was observed 
in GFP-positive cytometer channels for the positive and nega-
tive controls. This caused ambiguity in determining what events 
are high and low by the classifier as subpopulations of events in 
one control were consistent with subpopulations in the opposite 
control. BEP was used to overcome this bimodality in the pos-
itive and negative controls. The poor control data were culled 
using the classifier’s training/test split of the controls during cross-
validation to identify the probability of each label predicted in the 
test set of each cross-validation fold. The control data were then 
‘cleaned’, where for each control type, a threshold on probabil-
ity was applied that dropped events found below the threshold 
but maintained a minimal total event count of 10,000 events. In 
this way, the model assesses the probability that each control data 
point (event) should be labeled according to the control group from 
which it came and retains only the most probable, i.e. those points 
that the model determines have a high probability of being cor-
rectly labeled. A new classifier was constructed on the remaining 
‘clean’ data and used to predict signals for the non-control sam-
ples. If a non-control sample contained more than 50% predicted 
high events, then every event predicted low by BEP was dropped 
from the sample population. This modified population was then 
used in downstream analysis. A similar procedure occurred for 
distributions with more than 50% predicted low events.

Performance Metrics. Performance Metrics (PM) (57) measures 
the performance of experiments where the samples should be 
in two different states (e.g. ON and OFF states) and should have 
a separation in experimental measurements between these two 
states. The user defines how to aggregate samples (e.g. by build, 
condition and time) and the experimental measurement (e.g. flu-
orescence), and the tool computes a suite of metrics that compare 
the measured values for the two states. The tool returns metrics 
of how large the separation between the two defined states are for 
each group in the aggregation.

The metrics compare the distributions of aggregates of sam-
ples in each state (ON versus OFF) to compute the differences 
(ON−OFF) and ratios (ON/OFF) between the two states. The tool 
compares the left- versus right-hand side of the distributions via 
percentiles and standard deviations at different thresholds. For 
example, PM will aggregate samples by build, condition and time 
point and then for each group, it computes the difference between 
the 50% percentile of the ON samples and the 50% percentile of 
the OFF samples. It then computes per-sample metrics by com-
paring each individual sample in one state to the opposite state’s 
distribution. For example, for each group, for each individual ON 
sample, it computes the difference and ratio to the median of the 
OFF states and then vice versa for each of the OFF samples.

PM reads in a configuration file and data and metadata files. 
The configuration file specifies the column name of the experi-
ment output, information about the states (e.g. ON and OFF, or 
any other identifier), as well as a dictionary of what columns to use 
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to make aggregates (e.g. group by build and group by build, con-
dition and time). The per-sample metrics for aggregates of build, 
condition and time can be used as inputs by Data Diagnosis (DD).

Data Diagnosis. Data Diagnosis (DD) (58) performs diagnos-
tic tests for both experimental design and experimental perfor-
mance. These test for variables that are associated with variations 
in performance and identify which values of the variables are 
associated with good or bad performance. Additionally, our tests 
identify if there appears to be any dependence between variables, 
for example, two variables contain the same information and 
should not be treated separately.

DD has two tests for performance and one test for dependence. 
Our first performance test is the Kruskal–Wallis H-test for cat-
egorical variables. This completes a non-parametric analysis of 
variance for the categorical variables grouped by a user-selected 
variable. The continuous variable analysis uses the Spearman 
correlation coefficient to measure the association between the 
performance variable and each continuous variable. Finally, there 
is the dependence test for randomization. This is primarily to 
study whether the experimental design has redundancies or has 
missed combinations of variables. It should be run prior to the 
experiment but can also be run afterward to aid in analysis and 
troubleshooting of the experiment. This test determines if the 
dependent variables were properly randomized by running a Chi-
Squared Test for Independence between all pairs of categorical 
features. If the experiment was properly randomized, then none of 
the pairs should be dependent. Together all of these tests provide 
researchers valuable information on how their experiment per-
formed and most importantly if certain variables are associated 
with good or poor performance.

DD reads in a configuration file and data and metadata files. 
The configuration file specifies the column name of the perfor-
mance values (in this case, coming from PM), as well as a dictio-
nary of what columns to use to perform analysis on subsets of the 
metadata.

