
New Distributed Constraint Reasoning Algorithms for
Load Balancing in Edge Computing

Khoi D. Hoang1, Christabel Wayllace1, William Yeoh1, Jacob Beal2, Soura
Dasgupta3, Yuanqiu Mo3, Aaron Paulos2, and Jon Schewe2

1 Department of Computer Science and Engineering, Washington University in St. Louis
{khoi.hoang,cwayllace,wyeoh}@wustl.edu

2 Raytheon BBN Technologies
{jake.beal,aaron.paulos,jon.schewe}@raytheon.com

3 Department of Electrical and Computer Engineering, University of Iowa
{soura-dasgupta,yuanqiu-mo}@uiowa.edu

Abstract. Edge computing is a paradigm for improving the performance of
cloud computing systems by performing data processing at the edge of the net-
work, closer to the users and sources of data. As data processing is traditionally
done in large data centers, typically located far from their users, the edge com-
puting paradigm will reduce the communication bottleneck between the user and
the location of data processing, thereby improving overall performance. This be-
comes more important as the number of Internet-of-Things (IoT) devices and
other mobile or embedded devices continues to increase. In this paper, we in-
vestigate the use of distributed constraint reasoning (DCR) techniques to model
and solve the distributed load balancing problem in edge computing problems.
Specifically, we (i) provide a mapping of the distributed load balancing problem
in edge computing to a distributed constraint satisfaction and optimization prob-
lem; (ii) propose two DCR algorithms to solve such problems; and (iii) empiri-
cally evaluate our algorithms against a state-of-the-art DCR algorithm on random
and scale-free networks.

Keywords: DisCSPs · DCOPs · Edge Computing · Multi-Agent Systems

1 Introduction

Cloud computing is unequivocally the backbone of a large fraction of AI systems, where
it provides computational functionality and data storage to the ever-growing number of
Internet-of-Things (IoT), mobile, and embedded devices. In today’s traditional cloud
computing architecture, the compute and storage resources are typically housed in data
centers that may be managed by different public and private organizations. For example,
Amazon’s AWS and Microsoft’s Azure systems are two examples of popular cloud
computing services that are provided by Amazon and Microsoft to the public for a fee.

As the number of IoT and similar devices continue to grow [6], so will the demand
for cloud services. This increase in demand will eventually strain the bandwidth limi-
tations to the data centers, thereby resulting in a drop in the quality of service of such
services. To alleviate this limitation, researchers have proposed a new paradigm called

2 K. D. Hoang et al.

(a) Traditional Cloud Computing (b) Edge Computing

FIG. 1: Illustration of Cloud & Edge Computing Paradigms. Figure adapted from [15]

edge computing, whereby the compute and storage resources are migrated from the data
centers distant from users to compute resources that are closer to the user devices at the
edges of the network. Figure 1(a) shows the traditional cloud computing paradigm,
where the colors of the arrows denote the congestion in the network – green arrows rep-
resent uncongested links, yellow arrows represent marginally congested links, and red
arrows represent very congested links. Figure 1(b) shows an edge computing paradigm,
where services are hosted at resources at nodes labeled with ‘S’ and requests are routed
to those nodes, resulting in decreased network congestion, and thus in increased perfor-
mance of services. How to manage decisions about dispersal and placement of services
in such a paradigm, however, is still an open problem.

In this paper, we model the distributed load balancing problem for edge comput-
ing as distributed constraint satisfaction and optimization problems, where agents that
control nodes in the network need to coordinate to identify which node should host
which services, subject to constraints on the capacity of the nodes and the requirement
to satisfy all expected incoming requests. We also propose the Distributed Constraint-
based Diffusion Algorithm (CDIFF) and Distributed Routing-based Diffusion Algorithm
(RDIFF) to solve this problem and show results on random and scale-free graphs.

2 Background: DisCSP and DCOP

A Distributed Constraint Satisfaction Problem (DisCSP) [22] is a tuple hX ,D, C,A,↵i,
where X = {x1, . . . , xn

} is a set of variables; D = {D1, . . . , Dn

} is a set of finite
domains (i.e., x

i

2 D
i

); C = {c1, . . . , ce} is a set of constraints – each constraint c
i

is defined over its scope x

ci ✓ X and specifies the satisfying combination of value
assignments in its scope; A = {a1, . . . , ap} is a set of agents; and ↵ : X ! A is a
function that maps each variable to one agent.

A Distributed Constraint Optimization Problem (DCOP) [13, 16, 7] generalizes
DisCSPs by encoding the constraints as functions c

i

:

Q
x2x

ci Dx

! R+
0 [{�1} that

return a finite non-negative utility R+
0 for satisfying combination of value assignments

and a negative infinity utility �1 for infeasible combination of value assignments. To
ease readability, we assume that each agent controls exactly one variable. Thus, we will
use the terms “variable” and “agent” interchangeably and assume that ↵(x

i

)=a
i

.
A solution is a value assignment � for all the variables x

�

✓ X that is consistent
with their respective domains. The utility C(x

�

) =

P
c2C,xc✓x�

c(x
�

) is the sum of the

Title Suppressed Due to Excessive Length 3

utilities across all the applicable constraints in x

�

. A solution � is a complete solution if
x

�

=X . The goal of a DisCSP is to find a complete solution that satisfies all constraints
while the goal of a DCOP is to maximize the sum of utilities across all constraints. Or,
more formally, to find a complete solution x

⇤
=argmax

x

C(x).

