
New Distributed Constraint Satisfaction Algorithms for
Load Balancing in Edge Computing: A Feasibility Study

Khoi D. Hoang1, Christabel Wayllace1, William Yeoh1, Jacob Beal2, Soura
Dasgupta3, Yuanqiu Mo3, Aaron Paulos2, and Jon Schewe2

1 Department of Computer Science and Engineering, Washington University in St. Louis
{khoi.hoang,cwayllace,wyeoh}@wustl.edu

2 Raytheon BBN Technologies
{jake.beal,aaron.paulos,jon.schewe}@raytheon.com

3 Department of Electrical and Computer Engineering, University of Iowa
{soura-dasgupta,yuanqiu-mo}@uiowa.edu

Abstract. Edge computing is a paradigm for improving the performance of
cloud computing systems by performing data processing at the edge of the net-
work, closer to the users and sources of data. As data processing is traditionally
done in large data centers, typically located far from their users, the edge com-
puting paradigm will reduce the communication bottleneck between the user and
the location of data processing, thereby improving overall performance. This be-
comes more important as the number of Internet-of-Things (IoT) devices and
other mobile or embedded devices continues to increase. In this paper, we inves-
tigate the use of distributed constraint satisfaction (DisCSP) techniques to model
and solve the distributed load balancing problem in edge computing problems.
Specifically, we (i) provide a mapping of the distributed load balancing problem
in edge computing to a DisCSP; (ii) propose two DisCSP algorithms to solve
such problems; and (iii) provide some preliminary analysis on a simple topology.

1 Introduction

Cloud computing is unequivocally the backbone of a large fraction of AI systems, where
it provides computational functionality and data storage to the ever-growing number of
Internet-of-Things (IoT), mobile, and embedded devices. In today’s traditional cloud
computing architecture, the compute and storage resources are typically housed in data
centers that may be managed by different public and private organizations. For example,
Amazon’s AWS and Microsoft’s Azure systems are two examples of popular cloud
computing services that are provided by Amazon and Microsoft to the public for a fee.

As the number of IoT and similar devices continue to grow [2], so will the demand
for cloud services. This increase in demand will eventually strain the bandwidth limi-
tations to the data centers, thereby resulting in a drop in the quality of service of such
services. To alleviate this limitation, researchers have proposed a new paradigm called
edge computing, whereby the compute and storage resources are migrated from the
data centers distant from users to compute resources that are closer to the user devices
at the edges of the network. Figure 1 illustrates these two paradigms. Figure 1(a) shows



(a) Traditional Cloud Computing (b) Edge Computing

FIG. 1: Illustration of Cloud & Edge Computing Paradigms. Figure adapted from [9]

the traditional cloud computing paradigm, where the colors of the arrows denote the
congestion in the network – green arrows represent uncongested links, yellow arrows
represent marginally congested links, and red arrows represent very congested links.
Figure 1(b) shows an edge computing paradigm, where services are hosted at resources
at nodes labeled with ‘S’ and requests are routed to those nodes, resulting in decreased
network congestion, and thus in increased performance of services. How to manage de-
cisions about dispersal and placement of services in such a paradigm, however, is still
an open problem.

In this paper, we model the distributed load balancing problem for edge computing
as a distributed constraint satisfaction problem, where agents that control nodes in the
network need to coordinate to identify which node should host which services, subject
to constraints on the capacity of the nodes and the requirement to satisfy all expected
incoming requests. We also propose two algorithms, called Distributed Constraint-
based Diffusion Algorithm (CDIFF) and Distributed Routing-based Diffusion Algorithm
(RDIFF), to solve this problem, and show preliminary results on a simple topology.

2 Background: DisCSP

A Distributed Constraint Satisfaction Problem Problem (DisCSP) [15] is a tuple
〈X ,D, C,A, α〉, where: X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn}
is a set of finite domains (i.e., xi ∈Di); C= {c1, . . . , ce} is a set of constraints, where
each constraint ci is defined over its scope xci ⊆ X and specifies the satisfying com-
bination of value assignments in its scope; A = {a1, . . . , ap} is a set of agents; and
α : X → A is a function that maps each variable to one agent. To ease readability,
in the following, we assume that all agents control exactly one variable. Thus, we will
use the terms “variable” and “agent” interchangeably and assume that α(xi) = ai. A
solution is a value assignment σ for all the variables of the problem that is consistent
with the variables’ domains. The goal is to find a solution that satisfies all constraints in
the problem.

3 Load Balancing in Edge Computing

We now provide a simplistic description of the load balancing problem in edge com-
puting architectures. For more detailed discussions, we refer readers to the following
resources [11, 12, 14].



Assume that the network can be represented as a graph G = 〈V,E〉, where each
vertex v ∈ V corresponds to a compute node in the network that is able to host services
and each edge e ∈ E indicates that the two nodes connected by that edge can com-
municate directly with each other. Each node v has an associated capacity cap(v) that
indicates the amount of resources it has to host services. Some of the nodes in the graph
are data centers, which are default nodes that host these services.

