
Aggregate Programming:
From Foundations to Applications

Jacob Beal1 and Mirko Viroli2

1 Raytheon BBN Technologies, Cambridge MA 02138, USA
2 Alma Mater Studiorum–Università di Bologna, Cesena, Italy

Abstract. We live in a world with an ever-increasing density of com-
puting devices, pervading every aspect of our environment. Programming
these devices is challenging, due to their large numbers, potential for fre-
quent and complex network interactions with other nearby devices, and
the open and evolving nature of their capabilities and applications. Ag-
gregate programming addresses these challenges by raising the level of
abstraction, so that a programmer can operate in terms of collections
of interacting devices. In particular, field calculus provides a safe and
extensible model for encapsulation, modulation, and composition of ser-
vices. On this foundation, a set of resilient “building block” operators
support development of APIs that can provide resilience and scalability
guarantees for any service developed using them. We illustrate the power
of this approach by discussion of several recent applications, including
crowd safety at mass public events, disaster relief operations, construc-
tion of resilient enterprise systems, and network security.

Keywords: Aggregate programming, pervasive computing, field calcu-
lus, distributed systems, domain-specific languages

1 Introduction

For some time now, our world has been undergoing a dramatic transition in
how we relate to computing, as the number of computing devices rises and more
and more of these devices become embedded into our environment (Figure 1).
In the past, it was reasonable to use a programming model that focused on the
individual computing device, and its relationship with one or more users. Now,
however, it is typically the case that many computing devices are involved in
the provision of any given service, and that each machine may participate in
many overlapping instances of such collective services. Moreover, the increas-
ing mobility and wireless capabilities of some computing devices (e.g., wearable
devices, smart phones, car systems, drones, electronic tags, etc.), means that
many devices have the opportunity to accomplish part or all of their assigned
tasks through peer-to-peer local interactions, rather than by going through fixed
infrastructure such as cellular wireless or the Internet, thereby lowering latency
and increasing resilience to issues with inadequate or unavailable infrastructure,
e.g., during civic emergencies or mass public events.

Fig. 1. Our world is increasingly filled with large numbers of computing devices, em-
bedded into the environment and with many opportunities for local interaction as well
as for more traditional location-agnostic interactions over fixed network infrastructure.
Figure adapted from [8].

To effectively program such systems, we need to be able to reliably engineer
collective aggregate behaviors. Ordinary programming approaches typically fo-
cus on individual devices, entangling application design with various aspects
of distributed system design (e.g., efficient and reliable communication, robust
coordination, composition of capabilities, etc.), as well as confronting the pro-
grammer with the notoriously difficult and generally intractable “local-to-global”
problem of generating a specified emergent collective behavior from the interac-
tions of individual devices. These problems tend to limit our ability to make use
of the potential of the modern computing environment, as complex distributed
services developed using device-centric programming paradigms tend to suffer
from design problems, lack of modularity and reusability, deployment difficulties,
and serious test and maintenance issues.

Aggregate programming provides an alternate approach, which simplifies the
design, creation, and maintenance of complex distributed systems by raising the
abstraction level from individual devices to potentially large aggregations of de-
vices. This survey presents an introduction to aggregate programming and a
survey of key points on the current state of the art, updating and synthesizing
several prior surveys [7, 11, 8, 10]. Aggregate programming has roots in many
different communities, all of which have encountered their own versions of the
aggregate programming problem and which have between them developed a vast

profusion of domain-specific programming models to address it, which are briefly
surveyed in Section 2. Recently, however, there have been a number of unifying
results regarding field-based computational models, which are reviewed in Sec-
tion 3. These results lay the foundation for a more principled approach, in which
general mechanisms for roboust and adaptive coordination are composed and re-
fined to build domain-specific APIs, following the layered engineering approach
reviewed in Section 4. Ultimately, this can provide distributed systems engineers
with a simple interface for development of safe, resilient, and scalable distributed
applications, some examples of which are presented in Section 5 before turning
to discussion of future directions in Section 6.

