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Computation increasingly takes place not on an
individual device, but distributed throughout a
material or environment, whether it be a silicon
surface, a network of wireless devices, a collection
of biological cells, or a programmable material.
Emerging programming models embrace this reality
and provide abstractions inspired by physics, such
as computational fields, that allow such systems to
be programmed holistically, rather than in terms of
individual devices. This paper aims to provide a
unified approach for the investigation and engineering
of computations programmed with the aid of space-
time abstractions, by bringing together a number of
recent results, as well as to identify critical open
problems.

1. Introduction

A major transition is ongoing in the way in which
we interact with computing devices. Historically, the
cost and complexity of computers had ensured that
they were distributed only sparsely in space, except in
certain special cases such as data centers. Thus, even
though computers are of course physically implemented,
it has been reasonable to use programming models that
treat a computer as an abstract device, only incidentally
connected to the physical world through inputs and
outputs.

These assumptions, however, are breaking down in
a number of ways. Rather than individual devices, we
increasingly require aggregates of devices, co-located in
space and time, to cooperate in accomplishing computing
tasks. Major trends in this direction include:

e Decreasing cost and size of electronics are
leading to a vast increase in the number of
wireless networked computing devices, from
phones and tablets to smart lighting, point-of-
service terminals, and more. Desired interactions
between devices are often highly localized,
covering such diverse uses as tap-to-pay, Bluetooth-
enabled multiplayer games, augmented reality,
and home automation.
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e The continuing expansion of GPUs and multi-core processors means that even an
individual modern “computer” is now a collection of many computing devices, and the
performance of this collective depends critically on the relationship between information
flow patterns and the relative spatial locations of the devices.

o Advances in materials science and biology are allowing simple computing devices to be
fabricated directly within novel substrates, such as fabric or living cells. These typically
comprise vast numbers of extremely simple and error-prone computing devices, each
interacting with only a few nearby neighbors yet needing to act coherently as a collective.

In all cases, the individual device is rapidly shrinking in importance: what is needed is to be able
to reliably engineer collective behaviors out of such aggregates.

With ordinary programming approaches, which focus on individual devices, a system
designer is faced with the notoriously difficult and generally intractable “local-to-global” problem
of predicting a possibly emergent collective behavior from the specifications for individual
devices. A better approach is to take an aggregate programming perspective, in which one specifies
collective behavior by composing “building block” algorithms, each of which has a known
mapping from collective behavior to a set of local interactions that produce that behavior. While
theoretically there is no difference in the formal expressive power of aggregate programming
and more conventional programming, these collective abstractions can greatly increase the
effective power by disentangling various aspects of distributed system design and allowing some
aspects to be handled automatically and implicitly. This can be particularly effective for spatially
embedded systems, where geometric constructions provide a ready source of useful building
block algorithms.

A number of different research communities have recognized this challenge, and have
developed a wild menagerie of domain-specific models for so-called space-time computation,
namely, computation expressed (more or less explicitly) in terms of properties of the physical
time and space in which it occurs—a thorough survey may be found in [1]. Recently, however,
there have been a number of unifying results, which have the potential to lead to a more general
and broadly applicable theory of aggregate programming and to effective tools for practical use
of aggregate programming in a variety of application domains.

The aim of this paper is to draw these results together to provide a unified model for the
investigation and engineering of space-time programming. Section 2 begins by discussing the
relationship between discrete computational devices and the continuous space-time in which
they are embedded. Section 3 then lays out a roadmap for mastering space-time computing
systems through development of aggregate programming capabilities. Following this roadmap,
Section 4 presents field calculus as a mathematical foundation for aggregate programming, and
Section 5 builds on this foundation toward effective, composable libraries for engineering resilient
distributed systems. Finally, Section 6 summarizes these results and discusses key open problems.

2. Discrete Devices versus Continuous Space-Time

Most space-time approaches to computation draw on the same fundamental observation: a
network of interacting computing devices may be viewed as a discrete approximation of the
space through which they are distributed [1]. At the same time, a wide variety of applications
can be naturally phrased in spatial terms, e.g., using sensors to sample an environment, modeling
a natural phenomenon with spatial and temporal extent, or providing a service to users within
a spatial region. For such applications, programming abstractions that take advantage of this
observation about the relationship between networks and space can be highly valuable. On
the one hand, they can disentangle the specification of the application from the details of its
distributed implementation on a network, also helping in the creation of systems more insensitive
to environment perturbations of various sorts. On the other hand, they can ultimately provide
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engineers with a set of high-level constructs (language features, APIs, middleware services) to
implement complex robust systems in an effective way.

To exploit this relationship, however, we must resolve the conceptual tension between discrete
devices executing a computation in discrete steps, and the continuous space-time environment
in which this computation takes place. Some approaches attempt to avoid this tension either
by specifying computation using purely continuous representations such as partial differential
equations (e.g., [2,3]), or by considering only quantized actions in quantized spaces (e.g., cellular
automata such as [4] or [5], modular robotics such as [6] or [7], or parallel computing such as with
StarLisp [8]).