3 Load Balancing in Edge Computing

We now provide a simplistic description of the load balancing problem in edge com-
puting architectures. For more detailed discussions, we refer readers to the following
resources [17, 18, 21].

Assume that the network can be represented as a graph G = hV,Ei, where each
vertex v 2 V corresponds to a compute node in the network that is able to host services
and each edge e 2 E indicates that the two nodes connected by that edge can communi-
cate directly with each other. Each node v has a capacity cap(v) indicating the amount
of available resources to host services. Some of the nodes in the graph are data centers,
which are default nodes of these services. Some of the nodes c 2 C ⇢ V at the edge of
the cloud are connected to pools of IoT devices, referred to as client pools. Further, we
assume that an estimate of the load load(v, s, c) of each service s 2 S induced by each
client pool c at each node v is available.

The primary objective of the problem is to distribute the hosting of services across
the compute network in such a way that all loads can be successfully served. The prob-
lem also has a secondary objective of minimizing the latency of the service requests
where possible (i.e., services should be hosted as close to the client pools as possible).

4 Mapping to DisCSPs and DCOPs

We now show how one can model this problem as a DisCSP, which takes into account
the primary objective only, as well as a DCOP, which additionally takes into account
the secondary objective. To model this problem as a DisCSP:
• Each agent a

v

2 A maps to a vertex v 2 V in the graph.
• Each variable x

v,s,c

2 X maps to a pair hv, s, ci of vertex v 2 V , service s 2 S, and
client pool c 2 C.

• Each variable x
v,s,c

is controlled by agent a
v

.
• The domain D

v,s,c

of each variable x
v,s,c

maps to the range of capacity [0, cap(v)]
of the vertex v.

• A constraint
P

s2S,c2C

v
v,s,c

 cap(v) for each vertex v 2 V is imposed to ensure
that agent a

v

does not over-allocate resources to host services, where v
v,s,c

is the
value assignment for variable x

v,s,c

in the solution.
• Finally, a constraint

P
v2V,s2S,c2C

v
v,s,c

�
P

v2V,s2S,c2C

load(v, s, c) is imposed
to ensure that the total load can be satisfied by the network.

To model this problem as a DCOP, one needs to include an additional global soft con-
straint that takes as inputs the value assignments of all variables and outputs the utility:

X

v2V,s2S,c2C

v
v,s,c

dist(v, c)
(1)

4 K. D. Hoang et al.

10

3

5

5

0

0

A

B

C

D

E

F

5,1

5,2

5,25,3

5,3

5

5

5

5

5

5

(a) Phase 1

10

3

5

5

0

0

A

B

C

D

E

F

5

5

5

5

5

5
{[A, 5, 3]}

{[B,
5, 3
]}

{[A,
5, 3

]}

{[D
, 2
, 2
]}

{[D, 2, 2],
[A, 3, 3]}

(b) Phase 2

5

5

5

5

3

0

A

B

C

D

E

F

5

2

33

5

5

5

5

5

5

(c) Phase 3

FIG. 2: Illustration of CDIFF Operations. Figure adapted from [15]

where dist(v, c) is the number of hops between nodes v and c in the graph G. While
it may be better to use the latency between two nodes as the distance metric, latency
is dependent on network traffic, which depends on the allocation of services based on
the DCOP solution as well as the background traffic. These dependencies also rely
on the network protocols employed. Since accurate models of these dependencies are
unavailable, we use the number of hops as a proxy in this paper.

As the DCOP model subsumes the DisCSP model and, consequently, the DCOP
algorithms will likely find solutions that are better than those found by DisCSP al-
gorithms, it may seem that there is little value in discussing DisCSPs in this paper.
However, we would like to highlight that the number of hops between all pairs of
nodes, which is required in the DCOP formulation, require every agent to have complete
knowledge about the entire network topology. Such an assumption violates a common
requirement of distributed constraint reasoning approaches as well as our distributed
load balancing problem – that an agent should have access to local information only.
Therefore, our DCOP model is actually not suitable for this application. Nonetheless,
we propose the DCOP model so that we can evaluate our two DisCSP algorithms against
an off-the-shelf optimal DCOP algorithm in terms of the quality of their solutions found
with respect to the secondary objective of minimizing latency of service requests in the
load balancing problem.

5 Proposed Algorithms

We now discuss our two DisCSP algorithms – Distributed Constraint-based Diffusion
Algorithm (CDIFF) and Distributed Routing-based Diffusion Algorithm (RDIFF).

5.1 Distributed Constraint-based Diffusion Algorithm (CDIFF)

This algorithm is inspired by other diffusion-based algorithms in the literature [3, 14,
11]. At a high level, each overloaded agent (i.e., those agents that control nodes where
load(v) > cap(v)) identifies to which subset of other agents that it should shed its
excess load. Figure 2 illustrates its three phases, where numbers in circles are the current
loads of the nodes and red numbers are the capacities. Node F is the overloaded agent,
and nodes A, B, and D are possible nodes that can absorb the excess load from A.1 We
now describe the three phases at a high level:

1 While the figure illustrates an example with only one overloaded region, our description below
generalizes to the case where there are multiple overloaded regions.