Parameter value estimations and ODE modeling. A data-
fitting algorithm using a Nelder–Mead minimization method (59) 
was implemented to determine the Hill function (60) parameter 
values for the induction and repression dynamics of the different 
genetic parts used in the OR/NOR circuit designs. The experi-
mental data used for the fitting algorithm was obtained from 
the geometric mean of FC data distributions from the dosage–
response experiments used to train CDM. The experimental data 
were fitted to Eq. 1 (for activations) and Eq. 2 (for repressions) 
derived from Cello (16): 

𝑦𝑖+1𝑆𝑆
= 𝑦𝑖𝑚𝑖𝑛

+ (𝑦𝑖𝑚𝑎𝑥
− 𝑦𝑖𝑚𝑖𝑛

) 1

( 𝜅𝑛𝑖
𝑖

𝑦𝑖−1𝑆𝑆
)

𝑛𝑖
+ 1

, (1)

𝑦𝑖𝑆𝑆
= 𝑦𝑖𝑚𝑖𝑛

+ (𝑦𝑖𝑚𝑎𝑥
− 𝑦𝑖𝑚𝑖𝑛

) 1

( 𝑦𝑖−1𝑆𝑆
𝜅𝑛𝑖

𝑖
)

𝑛𝑖
+ 1

, (2)

where 𝑦𝑖𝑆𝑆
 is the steady-state output promoter activity of part i; 

𝑦𝑖𝑚𝑖𝑛
 and 𝑦𝑖𝑚𝑎𝑥

 are the minimal and maximal output promoter 
activities (obtained from experimental results), respectively, for 
part i; 𝜅i and ni are the affinity and cooperativity of transcription 
factor binding (obtained with the fitting algorithm) and, finally, 
𝑦𝑖−1𝑆𝑆

 is the steady-state input promoter activity from the previ-
ous part’s output (calculated also using Eqs. 1 or 2). Using the Hill 
function parameter value estimations a resulting ODE model is 
then analyzed using the Runge–Kutta–Fehlberg (4,5) method (61) 

implemented in iBioSim (62) to obtain steady-state output predic-
tions for each design under different input concentrations (shown 
in Figures S7–S8 in the Supplementary Data).

3. Results
3.1 Predictions
DSGRN predictions of circuit topology performance. The 
DSGRN Design Interface provides robustness scores for a sam-
ple of network topologies exhibiting the desired logic within a 
user-specified size range. Higher robustness scores correspond to 
predictions of greater success across experimental conditions. In 
principle, the robustness score can achieve a maximum of 1, but 
in reality this score is highly improbable. In Figure 2, the DSGRN 
NOR topology has a score of 0.22, more than twice the simple 
NOR topology with a score of 0.08. Similarly, the DSGRN OR topol-
ogy has a 4-fold score of 0.28 compared to the simple design at 
0.07. According to these predictions, the DSGRN topologies should 
exhibit better performance than the simple topologies over con-
dition space, which consists of media conditions and inducer 
concentrations in the experiments performed here.

It is important to realize that DSGRN robustness scores are not 
to be taken as quantitative predictions. The robustness scores for 
the OR topologies would naively indicate that the DSGRN topology 
should successfully show the correct logic four times as often as 
the simple topology. However, that is at best an indicator of rela-
tive performance across all condition space (empirical numerical 
evidence for this can be found in (63)), not the limited condi-
tion space that is available experimentally. Therefore, only ordinal 
interpretation of the robustness scores is justified.

It is not always advantageous to build the circuit topology with 
the highest robustness score. As robustness increases, the redun-
dancy in the network and therefore the complexity of the network 
is also increasing. There is a trade-off between predicted robust-
ness and the ease of building the circuit. For example, there were 
two NOR designs with the same number of nodes as the DSGRN 
topology in Figure 2 with a score of 0.30 that were rejected due 
to doubts about build feasibility. This decision involved the num-
ber of parts of the build, i.e. the number of edges (promoters) in 
the network. The number of nodes is directly controlled through a 
parameter choice in the DSGRN Design Interface. The number of 
edges is not directly controlled but is influenced by a choice of the 
maximum number of promoters permitted at each node. This flex-
ibility in the number of edges is useful, since directly limiting the 
number of edges may result in an inability to locate any network 
with the desired dynamics.

Other networks were rejected due to the number of ‘layers’ in 
the network. A layer is a collection of nodes that are designed to be 
induced at the same time. For example, in Figure 2, the simple NOR 
topology in the upper left is a single layer network; the inducer and 
GFP nodes are separated only by a single set of simultaneously (in 
theory) induced nodes. Similarly, the OR topologies in the right 
column are double-layer networks, and the DSGRN NOR topology 
in the lower left is a triple-layer topology.