2 Background and General Approach

In many ways, aggregate programming is not a new idea: the importance of
raising the abstraction level for distributed programming has been recognized
previously in a number of different fields, motivating work toward aggregate
programming across a variety of domains, including biology, reconfigurable com-
puting, high-performance computing, sensor networks, agent-based systems, and
robotics, as surveyed in [7].

Despite the wide degree of heterogeneity in applications and context across
these antecedents, the common problems in organizing aggregates have led such
approaches to cluster around a few main strategies: making device interaction
implicit (e.g., TOTA [31], MPI [32], NetLogo [41], Hood [47]), providing means
to compose geometric and topological constructions (e.g., Origami Shape Lan-
guage [33], Growing Point Language [17], ASCAPE [28]), providing means for
summarizing from space-time regions of the environment and streaming these
summaries to other regions (e.g., TinyDB [30], Regiment [34], KQML [23]), au-
tomatically splitting computational behaviour for cloud-style execution (e.g.,
MapReduce [21], BOINC [2], Sun Grid Engine [25]), and providing generalizable
constructs for space-time computing (e.g., Protelis [37], Proto [5], MGS [26]).

These many prior efforts have also evidenced some commonalities in their
strengths and weaknesses, which suggest that, when programming large-scale
distributed systems, it is useful to conform to the following three principles: (i)
mechanisms for robust coordination should be hidden “under-the-hood” where
programmers are not required to interact with them, (ii) composition of mod-
ules and subsystems must be simple, transparent, and with consequences that
can be readily predicted, and (iii) large-scale distributed systems typically com-
prise a number of different subsystems, which need to use different coordination
mechanisms for different regions and times.

From these observations and the commonalities amongst the various prior
approaches has come the generalized approach that we discuss in this paper,
based on field calculus [19, 20, 46] and its practical instantiation in Protelis [37],
which takes the following view of distributed systems engineering:

Dangerous*Density*Warning*

Dispersal*Advice*

Crowd*Es8ma8on*

Conges8on:Aware*Naviga8on*

(a) Device-Centric Programing

Dangerous*Density*Warning*

Dispersal*Advice*

Crowd*Es8ma8on*

Conges8on:Aware*Naviga8on*

(b) Aggregate Programming

Fig. 2. Comparison of device-centric programming of distributed algorithms (a) versus
aggregate programming (b): device-centric programming designs a distributed system
in terms of the (often complex) behaviors and interactions of individual devices; with
aggregate programming, simpler algorithmic building blocks can be scoped and com-
posed directly for the aggregate. Figure adapted from [8] and [11].

1. the “machine” being programmed is a region of the computational environ-
ment whose specific details are abstracted away (perhaps even to a pure
spatial continuum);

2. the program is specified as manipulation of data constructs with extent
across that region (where regions may be defined either regarding network
structure or regarding continuous space and time); and

3. these manipulations are actually executed by the individual devices in the
region, through local operations and interactions with (spatial or network)
neighbors.

2.1 Example: Distributed Crowd Management

Consider, for example, the architecture of a crowd-safety service, such as might
be distributed on the cell phones of people attending a very large public event,
such as a marathon or a major city festival, as in the scenarios described in [36, 3].
Figure 2 compares a traditional device-centric architecture versus an aggregate

programming approach to building a crowd-safety service with four functionali-
ties: estimation of crowd density and distribution based on interaction between
phones and observation of the local wireless environment, alerting of people in
or near dangerously large and dense regions of the crowd (where there is risk
of trampling or panic), providing advice for people in the interior of such re-
gions on how to move to help disperse the dangers, and crowd-aware navigation
that can help other people move around the event while simultaneously avoiding
dangerous areas.