Title Suppressed Due to Excessive Length 5

Algorithm 1: CDIFF (D)
1 CDIFF-INITVARS()
2 newMap hostMap excessMap ;
3 foreach (s, l) in D do
4 newMap newMap [{(s, l, hop)}
5 (excessMap, hostMap) KEEPPOSSIBLE(newMap)
6 if excessMap 6= ; then
7 phase 1

8 send (phase, excessMap) message to each neighbor n 2 N
9 while true do

10 while not received message from all neighbors do
11 msgs ;
12 if received message m from neighbor n then
13 msgs msgs [{(m,n)}

14 if phase = 0 then CDIFF-PROCESSPHASE0(msgs);
15 else if phase = 1 then CDIFF-PROCESSPHASE1(msgs);
16 else if phase = 2 then CDIFF-PROCESSPHASE2(msgs);
17 send (0, null) message to each neighbor that the agent did not send a message to in

this cycle

Procedure CDIFF-InitVars()
18 Reject ;
19 parent msg null

20 hop phase 0
21 Children N

• Phase 1: Each overloaded agent sends a message to all neighboring agents with the
amount of excess load it needs to shed as well as a hop count indicator that is initial-
ized to 1.2 When an agent receives such a message for the first time, it will propagate
the received information to its neighbors after incrementing the hop counter by 1. The
agent will then ignore subsequent Phase 1 messages by other neighbors and respond
to them after Phase 3. This propagation of information continues until it reaches
either nodes with sufficient capacity to accept the excess load or nodes that have
received information from a closer overloaded agent. At the end of this phase, the
agents have built a directed spanning forest, with roots at every overloaded agent.3 In
the example in Figure 2, node F is the sole root as it is the only overloaded agent and
nodes A, B, and D are the leaves.

• Phase 2: Each leaf agent v of the spanning forest sends a message to its parent with
its node ID, its available capacity cap(v) � load(v), and the number of hops it is
away from its root. When an agent receives this information from all its children,
it aggregates the information received so that the sum of available capacities is at

2 This indicator counts the number of hops a node is from the overloaded agent.
3 If an agent receives this information from more than one neighbor at the same time, it breaks

ties by identifiers.

6 K. D. Hoang et al.

Procedure CDIFF-ProcessPhase0(msgs)
22 (m,n) choose any ((type,map), sender) from msgs where type = 1
23 parent n

24 (excessMap, hostMap) KEEPPOSSIBLE(m.map)
25 foreach ((type,map), n) 2 msgs where n 6= parent ^ type = 1 do
26 Reject Reject [{n}
27 send (REJECT, null) message to n

28 Children Children \ (Reject [{parent})
29 if parent 6= null then
30 if excessMap 6= ; ^ Children 6= ; then
31 phase 1
32 send (phase, excessMap) message to each child n 2 Children

33 else
34 phase 2
35 newMap ;
36 foreach (s, load, h) in hostMap do
37 newMap newMap [{(s, load, h+ 1)}
38 send (phase, newMap) message to parent

most the amount of excess load needed to be shed, preferring nodes with smaller hop
counts, and sends the aggregated information to its parent. This process continues
until each root (i.e., the overloaded agent) receives the messages from all its children.

• Phase 3: Each root agent then sends a message to each of its children indicating the
amount of excess load it intends to shed to them and their descendants in the spanning
tree. This information gets propagated down to the leaves, which then terminates the
algorithm. For example, in Figure 2, node F sheds 5 units of load – 2 units to node D
and 3 units to node A.

These three phases continue until all overloaded regions successfully shed their loads.
Algorithm 1 shows the pseudocode of CDIFF that is executed by each agent a

v

2A.
It takes as inputs its estimated load D

v

, which is a mapping of (s, l) indicating a load of
l2R+

0 for service s2S. Additionally, we assume that the agent always knows about the
set of neighboring agents N

v

. In the pseudocode, we drop the subscripts v since they
always refer to the “self” agent. Each agent maintains the following key data structures:
• parent and Children refer to the agent’s parent and set of children, respectively, in

the spanning forest built in Phase 1 of the algorithm.
• hop refers to the number of hops the agent is away from the root of its tree.
• phase refers to the phase of the algorithm that the agent is currently in.
• hostMap and excessMap are sets of service s, load l, and hop h tuples (s, l, h);
hostMap contains the information on how much load from each service will it host
and excessMap contains the information on how much excess load for each service
that it needs to shed.