As the number of layers increases, the build complexity of the 
circuit increases due to the need for sequential genomic transfor-
mations required to complete the genetic circuit within the yeast 
strains (see Methods for further discussion). Not only do the num-
ber of layers increase build complexity, they also increase the total 
time required for experiments, since the induction signal takes 
longer to propagate through the network. We also remark that the 
total number of parts, which tends to increase with the number 
of layers, increases the metabolic burden on the cell. The feasible 

D
ow

nloaded from
 https://academ

ic.oup.com
/synbio/article/8/1/ysad005/7091610 by guest on 15 M

arch 2024



10 Synthetic Biology, 2023, Vol. 8, No. 1

number of layers is domain-specific knowledge depending on the 
organism and the nature of the parts.

CDM predictions of various parts assignments. Given a circuit 
topology, it remains to assign parts to each node in the network. 
This was accomplished using a modification of the CDM, a neu-
ral network model designed to use partial data to predict the 
performance of genetic constructs across untested experimental 
conditions. The data used to train the model were 14 FC dosage–
response curves, a BE-inducible and Dox-inducible version for 
each of the seven gRNA promoter regions evaluated in this study: 
r1, r2, r3, r5, r7, r9 and r10. Like all machine learning methods, 
sufficient data are needed to perform model training. FC data are 
ideal for this usage case given their tens of thousands of data 
points. CDM can be naturally used to predict the performance of 
simple NOR circuits; that is, it predicts the outcome of combin-
ing two inducible parts together when information is only known 
about individual parts. It is not explicitly designed to choose parts 
to construct larger circuits and so assumptions had to be made 
in order to apply it. First, it was assumed that the independent 
CDM scores for NOR units could be combined in a way that leads 
to an accurate prediction of whole circuit behavior. Second, the 
model was trained on data for inducible parts only, but there 
were both inducible and constitutively expressed parts in the parts 
library. It was assumed that the rank ordering induced by CDM 
scores on combinations of inducible parts was preserved for the 
combinations of constitutively expressed parts.

Using CDM predictions, two parts assignments were made for 
each circuit topology: one that was expected to be a better per-
former and another that was expected to be a poorer performer. 
These parts assignments are shown in Figure 2, along with the 
difference between the high and low design CDM scores. While 
not interpretable in a quantitative manner, the difference in CDM 
scores are roughly comparable across circuit topologies. Again, 
only ordinal rankings are appropriate in the interpretation of these 
performance scores. As an example, compare the 1.49 difference 
in low and high simple NOR designs to the 2.54 difference in 
simple OR designs. The interpretation is that a larger difference 
between low and high designs should be seen in the simple OR 
topology versus the simple NOR topology. As a side effect of parts 
assignment, CDM was also able to reduce the intervals of inducer 
concentrations to be tested.

3.2 Data Overview
The eight builds in Figure 2 were grown in three media types, YEP 
2% Dextrose (rich media), Synthetic Complete (standard media) 
and Synthetic Complete containing 1% Sorbitol (slow growth 
media), which were assumed to present a nontrivial range of cel-
lular conditions. The three media will be referred to as YEP, SC 
and SB, respectively. The cultures were used to create fifteen 96-
well plates, with five plates per media condition. Each plate had 
titrated inducer concentrations for one or both of BE and Dox, 
see Table S1 in the Supplementary Data. The five titration exper-
iments were BE titration into base media, Dox titration into base 
media, BE and Dox simultaneous titration into base media, Dox 
titration into BE spike-in media and BE titration into Dox spike-in 
media (the term spike-in means that the inducer was added to the 
media before the incubation period).

FC data were collected at three time points: 12, 24 and 36 h 
after an incubation period of 16 h. These conservative times were 
chosen based on previous experience with the constitutive CRISPR 
gRNA parts and circuit constructs from (41) for time to full induc-
tion. In Figure 5 of that paper, induction times are shown for 

variable-length linear cascades of NOT gates. From the figure, one 
can estimate that a 3-layer cascade takes about 12 h to reach half-
maximal response. Above and beyond these experiments, there 
may be a further delay in the circuits pictured in Figure 2 due 
to the BE- and Dox-inducible parts. Moreover, it is unclear if the 
reported induction times for linear cascades are conserved for 
more complex circuits with multiple interaction points in each 
layer. In addition, experiments preceding this one using circuit 
constructs from (41) showed inconsistency in cell growth after 
the freeze/thaw cycle, which necessitated longer recovery times. 
Therefore, sample time points were chosen up to 36 h to (hope-
fully) ensure full induction, GFP decay and cell growth for all 
circuits.