With traditional device-centric approaches (Figure 2(a)), the programmer
needs to simultaneously reason about composition of services within a device,
protocols for local device interactions, and also about how the desired complex
global behavior will be produced from such local interactions. With aggregate
programming, on the other hand, the system can be readily approached in terms
of a set of distributed modules. A programmer can then compose these modules
incrementally to form complete applications simply by specifying where they
should execute and how information should flow between them (Figure 2(b)).
Here, for example, crowd estimation produces as output a distributed data
structure—a “computational field” [19, 20]—mapping from location to crowd
density, which is then an input for both crowd-aware navigation and for the
alerting service. These then produce their own distributed data structures, re-
spectively vectors for recommended travel and a map of warnings (which is in
turn an input for producing dispersal advice). The details of protocol and imple-
mentation can then be automatically generated from such compositions of data
structures and services. Aggregate programming thus promotes the construction
of more complex, reusable, resilient, and composable distributed systems by sep-
arating the question of which services should be executed and where, from the
implementation details of those services and their coordination.

2.2 Aggregate Programming Layers

Figure 3 shows how aggregate programming can hide the complexity of the
underlying distributed network environment and the problems of distributed
coordination with a sequence of abstraction layers. At the foundation of this
approach is field calculus [19, 20], a core set of constructs modeling device be-
havior and interaction, which is terse enough to enable mathematical proof of
equivalence between aggregate specifications and local implementations, yet ex-
pressive enough to be universal. The notion of “computational field,” adapted
from physics, makes this particularly well suited for environments with devices
embedded in space and communicating with others in close physical proximity,
though it is more generally suitable for any sparsely connected network. Upon
this foundation, we can identify key coordination “building blocks” with de-
sirable resilience properties, each being a simple and generalized basis element
generating a broad set of programs with desirable resilience properties. Finally,
common patterns for using and composing these building blocks can be cap-
tured to produce both general and domain-specific APIs for common application
needs like sensing, decision, and action, together forming a collective behavior

sensors&
local&func,ons&

actuators&

Applica'on*
Code*

Developer*
APIs*

Field*Calculus*
Constructs*

Resilient*
Coordina'on*
Operators*

Device*
Capabili'es*

built&ins) repnbr if

TG ifCbuilt&ins)

communica,on& state& restric,on&

Percep,on&
summarize
average
regionMax
…

Ac,on& State&

Collec,ve&Behavior&

distanceTo
broadcast
partition
…

timer
lowpass
recentTrue
…

collectivePerception
collectiveSummary
managementRegions
…

Crowd&Management&
dangerousDensity crowdTracking
crowdWarning safeDispersal

Universal)

Domain&)
Specific)

Fig. 3. Aggregate programming takes a layered approach to distributed systems devel-
opment: the software and hardware capabilities of particular devices are abstracted by
using them to implement a small universal calculus of aggregate-level field calculus con-
structs. This calculus is then used to implement a limited set of “building block” coor-
dination operations with provable resilience properties, which are in turn wrapped and
combined together to produce user-friendly APIs, both general and domain-specific,
for developing distributed systems. Figure adapted from [8].

API suitable for transparent implementation of complex networked services and
applications [8, 45, 9].

Engineering distributed systems with this approach can thus allow construc-
tion of complicated resilient distributed systems with rather simple specifica-
tions, as we will see in the application examples in Section 5. From such a terse
specification, the full complexity of the system is then automatically elaborated:
from the set of resilient coordination operators that were chosen to be used, to
the various ways in which resilience is actually achieved via particular build-
ing blocks or their functional equivalents, then how the aggregate specification
implements each of those building blocks and maps to actions by individual de-
vices, and finally how particular devices in the potentially heterogeneous network
environment actually implement capabilities like sensing, communication, and
localization.

Here, we discuss the incarnation of this approach using Protelis, a field cal-
culus implementation with Java-like syntax and support for first-class aggregate
functions. For full details on Protelis, see its presentation in [37].

3 Field Calculus

The field calculus [19, 20, 46] is an attempt to capture a set of essential fea-
tures that appear across many different aggregate programing approaches. In
particular, this “core calculus” approach captures these features in the syntax
and semantics of a tiny programming language, expressive enough to be univer-
sal [12] yet small enough to be tractable for mathematical analysis. With regards
to the overall view presented in Figure 3, field calculus forms the second lowest
layer, which is also the point where aggregate programming interfaces with the
highly heterogeneous world of device infrastructure and non-aggregate software
services (together comprising the lowest layer).