Each agent first initializes its variables (lines 1-2). Then, it tries to host as much
load as possible via the function KEEPPOSSIBLE (lines 3-5). The function takes as
input the demand that it received aggregated with the hop value and updates how much

Title Suppressed Due to Excessive Length 7

Procedure CDIFF-ProcessPhase1(msgs)
39 foreach ((type,map), n) 2 msgs do
40 if type = REJECT then
41 Children Children \ {n}
42 else if type = 1 ^ n 6= parent then
43 Children Children \ {n}
44 send (REJECT, null) message to n

45 else if type = 2 then
46 store capacity availabilities from children

47 if parent = null then
48 if Children = ; then
49 send (phase, excessMap) message to each neighbor n 2 N
50 else
51 phase 3
52 plan shed load in excessMap to Children prioritizing smaller hop counts
53 send (phase, plan) message to each child n 2 Children

54 else if Children = ; then
55 phase 2
56 newMap ;
57 foreach (s, load, h) in hostMap do
58 newMap newMap [{(s, load, h+ 1)}
59 send (phase, newMap) message to parent

60 else
61 phase 2
62 aggP lan aggregated capacity availabilities from children
63 send (phase, aggP lan) message to parent

of the demand it will host in hostMap as well as how much excess it must shed in
excessMap. If it can host all demand, then it remains in Phase 0. Otherwise, it is
overloaded and goes into Phase 1 (line 7). It then sends a message to each neighbor and
goes into an infinite loop (or until timeout) where it runs the following processes in each
cycle: It waits for messages from all neighbors; processes those messages based on its
phase; and sends a message to each neighbor at the end of that process (lines 8-17).

If an agent is in Phase 0, it runs the CDIFF-PROCESSPHASE0 procedure. Upon
receiving a message from a neighbor that is in Phase 1 (i.e., it is overloaded and is
asking for help), the agent sets the neighbor as parent and checks how much excess
load it can host from the parent. If the agent is able to host all the load, it then replies
to its parent with its capacity availabilities (lines 34-38). Otherwise, it propagates the
request from the parent to other neighbors to ask for help (lines 30-32). If it receives
such a message from more than one neighbor, then it breaks ties randomly, chooses
to help only one of them and rejects the other requests (lines 22-27). Therefore, the
request from the overloaded region (i.e., root of a tree) will be propagated throughout
the network until it reaches agents with neighbors that are all not in Phase 0 (i.e., they
are already part of the spanning forest). In such a case, the leaf agents will go into Phase
2 and respond to its parent with its available capacity (lines 34-38).

8 K. D. Hoang et al.

Procedure CDIFF-ProcessPhase2(msgs)
64 foreach ((type,map), n) 2 msgs do
65 if type = 1 then
66 send (REJECT, null) message to n

67 else if type = 3 then
68 phase 3
69 (excessMap, hostMap) FOLLOWPLAN(map)
70 plan shed load in excessMap to Children prioritizing smaller hop counts

71 send (phase, plan) message to each child n 2 Children

72 CDIFF-INITVARS()

If an agent is in Phase 1, it runs the CDIFF-PROCESSPHASE1 procedure, where it
goes into Phase 2 and send the aggregate available capacity received from all children to
the parent (lines 54-63). This process continues until the information reaches the root,
which will go into Phase 3, plans for how to shed its excess load, and sends the final
plans back to its children (lines 51-53).

If an agent is in Phase 2, it runs the CDIFF-PROCESSPHASE2 procedure, where it
goes into Phase 3, hosts as much load as possible based on the plan received from the
parent, plans for how to shed its excess load based on the available capacities received
from its children before, and sends those plans to its children (lines 68-71). The agent
then reinitializes its variables, goes back into Phase 0 and is ready to help with new
overloaded agents (line 72).

5.2 Distributed Routing-based Diffusion Algorithm (RDIFF)

One limitation of CDIFF is that it does not take into account information of where the
client pools are located when deciding where the overloaded agents should shed its
load. As such, it is not able to optimize the secondary objective of our problem. RDIFF
addresses this limitation by shedding not only the excess load of overloaded agents, but
as much load as possible to the agents that are of close proximity to the client pools. To
do so, the agents operate in the following manner:
• Phase 1: Each data center propagates its entire load received from each client pool

back towards that client pool by back-tracing the paths the requests took from the
client pool to the data center. At the end of this phase, the agents have built a directed
graph, where each branch of the graph corresponds to the path requests from a client
pool took to get to a data center.4

• Phase 2: Each client pool will host as much of the load it received as possible, up to
its capacity, and sheds its excess load to its parent (the next node along the branch
from client pool towards the data center). This process repeats until all of the excess
load is hosted. In the worst case where none of the agents along the branch has excess
capacity, the data center will host the entire load.

Algorithm 2 shows the pseudocode of RDIFF that is executed by each agent a
v

2 A.
It takes as inputs its estimated load D

v

, which is a set of mappings (s, l, c) indicating

4 If there are multiple paths per client pool, we randomly choose one of them.

Title Suppressed Due to Excessive Length 9

Algorithm 2: RDIFF (D)
73 Parents Children ;
74 hostMap pushMap excessMap 2DCMap ;
75 foreach (s, l, c) in D do
76 if c is the “self” agent then
77 2DCMap 2DCMap [{(s, l, c, c)}
78 else
79 pushMap pushMap [{(s, l, c, r)}

80 (2DCMap, hostMap) KEEPPOSSIBLE(2DCMap)
81 while true do
82 foreach (s, l, c, r) 2 pushMap do
83 if @n : (s, n, c, r) 2 Children then
84 Children Children [{(s, n, c, r)} where n is the neighbor that sent

the request for service s from client pool c to server r
85 send (1, (s, l, c, r)) message to child n where (s, n, c, r) 2 Children

86 foreach (s, l, c, r) 2 excessMap do
87 send (2, (s, l, c, r)) message to parent n where (s, n, c, r) 2 Parents

88 foreach (s, l, c, r) 2 2DCMap do
89 send (DC, (s, l, c, r)) message to DC(s)

90 send (null, null) message to each neighbor that the agent did not send a message to
in this cycle

91 while not received message from all neighbors do
92 msgs ;
93 if received message m from neighbor n then
94 msgs msgs [{(m,n)}

95 RDIFF-PROCESSMESSAGES(msgs);

a load of l 2 R+
0 for service s 2 S from client pool c 2 A. Note that this estimated

load is different than that in CDIFF, where it now includes the information per client
pool. Like for CDIFF, we assume that the agent knows about its set of neighboring
agents N

v

. Also, the agent knows the data center DC(s) for each service s 2 S. In the
pseudocode, we drop the subscripts v since they always refer to the “self” agent.