An event refers to a single FC measurement, and a sample 
is the collection of events associated to a well (a fixed location 
on a plate) at a single time point. The presence/absence of the 
inducers determines the expected outcome of the GFP signal in 
the FC measurements for the OR and NOR circuits; see Table S2 
in the Supplementary Data for a key to the media and expected 
outcomes of the circuits for each plate.

3.3 Data Processing
The RT provided standardized FC data products for visualization 
and analysis. Plots of these data showed significant bimodal dis-
tributions in both the OR and NOR builds, see Figure 3 for an 
example plate. A possible explanation for bimodality in the data is 
that induction times for the circuits are slow, and therefore there 
are populations of both sufficiently and insufficiently induced
cells. 

However, there is also bimodality in the positive and nega-
tive controls, see the first column in Figure 3 as well as the first 
row of Figure 4. In the positive controls, this suggests potential 
mutations where the GFP coding region has been compromised. 
In the negative controls, this suggests possible contamination of 
the plates with GFP-producing cells. Given these issues with the 
controls, it would be ideal to redo the experiments. 

In many situations, it is not feasible to redo experiments either 
due to lack of resources or inability to obtain more samples. This is 
the case for the data presented here; another set of experiments 
was not possible to obtain. The challenge was to see how much 
information could be drawn from data with anomalous controls. 
One solution would be to presume that the GFP-positive popu-
lation in the negative control is uniform throughout the plate 
and subtract that portion of the population from all of the wells. 
This approach has the disadvantages that (i) the assumption of 
uniform contamination across wells may be incorrect and (ii) it 
has only one channel out of 16 to judge the identity of problem-
atic events, a substantial reduction in the amount of available 
information. Our approach is to instead use prediction-confidence 
of a fitted model that was trained to discriminate between pos-
itive and negative controls, which used all available channel
data.

To address these issues, a machine learning technique referred 
to as BEP (47) was developed to separate every bimodal distribu-
tion into low and high (or OFF and ON) distributions on a per-plate 
basis using 16 FC channels, each with width, height and area mea-
surements. BEP uses a random forest classifier in two stages, an 
initial stage that ‘cleans’ the bimodal controls and then a second 
stage that classifies each FC event as either low or high GFP. In the 
first stage, the pooled replicates of the positive and negative con-
trols on a plate are used to train a random forest classifier. The 
trained classifiers, one per plate, produce prediction probabilities 
for each event in the pooled positive and negative controls. Those 
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Figure 3. An example 96-well plate in SC media (plate id r1fqsfkwxcccv6, see Table S2) sampled 12 h post-incubation showing fluorescence area 
distributions in arbitrary units. Controls (positive, negative and bead) are in the first two columns. The remainder of the columns are data for the eight 
builds, one per row, with varying inducer concentrations.

Figure 4. Examples of effective (left two columns) and ineffective (right two columns) cleaning of controls after stage one of BEP. Effective cleaning 
results in unimodal distributions, a low one for the negative control and a high one for the positive control. Ineffective cleaning either does not 
eliminate bimodality or does not result in the low (high) distribution being associated with the negative (positive) control. Negative controls are shown 
in red (first and third columns) and positive controls are shown in green (second and fourth columns). The histograms are GFP height measurements 
in log arbitrary units (horizontal axis). Top row: Unmodified controls pooled over replicates. Bottom row: Cleaned controls pooled over replicates.

events that exceed an adaptive probability threshold (see Meth-
ods) for either the high distribution in the positive control or a low 
distribution in the negative control were kept, producing ‘clean’ 
controls that frequently achieved reduced bimodality; see Figure 4 
for examples of effective versus ineffective cleaning. Figure S1 in 
the Supplementary Data shows the fluorescence distributions for 

the original and cleaned controls for each of the 15 plates in the 
experiments. On the left are nine plates with effective cleaning of 
the controls, i.e. they have achieved unimodality after cleaning, 
and on the right are the remaining six plates that show ineffec-
tive cleaning. Overall, there was substantial improvement from 
bimodal to unimodal distributions in the controls. The number of 
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plates with suitable positive and negative controls nearly doubled, 
and almost all of the positive controls achieved unimodal distri-
butions. Given this performance, using a random forest classifier 
is a viable avenue for cleaning problematic bimodal data.