At its core is the notion of computational field, a widely-used space-time
programming concept [7] inspired by the notion of fields in physics. In physics,
a field is a function that maps each point in some space-time domain to a scalar
value, such as the temperatures in a room, or a vector value, such as the currents
in the ocean. Computational fields generalize this notion to allow the values to
be arbitrary computational objects on either continuous or discrete domains,
such as a set of messages to be delivered at each device in a network, or XML
descriptors for a set of inventory items to be stocked on the shelves of a store.

Such spatially-extended fields, with values potentially dynamically changing
over time, are then the basic “aggregate” units of values that may be distributed
across many devices in the network. More precisely, a field value φ is a function
φ : D → L that maps each device δ in domain D to a local value ` in range L.
Similarly, a field evolution is a dynamically changing field value, i.e., a function
mapping each point in time to a field value (evolution is used here in the physics
sense of “time evolution”). A field computation, then, is any function that takes
field evolutions as input (e.g., from sensors or device information) and produces
another field evolution as its output, from which field values are snapshots. For
example, given an input of a Boolean field mapping a set of “source” devices to
true, an output field containing the estimated distance from each device to the
nearest source device can be constructed by iterative spreading and aggregation
of information, such that the output always rapidly adjusts to the correct values
for the current input and network structure. The field calculus [19, 20] succinctly
captures the essence of field computations, much as λ-calculus [14] does for
functional computation and FJ [27] does for object-oriented programming.

3.1 Syntax of Field Calculus

Figure 4 presents field calculus syntax. Following the convention of [27], overbar
notation denotes metavariables over sequences, e.g., e is shorthand for the se-
quence of expressions e1, e2, . . . en (n ≥ 0). A local value ` represents the value

` ::= c〈`〉
∣∣ λ local value

λ ::= o
∣∣ f

∣∣ (fun (x) e) function value

e ::= `
∣∣ x

∣∣ (e e) expression∣∣ (rep x w e)∣∣ (nbr e)∣∣ (if e e e)

w ::= x
∣∣ ` variable or local value

F ::= (def f(x) e) function declaration

P ::= F e program

Fig. 4. Syntax of (higher-order) field calculus, as presented in [20].

of a field at a given device, which can be any data value c〈`1, · · · , `m〉 (written c

when m = 0), such as Booleans true and false, numbers, strings, or structured
values like Pair〈3, Pair〈false, 5〉〉 or Cons〈2, Cons〈4, Null〉〉. Such a value may
also be a function value λ, i.e. a built-in operator o, a user-defined function f,
or an anonymous function (fun (x) e), where x are arguments and e is the body,
in which we assume no free variables exist. Finally, a device δ can also hold
a neighboring field value φ, which maps each neighbor of δ to a local value `
(neighboring field values cannot be expressed directly, only appearing dynami-
cally during computations such as with operator nbr, so they do not appear in
the syntax).

The main entities of the calculus are expressions, each of which defines a
field. An expression can be a local value `, representing a field mapping its entire
domain to value `, a variable x used as function parameter or state variable, or
a composite created using the following constructs:

– Built-in operator call: (e e1 · · · en), where e evaluates to a “point-wise” built-
in operator o, involving neither state nor communication, e.g. mathematical
functions like addition, comparison, and sine, or an environment-dependent
function such as reading a temperature sensor or the 0-ary nbr-range oper-
ator returning a neighboring field mapping each neighbor to an estimate of
its current distance from δ. Expression (o e1 · · · en) produces a field mapping
each δ to the result of applying o to the values at δ of its n ≥ 0 arguments
e1, . . . , en.

– User-defined function call: (e e1 · · · en), where e evaluates to a user-defined
function f, with corresponding declaration (def f(x1 . . . xn) e). Evaluating
(f e1 · · · en) provides a standard (possibly recursive) call-by-value abstrac-
tion.

– Anonymous function call: (e e1 · · · en), has the same semantics as user-
defined function calls, except that e evaluates to an anonymous function
(fun (x1 · · · xn) e).