Each agent maintains the following key data structures:
• Parents refers to the sets of service s, agent a, client pool c, and server r tuples
(s, a, c, r), where the agent a is the agent’s parent for service s, client pool c, and
server r in the directed graph built in Phase 1 of the algorithm.

• Children refers to a similar set as Parents, except that the agent a in the tuple is
the agent’s child for service s, client pool c, and server r in the directed graph built
in Phase 1 of the algorithm.

• hostMap, pushMap, excessMap, and 2DCMap are sets of service s, load l, client
pool c, and server r tuples (s, l, c, r); hostMap contains the information on how
much load l from each service s whose request originated from client pool c towards
server r will be hosted; pushMap contains the information for how much load will
be pushed from the server towards the client pool; excessMap contains the infor-

10 K. D. Hoang et al.

Procedure RDIFF-ProcessMessages(msgs)
96 foreach ((type,map), n) 2 msgs do
97 if type = 1 then
98 foreach (s, l, c, r) in map do
99 if c is the “self” agent then

100 (excessMap, hostMap) KEEPPOSSIBLE({(s, l, c, r)})
101 else
102 pushMap pushMap [{(s, l, c, r)}
103 if @p : (s, p, c, r) 2 Parents then
104 Parents Parents [{(s, n, c, r)}

105 else if type = 2 or type = DC then
106 foreach (s, l, c, r) in map do
107 if r is the “self” agent then
108 (2DCMap, hostMap) KEEPPOSSIBLE({(s, l, c, r)})
109 else
110 (excessMap, hostMap) KEEPPOSSIBLE({(s, l, c, r)})

mation for how much load will be pushed from the client pool towards the server;
and 2DCMap contains the information for how much load will be pushed from the
server directly to the data center.

Each agent first initializes these variables (lines 73-74). Then, it tries to host as
much of its own load as possible if it is the client pool. Excess load is aggregated into
2DCMap in preparation to be pushed towards the data center (line 76-77). Loads from
other client pools are aggregated into pushMap in preparation to be pushed out towards
those client pools (line 79). It then goes into an infinite loop (or until timeout) where it
runs the following processes in each cycle: It sends a message to each neighbor; waits
for messages from all neighbors; and processes those messages (lines 81-95).

At the start, the agent will iterate through pushMap and send a Phase 1 message
containing the amount of load to be pushed for each service, client pool, and server
combination to the appropriate child (lines 82-85). Upon receiving this information, the
child will aggregate that information into its own pushMap in preparation to be sent
to its child in the next cycle (line 102). This process continues until it reaches the client
pool, at which point, it hosts as much load as possible and stores the excess load in
excessMap (line 100).

In the next cycle, the client pool will iterate through excessMap and send a Phase 2
message containing the load to be pushed towards the server to the appropriate parent
(lines 86-87). Upon receiving this information, the parent will host as much load as well
and pushes the excess to its parent in the next cycle (line 110). This process continues
until all the load is hosted or it reaches the server. If the server does not have enough
capacity to host all the load, then it stores the excess load in 2DCMap (line 108).

In the next cycle, the server will iterate through 2DCMap and send a DC message
containing the amount to be pushed to the appropriate data center (line 89). As we
assume that the data centers have infinite capacity, all the load will then be hosted.

Title Suppressed Due to Excessive Length 11

6 Theoretical Results

We now discuss some of the theoretical properties of the algorithms, where we make
the standard assumptions that: (1) messages sent are never lost and are received in the
order that they were sent; and (2) there exists a path from each node of the network to
every other node of the network.

Lemma 1. In CDIFF, an agent with available capacity will eventually be part of the
tree of an overloaded agent as long as one such overloaded agent exists.

Proof (Sketch) : Since overloaded agents send Phase 1 messages that are propagated
throughout the network, the agent with available capacity will eventually receive one
such message and insert itself into the spanning tree of the overloaded agent that initi-
ated the series of messages that it received.

Lemma 2. In CDIFF, an overloaded agent will shed some of its excess load if its tree
includes agents with available capacity.

Proof (Sketch) : Since Phase 1 messages are repeatedly propagated throughout the net-
work until they either reach agents with enough capacity to host all the overloaded
services of the root agent or reach agents without any free neighbors (i.e., neighbors in
Phase 0), the phase is guaranteed to end after a finite number of cycles since the net-
work is of finite size. Then, Phase 2 messages are propagated from the leafs to the root
of the tree, upon which the root sheds some of its load based on the available capacities
of the agents in its tree in Phase 3.