After the controls were cleaned, the second stage of BEP used 
these clean controls to train a new random forest classifier that 
was applied to the test data, e.g. the remaining wells on the plate 
that encompassed the experimental conditions. The result was 
two pools of events for each sample, those predicted to be ON and 
those predicted to be OFF. The mass of these two distributions was 
compared, and the distribution with the greater mass was taken to 
be the BEP-cleaned version of the experimental data. Subsequent 
analyses used this cleaned dataset.

The BEP methodology drew conclusions using all 16 channels 
and all three time points of the FC data without assuming a uni-
form distribution of contamination. As is intuitive, the GFP chan-
nel was the most important contributor to the model according to 
SHapley Additive exPlanations (SHAP) values (64), see Figure S2 in 
the Supplementary Data.

A comparison was performed between the original log-
transformed data (all events) and the subset of cleaned data 
identified by BEP in order to assess BEP performance. Both the orig-
inal and modified datasets were analyzed via the RT tools (i) PM 
to assess fold change between expected OFF and expected ON cir-
cuit states and (ii) DD to assess variability in the fold change as 
function of experimental variables. PM computes the fold change 
in median between all samples that are expected to be ON accord-
ing to circuit function and all of those that are expected to be 
OFF. The distributions of the median fold change per plate for 
the original and modified datasets are shown in Figure S3 in the 
Supplementary Data. The distributions are seen to be very simi-
lar, indicating that in aggregate the fold changes between circuit 
ON and circuit OFF states are not improved by the BEP technol-
ogy. However, DD shows that even though the average fold change 
hovers around 1 for both datasets, the BEP-cleaned data have 
many more outliers at higher fold changes (≥5) than the original 
data; compare Figures S4 and S5. This indicates that circuit perfor-
mance measured as fold change is greatly improved for a number 
of samples.

Moreover, as will be demonstrated in the next section, the 
BEP event predictions of ON versus OFF state permit the evalua-
tion of circuit performance, which is otherwise problematic when 
the fold change between expected ON and OFF distributions is 
approximately 1.

3.4 Data Analysis
Circuit performance was assessed by examining the three time 
point FC distributions for GFP for each well in a plate. Each FC 
distribution was required to meet conservative criteria for cell 
presence in order for a well to be assessed for success. The total 
number of events in the distribution had to be at least 10 000, and 
there had to be a cell density of at least 500 000 cells/ml. If any 
of the three time points did not meet these criteria, then the well 
was classified as a failure, with the following exception: one plate 
(r1fw4stb38ewsh, see Table S2 in the Supplementary Data) with 
SB media had such widespread insufficiency in cell density and 
number of events that the whole plate was excluded from anal-
ysis. This plate was one of the plates with ineffectively cleaned 
controls (see first row, right columns in Figure S1). The remaining 
14 plates consist of five plates for each of SC and YEP media and 
four with SB.

Successful performance was assessed as a ‘match’ between 
the observed behavior of the circuit, ON or OFF, and the ON/OFF 

behavior predicted by the digital logic the circuit was designed to 
produce. Each well in a plate was designated as an overall success 
or failure using information from all three time points. Since BEP 
exhibited variable performance on a per-plate basis, successes for 
each build were aggregated on the plate level. A plate performance 
score for a build is the number of successes on the plate divided by 
10, since each build was measured under five inducer conditions 
with two replicates on each plate.

It remains to describe what constituted a match. The observed 
behavior of the circuit was classified as ON, OFF or indeterminate 
(called the observed state) based on the relative masses of the ON 
and OFF distributions for each sample that were predicted by BEP. 
For each time point, there was a proportion of events in the FC 
distribution that was predicted by BEP to be ON (p) or OFF (1 − 𝑝), 
where p will be called the BEP ratio. The algorithm for assigning 
an observed state to a well had two parts. First, if a well satisfied 
p > 0.6 (p < 0.4) at all three time points, then the build was declared 
to be exhibiting ON (OFF) behavior. Additionally, if neither condi-
tion above was met but p increased (decreased) over time, then 
the build was said to exhibit ON (OFF) behavior. This latter con-
dition was chosen since the hypothesis that some of the builds 
may still have been undergoing the temporal processes of induc-
tion and GFP decay over the course of the experiment could not 
be excluded. Any well that did not meet one of these criteria was 
said to have indeterminate behavior.