For many systems, however, such evasions are not practical. Computations often require
distinctly discrete operations such as conditional branching or iterative state update.
Complementarily, it is rarely the case that it is practical to operate a crystalline arrangement of
many devices in perfect synchrony—even parallel computing is becoming more asynchronous. In
order to take advantage of geometric constructs in programming spatially-distributed systems, it
is thus necessary to have some theoretical framework for mapping between a continuous region of
space and time and a set of discrete computational events taking place on computational devices
within that region. This mapping must generally be bidirectional: the mapping from continuous
to discrete is needed in order to generate local execution rules for implementing aggregate-
level geometric constructs, while the mapping from discrete to continuous is used to understand
how the results of a computation can be applied to its environmental context, and to raise the
abstraction level up to be less dependent on actual physical location of devices and timing of
their executions.

One such mapping is to consider the collection of discrete devices and events as a sample
of a continuous environment—devices as samples of space or events as samples of space-time.
This type of approach is most readily applicable when devices are physically much smaller
than the gaps that separate them, such as in sensor networks (e.g., [9,10]), which are naturally
viewed as sampling an environment, or in swarm robotics (e.g., [11]). A complementary mapping
considers the space as a geometric construct formed by stitching together a discrete collection of
space-filling “cells.” This type of approach, notably used in frameworks such as MGS [12,13] and
Gro [14], is more commonly used in biological modeling and in topological investigations.

Most approaches to space-time programming have been relatively ad hoc and informal in
how they actually specify the relationship between continuous space and discrete computation.
Recently, however, there has been an effort to improve the coherence and mathematical grounding
of these computational abstractions. In this paper, we will discuss two complementary examples
of such computational abstractions for programming discrete networks of devices embedded in
continuous environments. The first, called the amorphous medium abstraction, aims to address
issues of scale and perturbation sensitivity by viewing a network of computational devices as a
discrete approximation of a computational continuum. The second, computational fields, views
computation in terms of operations on field functions that map from a domain (continuous or
discrete) of devices to a range of values that may be held by devices in the domain. When these
two complementary concepts are used together, they pave the way towards a sound methodology
for the development of complex distributed systems, as described in the following sections.

(@) The Amorphous Medium Abstraction

The amorphous medium abstraction [15] is a computational abstraction intended to help address
two common issues in distributed algorithms: scalability and sensitivity to network structure.
This abstraction, illustrated in Figure 1(a), is based on the view of a network of locally-
communicating devices as a discrete approximation of the continuous space through which they
are distributed. Now consider an infinite series of such networks in which the density of devices
increases, while the time between communications and distance over which devices communicate
decrease proportionally. The limit of this series is a continuous space filled with continuously
computing devices and continuously propagating “waves” of communication—in particular, the
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Figure 1. The amorphous medium abstraction (a) considers an infinite collection of computing devices, one at every
point in a manifold, interacting by accessing the recent past state of devices within some neighborhood of space. This can
be approximated (b) by a network in which each device repeatedly broadcasts relevant states to its immediate network
neighbors.

output of computation in each point can be viewed as a property of the space at that point, as
explored in next section. Because this continuum represents both extreme scale and a dissolution
of discrete network structure, programs that can operate correctly both on this continuum and
also in approximation are likely to have good resilience against both scale and the particulars of
how devices are arranged in space.

More formally, the amorphous medium abstraction is defined as follows:

o The space is a Riemannian manifold, ensuring support for commonly used geometric
constructs such as integrals, gradients, curvature, and angles.1

e At every point in space, the abstraction assumes there is a universal computing device,
forming an uncountably infinite set of computing devices (the limit as network density
goes to infinity).2

o Information propagates through the manifold continuously at no more than a bounded
maximum velocity of c (representing hop-by-hop communication in a discrete network).

e Each device is associated with a local neighborhood of devices no more than some
distance r away (representing the locality of communication). A device then has access
to the recent past state of any of its neighbors—in particular, for a neighbor at distance d,
the device has access to state from d/c seconds in the past.

Obviously, such an uncountably infinite collection of devices cannot be physically
implemented, but it can be approximated, as illustrated in Figure 1(b). In particular, computation
specified for the abstraction of an amorphous medium can be approximated by a network in
which each device repeatedly broadcasts relevant states to its immediate network neighbors.
We may then quantify the continuous/discrete relationship by comparing the values of the
approximation to the values that would be produced by computation on an amorphous medium,
per [16].

Because it refers only to space, this definition of the amorphous medium applies only to non-
mobile devices, in which it has been shown to be very useful. However, the model can be extended
!Though they are all suggested to be useful in practice [1], for some applications weaker properties may be sufficient and
another class of manifolds could be substituted.