Theorem 1. CDIFF is guaranteed to find a satisfying solution if one exists.

Proof (Sketch) : Based on Lemmas 1 and 2, it is easy to see that all overloaded agents
will eventually succeed at shedding their load assuming that there exists agents with
available capacity.

Theorem 2. RDIFF is guaranteed to find a satisfying solution if data centers have
infinite capacity.

Proof (Sketch) : It is trivial to see that each server will successfully push its load to the
client pools in Phase 1, and the agents along the path will host as much as possible in
Phase 2. Should the combined capacities of the agents along the path be insufficient to
host all the load, then the agent will send the excess load to the data center, which will
be able to host it since it has infinite capacity.

Theorem 3. If CDIFF and RDIFF finds a satisfying solution, it will take at most O(|A|·
d) cycles to do so, where d is the diameter of the network graph.

Proof (Sketch) : In the worst case, the network is a chain of length d and every agent a1,
. . . , a

d�1 along the chain is overloaded except for one agent a
d

at the end of the chain
that has sufficient capacity. In this scenario, agent a

d�1 will first succeed in shedding its
load to a

d

. Then, agent a
d�2 will shed its load and so on until agent a1 sheds its load.

Each time an agent sheds its load, it will take O(d) number of cycles to do so since each
phase of the algorithms take O(d) cycles and there is only a constant number of phases.
Since there are O(|A|) overloaded agents, the total runtime is O(|A| · d) cycles.

12 K. D. Hoang et al.

7 Related Work

Since our work is on the use of DCOPs for cloud computing applications, we will first
discuss work at this intersection before broadening the discussion to other DCOP-based
approaches on similar load balancing applications and other multi-agent approaches for
cloud computing applications. Within this intersection, the work by Rust et al. [19] is
most relevant, where they used DCOPs to model the problem of resiliently distributing
computation nodes in edge computing scenarios. Specifically, given a dynamic network,
where nodes in the network may fail and disappear over time, the goal is to identify
k nodes to host replicated services (aside from the one currently hosting the service)
such that the service is resilient to the node failures. There are several key differences
between their work and ours: (1) Their approach allows for node failures while our
approach assumes that the network remains unchanged over time. (2) Their approach
seeks to only identify k replicas to host services and migrates services to one of the
replicated nodes when the node hosting the service fails. In contrast, our approach seeks
to distribute the load across all the nodes that are hosting services to ensure that all load
can be served while optimizing for quality-of-service metrics like response times.

Within the broader application of DCOPs, aside from the many applications listed
in the introduction, the most relevant one to our problem is the one on dynamic load
balancing problems in wireless LANs [2]. In this problem, a set of access points need
to coordinate and identify who should serve each mobile station in a set of such mo-
bile stations. DCOPs are used to model this optimization problem, where the objective
optimizes the received signal strength of each mobile station as well as distribute the
load among all access points as evenly as possible. The key difference between their
work and ours is that the sources of load in their problem are the mobile stations that
physically move within an environment. In contrast, the sources of load in our problem
are service requests made by clients within a fixed topology.

Finally, other multi-agent based approaches such as negotiation and auctions have
also been used for resource allocation and load balancing problems in cloud comput-
ing [20, 4] and grid computing [8, 12]. The key difference is that these negotiation and
auction-based approaches often assume that the agents are self-interested and seek to
optimize their individual objective functions. In contrast, agents in our DCOP-based
approach are completely cooperative, where the goal is to optimize a global objective
function.

8 Experimental Results

In this paper, we empirically evaluate CDIFF and RDIFF algorithms against DPOP [16],
a state-of-the-art complete DCOP algorithm. However, it is important to note that it will
be impractical to use DPOP (or any other DCOP algorithm) as the information that they
need to optimize their utility function, which is the number of hops between all pairs of
nodes in the network, is often unavailable in practice. We therefore include the results of
DPOP mostly as a way to quantify the quality of solutions found by CDIFF and RDIFF
with respect to the optimal DCOP solution.

We evaluate the algorithms on random networks [5] with a density p1 of 0.5 and
scale-free networks [1], where we randomly choose a node as the data center in random

Title Suppressed Due to Excessive Length 13

|A| CDIFF RDIFF DPOP
A B C Total A B C Total Total

5 0.32 0.25 0.34 0.91 0.33 0.29 0.38 1.00 1.59
10 0.29 0.29 0.32 0.90 0.23 0.30 0.35 0.88 -
15 0.28 0.33 0.27 0.88 0.39 0.38 0.34 1.11 -
20 0.23 0.33 0.34 0.90 0.35 0.34 0.34 1.03 -

TABLE 1: Quality of Solutions on Random Networks

|A| CDIFF RDIFF DPOP
A B C Total A B C Total Total

5 0.28 0.28 0.31 0.87 0.29 0.27 0.36 0.92 1.56
10 0.27 0.23 0.30 0.80 0.26 0.25 0.33 0.84 -
15 0.14 0.15 0.18 0.47 0.19 0.18 0.23 0.60 -
20 0.21 0.21 0.23 0.65 0.20 0.19 0.24 0.63 -

TABLE 2: Quality of Solutions on Scale-Free Networks

networks and choose the node with the most number of neighbors as the data center in
scale-free networks. The data center initially hosts three services A, B, and C, and will
then redirect the service request to other nodes by following the solutions of the algo-
rithms. We randomly place three client pools in both random and scale-free networks.
Each client pool makes 10 batches of service requests, and each batch starts a minute
after each other. Each batch has 20 requests per service, and each request induces a load
of 0.1 units of resource. Each node has has a capacity of 20 units of resource, and the
data center has a capacity of 8 units. For all three algorithms, we set the thresholded
capacity of nodes to be 55% of their actual capacity. A node is a considered overloaded
if its predicted load is greater than its thresholded capacity.