A success for a well was defined to be any case where the 
observed state matched the intended ON or OFF state of the cir-
cuit given the presence or absence of the inducers, otherwise it 
was classified as a failure (see Table S1 for the logical inputs cor-
responding to each combination of inducer concentrations). In 
particular, any sample with an indeterminate observed state was 
classified as a failure.

The 14 plate performance scores form the distributions plot-
ted in Figure 5(a). The category labels indicate the topology, circuit 
and CDM prediction in order. Median performance shows a wide 
range of values and the interquartile ranges are generally large; 
therefore, it is unclear whether or not any of these circuits can 
be declared successful on the whole. To address this, a baseline 
distribution was created where each plate had its BEP ratios per-
muted over all eight builds and three time points 1000 times. The 
baseline plate performance score was computed for each circuit 
at each iteration and the distributions are shown in Figure 5(b). 
Although there is an overlap in the interquartile differences, the 
means and medians of the true scores for DSGRN NOR, DSGRN 
OR/CDM low designs and simple OR topologies are all higher than 
those of the randomized empirical null. 

In Figure 5(c), the distributions in Figure 5(a) are split over 
media condition. The distributions only have 4–5 points each, 
but the boxplot shows suggestive patterns. First, the DSGRN NOR 
topologies perform either better or similarly to the simple NOR 
topologies in all three media conditions, with particularly high 
performance in the SB media condition. Second, the underper-
formance of the DSGRN OR/CDM high design seems to be due 
primarily to the SC media. Disappointingly, no build seems to 
exhibit similar, and therefore reproducible, performance across 
media conditions. The closest is the simple OR/CDM high design.

To provide some statistical quantification of the observed 
trends, the probability that a new observation will be a success for 
a given build and media condition was estimated using a logistic 
regression model (Table S4 and Figure S6 in the Supplementary 
Data). Figure 5(d) shows these predicted probabilities along with a 
95% confidence interval for the true probability of success. Where 
the confidence intervals do not overlap, that is suggestive of, 
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Figure 5. (a) Distributions of 14 plate performance scores (proportion of successes per build per plate) across the eight designs. The vertical bars 
indicate the last datapoint within a window of 1.5 times the interquartile distance with outliers as diamonds. The rectangles show 25–75 quartiles, 
with the horizontal bar showing the median and the black dot showing the mean. (b) Baseline distributions for plate performance scores; each plate 
had its BEP ratios permuted over all wells and time points 1000 times. (c) Plate performance scores split by media (five plates each for SC and YEP and 
four plates for SB). (d) Predicted probabilities of success for each build with 95% confidence intervals for the true probabilities of success using a logit 
model (see Section 4 in the Supplementary Data). (e)–(f) Distributions of plate performance scores pooled across media and CDM design (e) to assess 
DSGRN predictions, and scores pooled across media and topology (f) to assess CDM predictions.
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though not a guarantee of, significantly different probabilities of 
success. Given a media condition and circuit, the only time there 
is non-overlapping confidence intervals, and therefore possible 
significance, is between the simple NOR topologies with lower pre-
dicted success and DSGRN NOR topologies with higher predicted 
success. This can be seen by choosing a NOR circuit row and pair-
wise comparing the confidence intervals between the simple and 
DSGRN topologies. Remarkably, the DSGRN NOR topology outper-
forms the simple NOR topology for all media conditions and both 
builds. By examining the top half and bottom half of the table, it 
can be seen that the CDM low designs have higher probabilities 
of success than the CDM high designs, but there is overlap in the 
confidence intervals.

The accuracy of the DSGRN robustness predictions and the 
CDM performance predictions are further assessed by pooling 
media conditions and builds together, as shown in Figure 5(e)–(f). 
In Figure 5(e), the plate performance scores for the high and low 
CDM builds are pooled to compare the DSGRN topologies against 
the simple topologies. The DSGRN NOR topology outperforms the 
simple NOR topology, indicating that that circuit redundancy may 
indeed produce more robust performance, as also supported by 
the statistical analysis in Figure 5(d). On the other hand, the two 
OR topologies are not substantially different performers (in mean 
and median). However, Figure 5(a) and (d) show that the DSGRN 
OR designs show a large differential performance from each other, 
whereas the two simple OR designs do not. A possible conclusion is 
that the DSGRN OR topologies are not as reproducible as the sim-
ple OR designs in terms of the specific biological parts deployed, 
which is counter to DSGRN predictions. In Figure 5(f), the plate 
performance scores for the DSGRN and simple topologies are 
pooled to compare the CDM low-performance predictions to the 
CDM high-performance predictions. The CDM low designs show a 
trend of higher performance than CDM high designs, consistent 
with Figure 5(d).