*Note that yes, this does mean an amorphous medium is theoretically super-Turing; in practice, of course, only finitely-
approximable computations [16] appear to be realizable in our universe, and this subset is Turing-equivalent.
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Figure 2. The amorphous medium abstraction illustrated in Figure 1 may be extended to allow devices to move, in either
continuous (a) or discrete (b) models, by considering each device to follow a trajectory in space-time, with its neighborhood
adjusting as it goes.

to support devices that may move in space, by considering each device as a sequence of events
along a trajectory in space-time, the set of which comprises the manifold or network (illustrated in
Figure 2). In particular, it is necessary that devices do not intersect one another, either physically
or in the continuous abstraction. In the physical world, the problem is the obvious physical reality
of collision; in the continuous abstraction, it can require the manifold to hold two contradictory
values at a single location. Additionally, in physics the movement of particles within space-filling
materials depends on the state of matter that they are in: In a gas, there is enough space that
particles can flow past one another; in a liquid, the presence of viscous forces is modelled by
the vorticity functions, whose effect can be visualized as causing the particles to rotate past one
another; while in a solid, most particles cannot move at all except through the propagation of
vacancies through the material. These physical models may provide useful clues for how to
approach mobile devices, as suggested in [17]—an open issue to be formally addressed in future
works.

Regardless of these outstanding theoretical questions, the amorphous medium abstraction
is a generalisation over many other approaches to space-time programming [1], which are
based on a continuous/discrete relationship that is at least somewhat compatible, if often less
formally defined. The amorphous medium abstraction, however, only provides a way of relating
continuous and discrete aggregate programs, but does not suggest how such programs might
be specified. For that, we must turn to other complementary abstractions such as computational
fields.

(b) Computational Fields

Computational fields are another widely used space-time programming concept [1], recently
formalized in the study of the semantics of Proto [18] and the computational field calculus [19].
The basic notion of a computational field is another example in which computer science looks
towards physics to draw inspiration: a field in physics is a function that maps each point in
some domain of space-time to a value, such as an electromagnetic potential or a force vector.
Computational fields are the same, but may range over arbitrary computational objects. Thus,
in addition to scalar fields, such as temperature, and vector fields, such as wind velocity,
computational fields might also hold more complex data like sets, such as an inventory of items
to be stocked on a store shelf, or records, such as XML descriptors of those inventory items. Of
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course, not all kinds of computational fields can be manipulated in the same way; for instance,
gradients are not well-defined for non-numerical values. This is actually quite a standard situation
in computer languages: operators should not be applied to all values, and this is readily enforced
by a system of type constraints that restricts operators to be applied only to suitable input values.

The concept of a computational field is well-defined for discrete networks as well. Discrete
fields have a long history of usage in physics, e.g., in lattice gas models [20,21]. The particulars of
an implementation may need to be adjusted, e.g., to cope with the differences between crystalline
and amorphous networks, but the approach remains otherwise the same. Importantly, this means
that computational fields may even be used for programming networks and applications that do
not map well onto continuous manifold models, as developed in [22,23].

Given the basic concept of a computational field, aggregate computations can be constructed
using operations on fields, taking fields as inputs and producing fields as outputs. Considered as
an element of a program, a field is the distributed equivalent of a value or variable on a single
device. A consistent programming model for this environment then provides a set of operations
on fields that, when mapped to equivalent operations on individual devices, produces the same
value as when the fields are manipulated directly as mathematical objects. From there, we may
map a field computation to local execution by placing the value at each point in each field to its
corresponding device in the network, and executing the equivalent local operations.

Computational fields are also a natural complement for the amorphous medium abstraction.
Since the domain of a field may be either discrete or continuous, fields can be readily mapped
from the abstract continuous model to realization on a discrete network. Thus for any network
that approximates an amorphous medium, we may consider the approximation of a continuous
field on the manifold by a discrete field on the network. Thus taken together, these two
complementary concepts of amorphous medium and computational fields form the basis for the
approach to space-time programming that is the focus of the remainder of this paper.

3. Aggregate Programming

Programming robust spatially-distributed systems is particularly challenging because of the
several interacting aspects of distributed systems that must be simultaneously addressed:

o Efficient and reliable communication of information between individual devices.

e Coordination across many devices to provide robust services in the face of ongoing
failures and changes in the network.

o Composition of subsystems and modules to determine which types of coordination are
appropriate between which sets of devices in various regions of space and time.

Conventional programming methods focus on individual devices and their interactions, meaning
that all of these aspects must be addressed simultaneously in the same program. A programmer
developing a distributed application is thus challenged to solve a particularly complex version
of the notoriously difficult local-to-global problem, of determining a set of per-device actions and
interactions that will produce good behavior for all of these aspects simultaneously. Since none
of the aspects is isolated from the others, this often results in different concerns of coordination
becoming threaded together within a single body of code. Space-time computations developed in
this way thus tend to suffer from some combination of being badly performing, confusing to use,
difficult to maintain, and/or not readily decomposable for reuse of modules.