Some of the nodes at the edge of the cloud are connected to pools of IoT devices, re-
ferred to as client pools. Further, assume that an estimate of the load of service per-client
is available, and such loads load(v) are available for each node v that hosts the service.
The goal of the problem is to distribute the hosting of services across the compute net-
work in such a way that all loads can be successfully served. Finally, the problem has
a secondary objective of minimizing the latency of the service requests where possible
(i.e., services should be hosted as close to the client pools as possible).

To model this problem as a DisCSP:
• Each vertex v ∈ V in the graph maps to an agent/variable xi ∈ X .
• The range of capacity [0, cap(v)] of the vertex v ∈ V maps to the domain Di of the

variable.
• Finally, a constraint

∑
v∈V load(v) ≤

∑
xi∈X vi is imposed to ensure that the total

load can be satisfied by the network, where vi is the value assignment for variable xi
in the solution.

4 Proposed Algorithms

We now discuss our two distributed algorithms to solve this problem – Distributed
Constraint-based Diffusion Algorithm (CDIFF) and Distributed Routing-based Diffu-
sion Algorithm (RDIFF).

CDIFF: This algorithm is inspired by other diffusion-based algorithms in the litera-
ture [1, 8, 6]. At a high level, each overloaded agent (i.e., those agents that control nodes
where load(v) > cap(v)) identifies to which subset of other agents that it should shed
its excess load. Figure 2 illustrates its three phases, where numbers in circles are the
current loads of the nodes and red numbers are the capacities. Node F is the overloaded
agent, and nodes A, B, and D are possible nodes that can absorb the excess load from
A.1 We now describe the three phases:
• Phase 1: Each overloaded agent sends a message to all its neighbors with the amount

of excess load it needs to shed as well as a hop count indicator that is initialized to
1.2 When an agent receives such a message for the first time, it will propagate the
received information to its neighbors after incrementing the hop counter by 1. The
agent will then ignore subsequent Phase 1 messages by other neighbors and respond
to them after Phase 3. This propagation of information continues until it reaches
either nodes with sufficient capacity to accept the excess load or nodes that have
received information from a closer overloaded agent. At the end of this phase, the

1 While the figure illustrates an example with only one overloaded region, our description below
generalizes to the case where there are multiple overloaded regions.

2 The indicator counts the number of hops a node is from the overloaded agent.



10

3

5

5

0

0

A

B

C

D

E

F

5,1

5,2

5,25,3

5,3

5

5

5

5

5

5

(a) Phase 1

10

3

5

5

0

0

A

B

C

D

E

F

5

5

5

5

5

5
{[A, 5, 3]}

{[B,
5, 3
]}

{[A,
5, 3

]}

{[D
, 2
, 2
]}

{[D, 2, 2],
[A, 3, 3]}

(b) Phase 2

5

5

5

5

3

0

A

B

C

D

E

F

5

2

33

5

5

5

5

5

5

(c) Phase 3

FIG. 2: Illustration of CDIFF Operations. Figure adapted from [9]

agents have built a directed spanning forest, with roots at every overloaded agent.3 In
the example in Figure 2, node F is the sole root as it is the only overloaded agent and
nodes A, B, and D are the leaves.
• Phase 2: Each leaf agent v of the spanning forest sends a message to its parent with

its node ID, its available capacity cap(v) − load(v), and the number of hops it is
away from its root. When an agent receives this information from all its children,
it aggregates the information received so that the sum of available capacities is at
most the amount of excess load needed to be shed, preferring nodes with smaller hop
counts, and sends the aggregated information to its parent. This process continues
until each root (i.e., an overloaded agent) receives the messages from all its children.
• Phase 3: Each root agent then sends a message to each of its children indicating the

amount of excess load it intends to shed to them and their descendants in the spanning
tree. This information gets propagated down to the leaves, which then terminates the
algorithm. For example, in Figure 2, node F sheds 5 units of load – 2 units to node D
and 3 units to node A.

These three phases continue until all overloaded regions successfully shed their loads.

RDIFF: A limitation of CDIFF is that it does not take into account information of where
the client pools are located when deciding where the overloaded agents should shed its
load. As such, it is not able to optimize the secondary objective of our problem. RDIFF
addresses this limitation by shedding not only the excess load of overloaded agents, but
as much load as possible to the agents that are of close proximity to the client pools. To
do so, the agents operate in the following manner:
• Phase 1: Each data center propagates its entire load received from each client pool

back towards that client pool by back-tracing the paths the requests took from the
client pool to the data center. At the end of this phase, the agents have built a directed
graph, where each branch of the graph corresponds to the path requests from a client
pool took to get to a data center.4

• Phase 2: Each client pool will host as much of the load it received as possible, up to
its capacity, and sheds its excess load to its parent (the next node along the branch
from client pool towards the data center). This process repeats until all of the excess
load is hosted. In the worst case where none of the agents along the branch has excess
capacity, the data center will host the entire load.