The simple NOR design is an anomalously poor performer 
compared to all other designs. This is interesting because all the 
other builds contain similar NOR gates, although they use differ-
ent gRNA parts (see Figure 2). Either the simple NOR builds are 
unexpectedly fragile or there is perhaps synergistic activity when 
multiple NOR gates act in concert. To further explore this perfor-
mance failure, a Hill function ordinary differential equation model 
of the designs was created using parameter fits from the same 
dosage–response experiments used to train CDM.

In general, the Hill model predicted that circuits should 
respond more strongly to Dox (Figure 6(a)), but that the dosage–
response to BE was acceptable (Figure 6(b)) except for the two 
simple NOR designs, in which the presence of BE alone is predicted 
to fail to turn the circuit OFF (Figure 6(c)). Figure 6(a) shows the 
DSGRN OR/CDM high design and illustrates the difference in BE 
and Dox performance. A success is a high GFP signal in all five 
bars, where the left-most bar is BE alone at its highest titration 
concentration and the remaining four bars are combinations of 
BE and Dox, with Dox at various titration levels. High GFP sig-
nal is achieved even for the BE-alone condition, since the low 
GFP steady state corresponded to about 1500–2000 a.u. (arbitrary 
units), substantially lower than the left-most bar. However, the 
BE-induced GFP signal is markedly lower than that for the BE+Dox 
combinations. Dox in isolation produced GFP signal in comparable 
amounts to BE+Dox. See Figures S7 and S8 in the Supplementary 
Data for comprehensive predictions across all builds. 

Figure 6(b)–(c) shows the differential Hill model predicted per-
formance of the DSGRN and simple NOR topologies using param-
eters for the CDM low designs. In this case, BE successfully 

represses the signal of the DSGRN NOR design to the 1500–2000 
a.u. low steady state but does not suppress that of the simple 
NOR design. In the absence of both inducers (first bar), both 
designs are predicted to exhibit a high fluorescence signal, but 
in the subsequent titrations, the simple design is predicted to 
have a GFP signal more than twice the low steady state. The BE-
inducible parts r10 and r5 are used only in the simple NOR designs 
and not in the other designs (Figure 2). One cannot exclude the 
hypothesis that the inclusion of the BE-inducible parts r5 and 
r10 into the three other topologies would also result in degraded
performance.

4. Discussion
This manuscript introduces a set of tools for the design of cir-
cuit topology through performance prediction and a set of tools to 
improve the efficiency and accuracy of building synthetic circuits. 
Together this DA toolchain is melded with a previously published 
toolchain, the RT. During the DA portion of this sequence, OR and 
NOR logical circuit topologies and parts assignment were designed 
using the predictive tools DSGRN (29; 38) and CDM (32) and built 
using the laboratory software tools DASi (33; 34), Terrarium (36) 
and Aquarium (37). The RT (24) portion of the toolchain enhanced 
the reproducibility of experimental results through the automa-
tion of experimental specification, subsequent data handling and 
standardized analysis.

The built circuits were two variants each of networks that 
should exhibit OR and NOR logic: the standard, simple OR 
and NOR topologies, plus an OR and a NOR topology predicted 
by DSGRN to show robustness across experimental conditions. 
Although the simplest topologies for OR and NOR circuits are 
well-known to synthetic biologists, there are many circuit topolo-
gies that also exhibit the correct logical behavior. DSGRN predicts 
that many OR and NOR circuit topologies with redundancy should 
show more consistent and accurate performance across experi-
mental conditions. DSGRN scoring is designed to be agnostic to 
organism chassis or parts choice and therefore does not incorpo-
rate constraints specific to the yeast chassis or gRNA regulators. 
User-chosen constraints of the DSGRN Design Interface include 
the number of logic gates, the number of binding sites per gate, 
the logic function to be realized at each gate (in this case NOT and 
NOR) and a threshold for a robustness score. These constraints 
together reduce the number of considered networks to a number 
amenable to manual inspection that takes advantage of subject 
matter expertise. A large lesson learned in this effort is that sub-
ject matter expertise cannot simply be encoded by automation in 
a generalizable manner. Once the desired topologies were iden-
tified, CDM predicted groupings of parts that should show better 
versus worse circuit performance for each topology.