Aggregate programming approaches generally address this problem by providing abstractions
that allow each aspect to be addressed separately, namely more easily supporting an implicit
management of some non-functional aspects related to robustness. Namely:

e Device-to-device communication is typically made entirely implicit, either choosing a
domain-optimized set of assumptions for managing trade-offs between efficiency and
robustness or else providing higher-level abstractions for controlling those trade-offs.
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Figure 3. Diagrammatic representation of device-centric programming of distributed algorithms (a) versus aggregate

programming (b). Device-centric programming designs a complex system in terms of the behavior of a single device,
while with aggregate programming, algorithmic building blocks can be scoped and composed directly for the aggregate.

o Distributed coordination methods are encapsulated as aggregate-level operations (e.g.,
measuring distance from a region, spreading a value by gossip, sampling a collection
of sensors at a certain resolution in space and time). In some cases, the set of available
operations is fixed, while in others it can be extended using some sub-language for
creating and encapsulating coordination methods.

o The overall system is specified by composing aggregate-level operations in various ways.
This specification is then transformed into a complete distributed implementation by
mapping each aggregate-level operation to its corresponding encapsulated coordination
method, and these in turn use the provided implicit device-to-device communication
model.

(a) Example: Distributed Crowd Management

Figure 3 illustrates the difference between conventional and aggregate programming with an
example of a crowd-management application, based on [23] and [24]. Such an application might
be distributed to the cell phones of people attending a very large public event, such as a
marathon or a major city festival [25]. In such environments, the communications infrastructure
is often overwhelmed, while at the same time the movements of large crowds in relation to
unanticipated obstacles and events can create dangerous situations that frequently result in
injuries and deaths [26]. Since crowd density and motion are spatial phenomena, this is a good
example of where spatially local communication between cell phones might be used to build an
effective safety application for detecting high-density areas and helping to avert danger.

Figure 3 shows an example in which such an application is architected in terms of four
interacting services: the core service is a distributed algorithm that estimates the crowd density
function over space through local communication between cell phones. Based on this estimate,

H
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people near dangerously large and dense areas of crowd can be alerted, and the subset inside
those areas given advice on how to safely move to alleviate the danger, while at the same time
other parts of the crowd can be given density-aware navigation that helps people move around
within the event space while avoiding highly congested regions.

Implemented with a device-centric programming approach, it is necessary to create a
composite crowd-management application that implements a single-device fragment of all four
services together. The information to be communicated between services must be collected and
packaged for exchange between devices. Devices then decide which fragments of the composite
application to run by examining both their local information and the information packages
received from other devices.

With an aggregate programming approach, on the other hand, each service is designed and
encapsulated separately. The crowd estimation service outputs a distributed model. Each of the
other services then uses this model both as an input and to determine the subspace on which that
service should run—i.e., the subset of devices that should execute the coordination methods that
implement the service. This functional composition of services forms the complete application,
whose communication details can be determined automatically by composing the communication
requirements of the individual services.

The final set of actions and communications may be the same in both cases. The aggregate
programming architecture is much cleaner and more modular than with device-centric
programming, however, because the implementation of the coordination services has been
separated from how they are composed and how their communication is implemented.

(b) Approaches to Aggregate Programming

The survey of methods for programming spatial aggregates in [1] identified a large number of
distinct approaches. These various approaches consider a wide variety of different domains, from
sensor networks and modular robotics to high-performance computing, from synthetic biology
to pervasive embedded systems, and more. Despite this diversity of methods and domains,
however, all share the unifying challenge of space-time constraints on communication, and define
computation over a distributed set of data elements (hence, implicitly or explicitly adhering to
the notion of a computational field). This leads to the emergence of commonalities between the
various approaches®. In particular, [1] found that aggregate programming methods for space-time
computation tend to fall into four categories:

o Device Abstraction Languages do not actually address the local-to-global problem, but
instead aim to allow a programmer to focus more clearly on grappling with it. These
languages do this by by providing abstractions that implicitly handle other system details
such as local communication protocols. Prototypical examples include NetLogo [5],
Hood [27], TOTA [28], Gro [14], MPI [29], and SAPERE [30].

e Pattern Languages allow aggregate programming of certain classes of geometric or
topological constructions. Prototypical examples include Growing Point Language [31],
Origami Shape Language [32], and the self-stabilizing pattern language in [33].

o Information Movement Languages gather information from certain regions of space-time,
process it, and deliver it to other regions. The domain of sensor networks has particularly
many of such languages, such as TinyDB [9] and Regiment [10].

o General Purpose Spatial Languages aim to provide domain-general methods for aggregate
programming of space-time computations. These are the most recent to emerge and there
are very few as yet, the most mature being Proto [34], Protelis [35], MGS [12], and field
calculus [19], the last of which will be discussed in detail in the next section.

%Some aggregate programming approaches actually neglect space-time constraints, as they rely on the non-situated
parallelism typical of cloud-based architectures like Hadoop (http://hadoop.apache.org). As this paper focuses on
spatially-structured networks, however, this view is not considered further herein.
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Figure 4. Layered roadmap for development of spatially-distributed systems via aggregate programming: a core calculus
with provable aggregate/local relations can be used to express a collection of general and composable “building block”
algorithms with desirable collective properties. Patterns of building-block use can then be captured in domain-specific
libraries readily usable for distributed system construction.