– Time evolution: (rep x w e) is a “repeat” construct for dynamically changing
fields, using a model in which each device evaluates expressions repeatedly
in asynchronous rounds. State variable x initialises to the value of w, then

updates at each step by computing e against the prior value of x. For in-
stance, (rep x 0 (+ x 1)) counts how many rounds have been computed
at each device.

– Neighboring field construction: (nbr e) captures device-to-device interac-
tion, returning a field φ that maps each device δ to a neighboring field
value, which in turn maps each neighbor to its most recent available value
of e (realizable e.g., via periodic broadcast). Such neighboring field val-
ues can then be manipulated and summarized with built-in operators, e.g.,
(min-hood (nbr e)) maps each device to the minimum value of e amongst
its neighbors.

– Domain restriction: (if e0 e1 e2) is a branching construct, computing e1 in
the restricted domain where e0 is true, and e2 in its complement.

To better illustrate the various constructs of field calculus, consider the fol-
lowing code, which estimates distance to devices where source is true, while
avoiding devices where obstacle is true:

(def distance-avoiding-obstacle (source obstacle)
(if obstacle infinity

(rep d infinity (mux source 0
(min-hood+ (+ (nbr-range) (nbr d))))))

coloring field calculus keywords red, built-in functions green, and user-defined
functions blue. In the region outside the obstacle (with the partition conducted
by if), a distance estimate d (established by rep) is computed using built-in
“multiplexing” selector mux to set sources to 0 and other devices to an updated
distance estimate computed using the triangle inequality, taking the minimum
value obtained by adding the distance to each neighbor to its estimate of d

(obtained by nbr). In particular, min-hood+ takes the minimum of all neighbors’
values (excluding the device itself), and mux multiplexes between its second and
third inputs, returning the second if the first is true and the third otherwise.

3.2 Local Semantics and Properties

Any field calculus program can be equivalently interpreted either as an
aggregate-level computation on fields or as an equivalent “compiled” version
implemented as a set of single-device operations and message passing. The full
semantics may be found in [19, 20], but the key ideas are simple enough to sketch
briefly here.

Each field calculus program P consists of a set of user-defined function defini-
tions and a single main expression e0. Given a network of interconnected devices
D that runs a program P, “device δ fires” means that device δ ∈ D evaluates
e0. The output of a device computation is a value-tree: an ordered tree of values
tracking the result of computing each sub-expression encountered during evalua-
tion of e0. Each expression evaluation on device δ is performed against the most
recently received value-trees of its neighbors, and the produced value-tree is con-
versely made available to δ’s neighbors (e.g., via broadcast in compressed form)

for their next firing: (nbr e) uses the most recent value of e at the same position
in its neighbors’ value-trees, (rep x w e) uses the value of x from the previous
round, and (if e0 e1 e2) completely erases the non-taken branch in the value-
tree (allowing interactions through construct nbr with only neighbors that took
the same branch, called “aligned neighbors”). A complete formal description of
this semantics is presented in [19, 20].

A type system based on the Hindley-Milner type system [18] can then be built
for this calculus [19], which has two kinds of types: local types (for local values)
and field types (for field values), associating to each local value a type L, and type
field(L) to a neighboring field of elements of type L, and correspondingly a type
T to any expression. This type system can then be used to detect semantic errors
in a program (e.g., first expression of a call not evaluating to a function, incorrect
argument types for a call, first argument of if not a Boolean), ensuring that these
localized versions of field calculus programs are guaranteed to observe correct
domain alignment and to terminate locally if the aggregate form terminates, i.e.,
to faithfully implement the desired equivalence relation.

The syntax and semantics of field calculus thus form a provably sound foun-
dation for aggregate programming, ensuring that distributed services expressed
in field calculus can be safely and predictably composed and modulated. At the
same time, the small set of constructs also aids in portability, infrastructure
independence, and interaction with non-aggregate services: the field calculus ab-
straction can be supported on any device or infrastructure where these simple
constructs can be implemented, including heterogeneous mixtures of devices with
different sensor, actuator, computation, and communication capabilities, so long
as the devices have some means of interacting. Likewise, non-aggregate software
services, such as other local applications or cloud services, are often complemen-
tary to aggregate services and can be connected with aggregate services simply
by importing their APIs into the aggregate programming environment [37].