During data inspection, it became clear that contamination, 
of the negative controls with GFP-producing cells and of the posi-
tive controls with mutated cells lacking GFP production, was a real 
concern—appearing as strong bimodality in the FC distributions. 
However, there were insufficient resources to repeat this suite of 
experiments and no guarantee that the issues would be resolved 
through replicated experiments.

A major thrust of this paper and of the SD2 program that 
funded this study is to address the question: To what extent can all
collected data, regardless of quality, be used to draw conclusions 
and suggest further experimentation? It is a challenging goal to 
develop methods that can use all data, whether optimal or sub-
optimal, to inform future experiments. To this end, a machine 
learning technique called BEP (47) was developed to separate 
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Figure 6. Example predicted steady-state values of the geometric mean of the FC distribution of GFP a.u. from Hill function models. Horizontal axis: 
Inducer concentrations in nM in the order (BE, Dox). Vertical axis: Steady-state GFP values in arbitrary units as predicted by the parameterized Hill 
models. (a) The DSGRN OR/CDM high design as it transitions from an initial state of BE only to BE+Dox for various titration levels of Dox. The logical 
circuit should show a high fluorescence signal at all conditions. The BE-only steady state has a strong GFP signal in comparison to the low GFP steady 
state (1500–2000 a.u.) but is significantly lower than inducer conditions where Dox is present. (b) The DSGRN NOR/CDM low design as it transitions 
from an initial state of no inducers to BE at various titration levels. The condition (0,0) should show high fluorescence and all subsequent bars should 
show low fluorescence. (c) The same as (b) for the simple NOR/CDM low design. It is seen that BE does not effectively repress GFP signal in panel (c).

bimodal distributions based on 16 FC channels. The intent was to 
identify true ON/OFF versus false ON/OFF events in order to assess 
circuit performance. Aside from this, BEP provided extra infor-
mation that FC channels correlated with cell size were not very 
important to the classification (see Figure S2 in the Supplementary 
Data). After treatment with BEP, the number of plates with suit-
able positive and negative controls nearly doubled, and almost all 
of the positive controls were cleaned from bimodal to unimodal 
high distributions (see Figure S1), permitting the cleaning of the 
experimental condition data.

The simple and DSGRN NOR circuit performance exhibited a 
trend consistent with DSGRN predictions of circuit robustness, 
namely that a circuit design with redundancy may indeed be more 
robust with regard to diverse experimental conditions. However, 
there are mixed conclusions to be drawn for the OR circuit. On 
the one hand, DSGRN OR topologies show a smaller interquar-
tile range, consistent with greater average reproducibility. On the 
other hand, the CDM-predicted high and low builds of the DSGRN 
OR topology show a much greater difference in median than 
the analogous builds for the simple OR designs, indicating lower 
reproducibility.

CDM predictions were generally not fulfilled. This is likely due 
to faulty assumptions when creating a purpose-built version of 
CDM for this application. Either the scores for combinations of 
NOR genetic subunits were incorrectly calibrated or the assump-
tion that genetic parts with gRNA binding sites exhibited similar 
behavior to their BE- and Dox-inducible counterparts was incor-
rect. An alternative future route is to combine DSGRN topology 
generation with stochastic parts assignment optimization, such 
as that in Cello (15), or with the Wasserstein metric-based parts 
optimization in (17).

The trends in performance are suggestive rather than signifi-
cant. These trends can be used to hypothesize the most promis-
ing directions for future experimentation. Possible avenues of 
exploration involve the choice of topology, particularly for the 
OR circuit, the choice of parts assignment, particularly for the 
simple NOR designs, the choice of experimental conditions or 
the experimental platforms and protocols used. From the work 
here, better experimental controls and different assignments of 
parts are clear choices. A wider range of parts assignments and 
experimental conditions would lead to a better exploration of the 
operational envelope of the construct and would therefore put 

higher confidence in the topology rankings produced by DSGRN. 
Lastly, alternative topologies for OR logic could provide further evi-
dence for or against increased robustness of performance when 
comparing structural redundancy to build complexity.

In conclusion, synthetic logic circuits predicted to exhibit OR 
and NOR logic behavior were designed, built, observed using 
FC and analyzed for performance using a toolchain designed to 
enhance robustness and reproducibility. A machine learning tech-
nique was developed and trained on all measured FC channels 
to mitigate unexpected experimental complications. The results 
indicate that more complex circuits exhibiting structural redun-
dancy may provide more robust and reproducible behavior in a 
synthetic biology setting despite increased build difficulty.
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