For the development of effective aggregate programming for real-world spatially-distributed
applications, it is necessary to focus on general purpose spatial languages. While pattern
languages and information movement languages provide a number of elegant examples of
aggregate programming, they are also generally sharply limited in the types of coordination
methods (and thus computations) that they support. Real-world applications will typically be
much more complex, often requiring many different types of coordination to be combined, as
well as the ability to integrate smoothly with non-spatial aspects of the application, like user
interaction, sensor processing, actuator control, and cloud services. To address such challenges,
we instead need general purpose spatial languages, which provide an open world that can be
extended with new coordination methods and connections to external services, at the cost of
providing less guarantees when these capabilities are used.

Figure 4 shows a layered approach to development of spatially-distributed systems via
aggregate programming with general purpose spatial languages. The foundation of this approach
is a minimal core calculus, expressive enough to be a universal computing model but terse enough
to enable a provable mapping from aggregate specifications to equivalent local implementations.
One such model is the field calculus [19] presented in the next section. The next layer uses this
minimal calculus to express a collection of higher-level “building block” algorithms, each being
a simple and generalized basis element of an “algebra” of programs with desirable resilience
properties. Section 5 discusses the development of such a collection, and how patterns for using
and composing building blocks can be captured in higher-level library APIs, enabling simple and
transparent construction of robust distributed systems.

4. Foundation: Field Calculus

Field calculus [19] provides a theoretical foundation for aggregate programming, grounding on
the idea of computing by functional manipulation of computational fields. Its aim is to provide
a universal model that is terse enough for mathematical proofs of general properties about
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Figure 5. Field calculus is a minimal syntax and semantics for construction of aggregate programs with a coherent
mapping from aggregate syntax to local syntax.
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(a) rep (b) nbr (c) if

Figure 6. Special constructs of field calculus: (a) (rep v i e) creates a persistent state variable v, initialized to i
and updated with expression e each round; illustration shows a state variable being used to remember a single character.
(b) (nbr e) gives each device a collection of the values of e held by its neighbors; illustration shows the neighborhood
(green) of one of the devices (red) (c) (1f e t £) splits the network/space into two subspaces, evaluating t where
e is true (orange) and £ where it is false (purple); grey links are ignored because they cross between the two subspaces.

aggregate programming and the aggregate/local relationship, just as A-calculus [36] provides for
functional programming, m-calculus for parallel programming [37], or Featherweight Java [38] for
object-oriented programming,.

(a) Syntax and Semantics of Field Calculus

Field calculus [19] is a minimal expressive model for computation with fields, developed by
refining the set of key operations in the wide range of domain-specific languages for space-time
computation surveyed in [1] to find a small covering set. From this survey, it was decided to
base field calculus on Proto [34], which is one of the few current general purpose space-time
programming languages and which has quite general capabilities. Proto, however, has far too
complicated a syntax and semantics (as developed in [39]) and is not practical for mathematical
analysis. Field calculus was thus developed by finding a minimal set of operations that, with
appropriate syntactic sugar, could cover all of Proto as well as certain capabilities not supported
by Proto but supported by other languages.

As might be expected from its name, the value of any field calculus expression is a
computational field ¢, mapping from a potentially time-varying domain of devices to a value
for each device at each point in time. From this very consideration, one derives that such
an aggregate-level interpretation, which we shall follow in the remainder of this paper, is an
improvement and extension over the classical pointwise interpretation of distributed system
programming, in which the focus is still on the single device (in a given position of space)
computing a single value (at a given time).
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Fields are computed and manipulated according to the functional (Lisp-like) syntax shown
in Figure 5 (overbar notation denotes sequences, e.g., € stands for e; ...ey, with n > 0). Fields
may either be literal data values (e.g., 5, "username™") representing constant-valued fields over
their domain, or else expressions that combine fields using five types of operation. The first two
of these are generic, appearing in any functional programming language, while the other three
(illustrated in Figure 6) are special constructs for support of aggregate programming:

o Built-in operators are a collection of primitive operations (symbol b) taking in zero or
more input fields and functionally computing an output field. Most specifically, the value
of the resulting field at a device is the result of applying the built-in operator to the
inputs at the same device. For example, multiplication of two numerical fields ¢; and
¢2 yields a field ¢ mapping each device in space-time to v * va, where vy and v are the
values to which ¢1 and ¢2 map that same device. Similar per-device definitions hold for
other mathematical (e.g., addition and sine over numbers) and logical (e.g., conjunction
and negation over Booleans) operators, or more generally for any operator that can
be effectively computed with only local information (e.g., concatenation over strings,
union over sets, minimum over the range of functions on finite domain). Additionally,
built-in operators can be context-dependent, meaning that their result can be affected
by the current state of the environment, or conversely can affect the environment.
Examples include sensors (yielding a field of values, e.g., temperature), actuators (taking
a field which feeds some actuator, e.g., to signal alerts on cell phones), and environment
“observers” (e.g., detecting close neighbors, as a field of sets of device ids).