We vary the number of agents |A|, which are nodes in the graph, from 5 to 20,
and we report the quality of solution measured using the utility function defined by
Equation (1) as well as the number of successful requests as a function of the number
of hops between the client pool and the server that served the requests. All experiments
were performed on an Intel Core i5, 2.0GHz machine with 8GB of RAM. Data points
are averaged of over 20 instances.

Tables 1 and 2 tabulate the quality of solutions found by CDIFF, RDIFF, and DPOP
on random and scale-free networks, respectively. As expected, DPOP finds the best
solutions since it explicitly optimizes for the global utility function while CDIFF and
RDIFF do not. Nonetheless, DPOP fails to solve the larger problems as it ran out of
memory. In both networks, RDIFF is often able to find better solutions with larger util-
ities than CDIFF. The reason is that RDIFF sheds the excess load towards the edge,
closer to the client pools. On the other hand, CDIFF sheds the excess load to nodes
around the data center, which tends to be further away from the client pools. The differ-
ence in solution qualities between RDIFF and CDIFF is more pronounced in scale-free
networks than in random networks. The reason is that the distance between client pools
and data centers is often times larger in scale-free networks than in random graphs.

14 K. D. Hoang et al.

|A| CDIFF RDIFF DPOP
0 1 2 3 Total 0 1 2 3 Total 0 1 2 3 Total

5 1805 683 845 127 3460 10407 230 354 50 11041 1290 1084 307 0 2681
10 1307 1241 728 59 3335 11652 503 296 49 12500 - - - - -
15 522 1391 799 49 2761 10607 976 523 33 12139 - - - - -
20 107 1286 977 0 2370 1362 1032 851 0 3245 - - - - -

TABLE 3: Number of Successful Requests on Random Networks

|A| CDIFF RDIFF DPOP
0-3 4-6 7-10 Total 0-3 4-6 7-10 Total 0-3 4-6 7-10 Total

5 3681 0 0 3681 11687 0 0 11687 4576 0 0 4576
10 2929 187 0 3116 11171 92 0 11263 - - - -
15 1834 452 30 2316 12065 181 0 12246 - - - -
20 2315 383 74 2772 11359 172 24 11555 - - - -

TABLE 4: Number of Successful Requests on Scale-Free Networks

Tables 3 and 4 tabulate the number of successful requests as a function of the num-
ber of hops between the client pool and the server that served the requests. We make
the following observations:

• RDIFF has a larger fraction of successful requests served closer to the client pool
compared to CDIFF. In fact, in most cases, more than 80% of the requests were
served in the node that is also the client pool (when the number of hops is zero). This
observation is to be expected since RDIFF pushes the load towards the client pools
while CDIFF diffuses the load around the data center.

• All three algorithms did not succeed in successfully serving all requests. A request is
considered to be a failed request if it is not served within a prescribed time window,
which occurs when the request is directed to a node that is busy serving other re-
quests and have a large number of pending requests in its queue. This occurs during
the execution of the algorithms before they found a load-balanced solution. During
the execution time of the algorithms, the agents execute the default strategy of serv-
ing all requests at the data center, which is overloaded. As a result, the longer the
execution time of an algorithm, the larger the number of failed requests due to the
default strategy. Another reason for failed request is a mismatch between the actual
load, which is based on the actual number of requests, and the estimated load, which
is based on the number of requests in the past. Since the load-balanced solutions are
based on estimated loads, some requests may fail if the actual load is underestimated.

• DPOP has the smallest number of successful requests compared to CDIFF and
RDIFF. The reason is because it has the longest runtime. As a result, it has the most
number of requests being directed to an overloaded data center.

• RDIFF has a larger number of successful requests than CDIFF. The reason is because
there are more nodes with loads that are closer to the thresholded capacity in CDIFF
than in RDIFF. In CDIFF, loads from all three services are congregated around the
data center. In contrast, in RDIFF, load from each service is dissipated towards the
client pool for that service.

Title Suppressed Due to Excessive Length 15

In summary, these empirical results show that RDIFF is better than CDIFF in terms
of both the DCOP utility function of, despite both algorithms not optimizing that func-
tion explicitly, as well as the number of successful requests served.

9 Conclusions and Future Work

In this paper, we proposed a distributed constraint reasoning approach to model and
solve a distributed load balancing problem in edge computing. Our two algorithms,
Distributed Constraint-based Diffusion Algorithm (CDIFF) and Distributed Routing-
based Diffusion Algorithm (RDIFF), are guaranteed to find satisfying solutions (i.e., all
the estimated load will be served by nodes in the network) under certain conditions.
Further, despite not optimizing for the global objective function explicitly, because it is
impractical to do so as the information needed to do so (= number of hops between all
pairs or nodes in the network) is often unavailable in practice, RDIFF still found solu-
tions that are within 60% of optimal. Experimental results also show that both CDIFF
and RDIFF can scale better than DPOP, a state-of-the-art DCOP algorithm, and that
RDIFF is better than CDIFF in terms of the number of successful requests served.