3 If an agent receives this information from more than one neighbor at the same time, it breaks
ties by identifiers.

4 If there are multiple paths per client pool, we randomly choose one of them.



5 Experimental Results

We investigate both CDIFF and RDIFF against
the default strategy of hosting all services at
the data center using the same simple topology
shown in Figure 2. In our scenario, all clients are
in a single client pool that is connected to node A
and the data center is at node F. The capacity of all
nodes is 8 units. The clients make a total of 1000
service requests that are divided equally across 10

Hops from Number of requests
clients at A CDIFF RDIFF Default

0 300 900 0
1 62 0 0
2 76 0 0
3 562 100 1000

TABLE 1: Experimental Results

batches, with each batch starting a minute after the previous batch. Each service request
will induce a load of 0.04 units. For CDIFF and RDIFF, we set the thresholded capacity
of nodes to be 80% of their actual capacity. A node is a considered overloaded if its
predicted load is greater than its thresholded capacity. Finally, we run the algorithms 10
times, once for each batch of service requests.

Table 1 presents our results. For all three algorithms, all 1000 requests were suc-
cessfully served. With the default strategy, all 1000 requests were served by the data
center at node F, which is 3 hops away from the client pool at node A. For CDIFF, we
can observe that there is some migration towards the client pool, but a majority of the
requests are still served at the data center. Finally, for RDIFF, requests of the first batch
were served at the data center but requests of all subsequent batches were served at
node A where the clients are located. These preliminary experimental results thus show
that both CDIFF and RDIFF are able to diffuse the load away from the data center and
RDIFF is more promising in optimizing the secondary objective of the problem, which
is to host the services as close to the client pools as possible.

6 Conclusions and Future Work

In this paper, we have empirically evaluated the feasibility of modeling and solving a
distributed load balancing problem in edge computing problems, obtaining preliminary
results that indicate this is a promising direction. Future work includes generalizing our
algorithms to multiple data centers and services as well as evaluating the algorithms
on larger networks. We also plan to consider formulating the problem as a distributed
constraint optimization problem (DCOP) [7, 10, 3] and develop DCOP algorithms that
are resilient to dynamic changes [13] as well as proactively take into account anticipated
future changes in the system [4, 5].

7 Acknowledgment

This research is supported by Defense Advanced Research Projects Agency (DARPA)
contract HR001117C0049. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government. This document does not contain
technology or technical data controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations. Approved for public release,
distribution unlimited (DARPA DISTAR 31172, 4/3/19).



References

1. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Journal of
Parallel and Distributed Computing 7(2), 279–301 (1989)

2. Evans, D.: The internet of things: How the next evolution of the internet is changing every-
thing. CISCO White Paper 1(2011), 1–11 (2011)

3. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and appli-
cations: A survey. Journal of Artificial Intelligence Research 61, 623–698 (2018)

4. Hoang, K.D., Fioretto, F., Hou, P., Yokoo, M., Yeoh, W., Zivan, R.: Proactive dynamic
distributed constraint optimization. In: Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). pp. 597–605 (2016)

5. Hoang, K.D., Hou, P., Fioretto, F., Yeoh, W., Zivan, R., Yokoo, M.: Infinite-horizon proactive
dynamic DCOPs. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). pp. 212–220 (2017)

6. Hu, Y., Blake, R.: An optimal dynamic load balancing algorithm. Tech. rep., SCAN-9509056
(1995)

7. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence 161(1–2), 149–180 (2005)

8. Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First-and second-order diffusive methods for
rapid, coarse, distributed load balancing. Theory of Computing Systems 31(4), 331–354
(1998)

9. Paulos, A., Dasgupta, S., Beal, J., Mo, Y., Hoang, K., Lyles, J.B., Pal, P., Schantz, R., Schewe,
J., Sitaraman, R., Wald, A., Wayllace, C., , Yeoh, W.: A framework for self-adaptive disper-
sal of computing services. In: IEEE Self-Adaptive and Self-Organizing Systems Workshops
(June 2019)

10. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI). pp. 1413–
1420 (2005)

11. Puthal, D., Obaidat, M.S., Nanda, P., Prasad, M., Mohanty, S.P., Zomaya, A.Y.: Secure and
sustainable load balancing of edge data centers in fog computing. IEEE Communications
Magazine 56(5), 60–65 (2018)

12. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge: A platform for replicating
internet applications. In: Web Content Caching and Distribution, pp. 57–77. Springer (2004)

13. Rust, P., Picard, G., Ramparany, F.: Self-organized and resilient distribution of decisions over
dynamic multi-agent systems. In: Proceedings of the International Workshop on Optimiza-
tion In Multi-Agent Systems (2018)

14. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)
15. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for for-

malizing distributed problem solving. In: Proceedings of the International Conference on
Distributed Computing Systems (ICDCS). pp. 614–621 (1992)