o Function definition and function calls follow the standard pattern of functional

programming: a declaration (def f (x1 ... xp) e) defines a function named f,
which may then be called using (f e; ... ep) to produce a value equivalent to
evaluating body e with each variable replaced by its corresponding input (i.e., x1
replaced by ey, etc.).

o Persistent state variables are defined by the “repeat” construct (rep x w e), which is
used to create fields that dynamically evolve over time. The rep construct initially sets
variable x to the field value ¢ given by constant or variable w. At every “distributed”
computation step this field value recomputes by evaluating e using the prior value of
x. For example, expression (rep x 0 (+ x 1)) denotes a field counting how many
computations have happened at each device—it maps each device to 0 in the first round
when that device is included in the domain, and it is incremented with each further
computation where the device continues to remain in the domain.

o Values from neighbors are obtained with the construct (nbr e), which produces a field of
(finite-domain) functions as its output: to each device d it associates a map (or function)
from d’s neighbors to the value that each neighbor holds for e (which implicitly implies
communication with those neighbors). Hence, the output of (nbr e) can be viewed
as a field of fields, since the value of the field at each device d is itself a field. Note
that the semantics of the field calculus do not allow nesting of nbr constructs to create
fields of fields of fields (and the like). These collections of neighbor values can then be
manipulated and summarized by built-in operators, such as min-hood, which creates a
field of the minimum values in each device’s neighborhood.

o Domain restriction is a reduction in the set of devices over which an expression is
evaluated. The construct (if eg e; e2) takes a Boolean-valued field for eg (namely, a
field mapping devices to Boolean values) and computes e1 only using a domain restricted
to those devices where e is frue, and e only using those where it is false.

Any field calculus program is then a sequence of function definitions, followed by a main
expression to be evaluated. For example, consider a distributed sensor temperature, realized
in the form of a numeric temperature sensor available in each device, hence producing a discrete
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scalar field that approximates the continuous physical scalar temperature field. A simple gossip
computation that tracks the lowest temperature ever sensed by the aggregate may be defined as:

;; gossip-min computes a constant-valued field holding the minimum ever observed for ““value”
(def gossip-min (value)
(rep lowest
;; The minimum starts as infinity ...
infinity
;... and it keeps decreasing using the minimum value across neighbors.
(min value (min-hood (nbr lowest)))))

;; main expression: obtain the minimum value of temperature ever observed
(gossip-min (temperature))

As a theoretical construct, the semantics of field calculus is defined in terms of a discrete
network of devices evaluating a program across a discrete sequence of time points (full formal
details are given in [19]). This is implemented by giving every device a copy of the expression,
then performing periodic unsynchronized evaluations on each device. The nbr expressions are
supported by having each device track the values it computes for each sub-expression during
evaluation® and then broadcasting this information to its neighbors between evaluation rounds.

(b) Properties of Field-based Aggregate Computations

Following the “core calculus” approach that is traditional of the programming language
community, the field calculus aims for a suitable trade-off between expressiveness and simplicity.
Though a wide set of aggregate computations can be expressed, it also plays the role of a
mathematical tool one can fruitfully exploit to: (i) define general properties of interest and prove
their validity [40] (typically, by induction on the syntactic structure of an expression), (ii) isolate
fragments with specific behavioural properties [41], (iii) design new mechanisms by extension
[42], and (iv) pave the way toward sound implementation of tool support [35]. We here recap
some of the basic properties that have been investigated so far:

o Global-local coherence: Coherence of the aggregate field computations in a distributed
execution is maintained for field calculus by tracking which nbr operations align with
one another, meaning that they are part of the same aggregate operation and should
share information via the field output by nbr. Determining alignment has a number
of subtleties stemming from the fact that execution may proceed differently on different
devices, and that any given function may be called multiple times. As a consequence, two
neighboring devices may each evaluate a single nbr statement in the code many times,
with some of these evaluations aligning and sharing information, while others do not
align and remain isolated. Alignment is thus the local implementation of the aggregate
notion of a field’s domain, and the key to ensuring a provable relationship between
aggregate specification and local implementation. The minimal syntax of field calculus
has allowed its semantics, including alignment, to be proven correct and consistent [19].

o Self-stabilisation: What kind of behavioural properties can we analyse given an arbitrary
field calculus program? This is quite a difficult problem when put in general terms,
especially since field calculus can embed any computable function as a built-in operator,
and hence suffers from the same undecidability properties of Turing machines. Isolating
fragments enjoying certain specific properties of interest is however possible, with the
potential of conceiving static analysis algorithms (and then, tools) supporting solid
system engineering on top. This is what has been done in [41], where a fragment of the

*In fact, it is sufficient to track only the values supplied to nbr operations and the context of those operations.
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language in which constructs rep, nbr and built-in operator min-hood are used in a
particular monotonic combination, forming so-called “stabilising spreading expressions”.
It is proved that in this fragment any program produces a self-stabilising fields, namely,
fields that spontaneously adapt to transitory changes in the environment (device faults,
changes to topology, changes to the information perceived from input sensors) until
reaching a final state that will not change as time passes. Moreover, under rather weak
fairness conditions on asynchronous device firing, time complexity of stabilization can
be shown to be O(d - p), where d is the diameter of the network and p is the depth of the
program expression’.

o Universality: The field calculus as proposed in [19] is given semantics on a discrete
network of asynchronously-firing devices. However, by associating to each computation
round of a device in one such network a space-time event in a manifold, and considering
the limit as device density and round rate increase toward infinity, it is possible to give a
continuous semantics of the field calculus, as discussed in Section 2. In particular, in [40]
it is proven mathematically that the field calculus is “space-time universal”: in other
words, every causal and finitely-approximable function over a Riemannian space can be
approximated to an arbitrary degree of precision by some field calculus program, given
a dense enough and fast enough network of devices.