Future work includes integrating CDIFF and
RDIFF into a single algorithm, where, like RDIFF,
data centers propagate their entire loads received
to their respective client pools. However, unlike
RDIFF, which allocates the loads to the agents
along the paths from the client pools to the data
centers only, the integrated algorithm allocates the
loads around the client pools like in CDIFF. This

30

10

A

0

10

B

0

10

C

0
10 D

0
10 E

FIG. 3: Motivating Scenario for In-
tegrating CDIFF and RDIFF

will likely result in more load being hosted closer to the client pools. Figure 3 illustrates
such a motivating example, where, like the example in Figure 2, numbers in circles are
the current loads of the nodes and red numbers are the capacities. In this example, node
A is the data center serving 30 units of load from a client pool at node D. RDIFF would
have allocated 10 units of load to nodes B, C, and D, and cannot consider allocations
to E since it is not on the path from A to D. In contrast, a better solution would be to
allocate 10 units of load to C, D, and E, and such a solution would be found by the
integrated algorithm. Finally, we also plan to improve all of hese algorithms so that
they are more resilient to dynamic changes [19] as well as proactively take into account
anticipated future changes [9, 10].

10 Acknowledgment

This research is supported by Defense Advanced Research Projects Agency (DARPA)
contract HR001117C0049. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government. This document does not contain
technology or technical data controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations. Approved for public release,
distribution unlimited (DARPA DISTAR 31530, 6/6/19).

16 K. D. Hoang et al.

References
1. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413

(2009)
2. Cheng, S., Raja, A., Xie, J., Howitt, I.: DLB-SDPOP: A multiagent pseudo-tree repair algo-

rithm for load balancing in WLANs. In: Proceedings of WIIAT. pp. 311–318 (2010)
3. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Journal of

Parallel and Distributed Computing 7(2), 279–301 (1989)
4. Du, L., Bigham, J., Cuthbert, L., Nahi, P., Parini, C.: Intelligent cellular network load bal-

ancing using a cooperative negotiation approach. In: Proceedings of WCNC. pp. 1675–1679
(2003)

5. Erdös, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen) 6, 290–
297 (1959)

6. Evans, D.: The internet of things: How the next evolution of the internet is changing every-
thing. CISCO White Paper 1(2011), 1–11 (2011)

7. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and appli-
cations: A survey. Journal of Artificial Intelligence Research 61, 623–698 (2018)

8. Grosu, D., Das, A.: Auction-based resource allocation protocols in grids. In: Proceedings of
ICDCS. pp. 20–27 (2004)

9. Hoang, K.D., Fioretto, F., Hou, P., Yokoo, M., Yeoh, W., Zivan, R.: Proactive dynamic dis-
tributed constraint optimization. In: Proceedings of AAMAS. pp. 597–605 (2016)

10. Hoang, K.D., Hou, P., Fioretto, F., Yeoh, W., Zivan, R., Yokoo, M.: Infinite-horizon proactive
dynamic DCOPs. In: Proceedings of AAMAS. pp. 212–220 (2017)

11. Hu, Y., Blake, R.: An optimal dynamic load balancing algorithm. Tech. rep., SCAN-9509056
(1995)

12. Izakian, H., Abraham, A., Ladani, B.T.: An auction method for resource allocation in com-
putational grids. Future Generation Computer Systems 26(2), 228–235 (2010)

13. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence 161(1–2), 149–180 (2005)

14. Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First-and second-order diffusive methods for
rapid, coarse, distributed load balancing. Theory of Computing Systems 31(4), 331–354
(1998)

15. Paulos, A., Dasgupta, S., Beal, J., Mo, Y., Hoang, K., Lyles, J.B., Pal, P., Schantz, R., Schewe,
J., Sitaraman, R., Wald, A., Wayllace, C., , Yeoh, W.: A framework for self-adaptive disper-
sal of computing services. In: IEEE Self-Adaptive and Self-Organizing Systems Workshops
(2019)

16. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Pro-
ceedings of IJCAI. pp. 1413–1420 (2005)

17. Puthal, D., Obaidat, M.S., Nanda, P., Prasad, M., Mohanty, S.P., Zomaya, A.Y.: Secure and
sustainable load balancing of edge data centers in fog computing. IEEE Communications
Magazine 56(5), 60–65 (2018)

18. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge: A platform for replicating
internet applications. In: Web Content Caching and Distribution, pp. 57–77. Springer (2004)

19. Rust, P., Picard, G., Ramparany, F.: Self-organized and resilient distribution of decisions over
dynamic multi-agent systems. In: International Workshop on Optimization in Multiagent
Systems (2018)

20. Shen, W., Li, Y., Ghenniwa, H., Wang, C., et al.: Adaptive negotiation for agent-based grid
computing. Journal of the American Statistical Association 97(457), 210–214 (2002)

21. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)
22. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for for-

malizing distributed problem solving. In: Proceedings of ICDCS. pp. 614–621 (1992)