These, then, are the key contributions of field calculus: any coordination method with a
coherent aggregate-level interpretation is guaranteed to be possibly expressed in field calculus.
Such a method can then be abstracted into a new aggregate-level operation using def, which
can then be composed with any other aggregate operation using the rules of mathematical
functions over fields, and can have its space-time extent modulated and controlled by if, all
while guaranteeing that the relationship between global specification and local implementation
will always be maintained.

Note also that although field calculus was developed for aggregate programming of space-
time computations, there is nothing preventing it from being applied to more general network
computations as well. Anything for which neighborhood relationships can be defined is
potentially programmable via field calculus, and it generally makes sense for any network in
which the set of connections is sparse. Thus, for example, field calculus would not be good for the
Internet in general, in which theoretically anything connects to anything, but should work well
for the network of Internet backbone links carrying long-distance traffic, or for overlay networks
built on top of general routing.

5. From Building Blocks To Libraries

Core calculi are rarely used for actual programming: the same terseness that gives them value in
proving mathematical properties also ensures that they are too low-level for system construction
use, and field calculus is no exception. In addition, because it is universal it can express fragile
and wasteful systems just as readily as resilient and efficient systems.

It is thus necessary to raise the level of abstraction, building libraries with accessible APIs
upon the foundation of field calculus. These can be decomposed further into two stages of
library building. First, collect a small set of compatible “building block” algorithms with as
little overlap in functionality as possible, implemented in field calculus, that can be proven to be
resilient and efficient and to maintain these properties when composed. Second, collect a variety
of design patterns and typical uses of sets of building blocks to form libraries for application
programming—likely a number of libraries customized for various domains.

More technically, at the “building block” level, the aim is to identify an algebra of aggregate
coordination operators, such that each operator has certain properties of resilience and scalability,
and such that these properties are also preserved for any composition of operators. In effect, this

SUnder stronger synchrony conditions, it can be shown that an exact upper-bound to stabilisation time can be established
once network shape, initial conditions, and program structure are known (such time being still proportional to d).
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(a) Operator G (b) Operator C (c) Operator T (d) Operator s

Figure 7. The algebra of “building block” operators proposed in [24] comprises five operators: i f (Figure 6(c)), an
information-spreading operator G (a), an information aggregation operator C (b), aggregation over time with operator T
(c), and sparse symmetry breaking with operator S (d). Careful selection and implementation of these operators produces
a broadly applicable algebra of self-stabilizing distributed systems.

is just like the field calculus guarantee of aggregate/local relations for any composition of field
operators, except at a higher level of abstraction and aimed instead at ensuring certain properties
of aggregate behavior.

A significant first step toward establishing such an algebra is the taxonomy of self-
organization methods identified in [43], though this first collection of operators did not investigate
compositional properties. Similarly, the work in [41], as already mentioned, identifies “usage
patterns” of field calculus constructs that can result in self-stabilization.

Most recently, a richer collection of building blocks has been proposed in [24], aiming to be
a first attempt at covering a taxonomy of space and time operation classes. This algebra uses
five coordination operators and is self-stabilizing for all feed-forward combinations of operators.
The operators are also implemented in field calculus, meaning that they inherit its guarantees of
aggregate/local relations and can be extended, composed, and modulated by the rules of field
calculus.

One of the operators is restriction with if into two subspaces, as inherited directly from field
calculus. The other four, illustrated in Figure 7, are:

® (G source initial metric accumulate):The G operator implements information
spreading outward from the region indicated from Boolean-valued field source, along
minimal paths according to distance function metric. The values spread start at
initial and change as they go according to function accumulate. This operator can
be used, among other things, to implement distance measures, broadcasts, and forecasts.

e (C potential accumulate local null): The C operator is an inverse of G,
accumulating value local down the gradient of a potential field potential, starting
with null and merging values according to function accumulate

e (T initial decay):The T operator tracks values over time rather than space, starting
with value initial and decreasing toward zero over time according to function decay

® (S grain metric): The S operator implements sparse symmetry breaking, selecting
a set of “leader” devices such that no device is more than grain distance from a leader
and no two leaders are within % grain of one another, measuring distance by function
metric.

Importantly, the proof of self-stabilization for these operators is based on showing that any
system of operators with a certain self-stabilization property will be self-stabilizing under feed-
forward composition, then showing that each of the five operators has this property. This is
significant because it means that additional operators can be added to the system if needed
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Figure 8. Snapshot of simulation of crowd management application (from [24]), implemented by composing 10 library
functions based on an algebra of five building block operators and a number of simple mathematical and sensor built-in

functions: dangerously crowded areas are marked in red, nearby areas being alerted in orange, dense but safe areas are
blue, while network links and non-crowded devices are grey.

without adding great complexity to the proof, if those operators can be shown to satisfy the same
general property.

These five operators are, of course, quite abstract and general, meaning that although they
are good for mathematical analysis they do not form a very user-friendly API for applications
programming. More user-friendly libraries can be readily constructed, however, by defining field
calculus functions that raise the abstraction level yet again, capturing typical design patterns and
uses of the operators or combinations thereof. Being so constructed, such libraries also inherit all
of the desirable properties of the building block operators.

To illustrate this point, consider a few examples of implementing more user-friendly library
functions out of building block operators, adapted from [24]. First is use of G to compute distance
from a source, using the distance to neighbors nbr-range as a metric:

(def distance—-to (source)
(G source 0 nbr-range (fun (v) (+ v (nbr-range)))))

Similarly, combining G and C can accumulate values in a region to a designated sink device, then
broadcast this summary value to every device in the region of space:

(def summarize (sink accumulate local null)

(G sink
(C (distance-to sink) accumulate local null)
nbr-range identity))

and combining if and T can produce a limited-time memory that tracks whether a certain event
has recently occurred at each point in space:
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(def recent-event (event timeout)
(1f event
true
(> (T timeout (fun (t) (- t (dt)))) 0)))

Each of these examples captures a coordination pattern with a clear aggregate interpretation and
a relatively simple implementation using field calculus and the five building block operators.

By collecting a large number of such library functions, it should be possible to create good APIs
(general or domain-specific) for rapid development of reliable spatially-distributed applications.
For example, consider the crowd-steering application discussed in Section 3: Figure 8 shows a
simulation snapshot for an implementation of that application, taken from [24]. The simulation
is of a scenario with 6500 people at an event in Boston’s Columbus Park, 10% of whom have
devices running the crowd-management application: devices identify dangerous densities, alert
those nearby, suggest routes to safety, and navigate people around dense areas of crowd.

The application is self-stabilizing, resilient against many types of disruption, and can scale
to operate on much larger or smaller networks. Despite the complexity and resilience of the
application, its code is quite simple and terse. All four services are specified with a mere 18 lines of
code (not counting comments and whitespace). This comprises 10 library calls, connected together
with various built-in functions, expanding to a total of 18 building block operators (3 i£,9 G, 3 C,
2T,and 1 9).

This example illustrates the potential for aggregate programming to greatly enhance our
ability to rapidly and reliably develop space-time computing applications. At present, of course,
these are still quite early and experimental results, and there are significant challenges still to be
overcome. One critical one is to strengthen the resilience properties considered: self-stabilization
provides a guarantee of ultimately correct behavior, but is silent on the proportionality of
disruption to size of perturbation. Something more like the notion of stability in linear and
feedback systems needs to be extended to the more general computational context of aggregate
programming, and the building blocks adjusted as necessary to comply with it and ensure that
resilient systems also progress towards desired states with minimal ongoing disruption. The set
of available library functions also needs to be increased to support a broader set of applications,
and it will likely also be necessary to expand the set of building blocks to support functionality
not yet covered, such as controlling the movement of devices.

6. Summary and Conclusions

This paper has brought together a number of recent results to illustrate the state of the art in
aggregate programming as a means for the effective programming and control of large networks
of spatially-embedded computing devices, as well as a roadmap for continuing to develop
these techniques toward widespread practical application. This line of investigation is becoming
increasingly necessary as space-time computing systems are continuing to rapidly increase in
prevalence, driven by the ongoing decrease in cost and increase in capabilities of computing
devices, as well as the diversification of computing devices into novel substrates such as smart
materials and biological cells.

The ultimate goal of aggregate programming is to make the engineering of such distributed
systems as routine as the engineering of individual computing devices. Moreover, many of
the techniques developed for space-time programming appear to be equally applicable to any
relatively sparsely connected networks, meaning they may also have more general use in
improving the engineering of distributed systems.

A number of key open questions remain, however, needing further investigation before this
vision can be resolved. At a theoretical level, there are important unresolved questions regarding
the mapping between continuous and discrete models of device mobility, and on bounds for the
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quality with which continuous programs can be approximated by discrete networks. There is also
an important question of how to define and achieve sufficient composable resilience properties,
as well as how to approach security questions for decentralized aggregates. Assuming sufficient
resilience and security can be guaranteed, it is expected that the set of building block algorithms
will need to be extended in order to support broad domain-specific libraries, and these libraries
must be developed in order for aggregate programming to be readily used in various different
application domains. There is thus much work still to be done, but the potential rewards are high,
particularly given the ever-increasing dependence of our civilization on complex cyber-physical
infrastructure, and the need for this infrastructure to be extremely resilient despite ever-growing
complexity and demands upon it.
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