4 From Theory to Pragmatic System Engineering

Field calculus may be universal, but it is also too low level to be readily used
for building complex distributed services. First, like other core calculi, in order
to be compact enough to be readily manipulated for mathematical results, field
calculus is extremely terse and generalized, as well as lacking any of the “syntac-
tic sugar” features that make a language more usable for programming. Second,
because it is universal, field calculus can express any program, including many
that have none of the safety or resilience properties that we desire in distributed
systems.

To make aggregate programming practically usable as an approach, we must
further raise the level of abstraction. This is done first by implementing field cal-
culus into a full programming language, Protelis [37], which makes it more usable
via syntactic sugar and methods for interfacing with other existing libraries and
frameworks. Protelis contains a complete implementation of the field calculus,
hosted in Java via the Xtext language generator [22], with syntax transformed to

(a) Operator G (b) Operator C

3"

1"
7"

0"
2"

1"
4"

3"
3"

(c) Operator T (d) Operator if

Fig. 5. Illustration of four “building block” operators for construction of resilient dis-
tributed services: information-spreading (G), information aggregation (C), aggregation
over time (T), and partition into non-interacting subspaces (if).

an equivalent Java-like syntax with a number of useful syntactic sugar features
such as variable definition, and taking advantage of Java’s reflection mechanisms
to make it easy to import a large variety of useful libraries and APIs for use in
Protelis. All further code will thus be given in Protelis, rather than field calculus.

The level of abstraction is then raised by identifying a composable system
resilient “building block” operators, which provide core functions of coordination
as well as resilience and safety guarantees. Finally, these building blocks are
composed into both general and domain-specific APIs, which may further exploit
optimized equivalents of particular operators for improved performance in more
restricted use cases.

4.1 Building Blocks for Resilient Coordination

We first begin to raise the level of abstraction from field calculus toward an effec-
tive programming environment for resilient distributed systems by identifying a

system of highly general and guaranteed composable “building block” operators
for the construction of resilient coordination applications. This new layer (the
middle layer in Figure 3) is formed by careful selection of coordination mech-
anisms that are all (i) self-stabilizing, meaning that they can reactively adjust
to changes in input values or the structure of the network, (ii) scalable to po-
tentially very large networks, and (iii) preserve these resilience properties when
the building blocks are composed together to form more complex coordination
services. Critically, this means that it can be proven that any service built using
only these “building blocks” will implicitly inherit such resilience [45].

One such set of operators has been identified already [45, 8]: a set of three
highly generalized coordination operators, G, C and T, along with field calculus’
if and built-ins (Figure 5). Each of these building blocks captures a family of
frequently used strategies for achieving flexible and resilient decentralized be-
havior, hiding the complexity of using the low-level constructs of field calculus.
The three building blocks are defined as:

– G(source,init,metric,accumulate) is a “spreading” operation generaliz-
ing distance measurement, broadcast, and projection, which takes four fields
as inputs: source (a Boolean indicator field), init (initial values for the out-
put field), metric (a function providing a map from each neighbor to a dis-
tance), and accumulate (a commutative and associative two-input function
over values). It may be thought of as executing two tasks: first, computing
a field of shortest-path distances from the source region according to the
supplied function metric, and second, propagating values up the gradient
of the distance field away from source, beginning with value initial and
accumulating along the gradient with accumulate. For instance, if metric is
physical distance, initial is 0, and accumulate is addition, then G creates
a field mapping each device to its shortest distance to a source.

– C(potential,accumulate,local,null) is an operation that is complemen-
tary to G: it accumulates information down the gradient of a supplied
potential field. This operator takes four fields as inputs: potential (a nu-
merical field), accumulate (a commutative and associative two-input func-
tion over values), local (values to be accumulated), and null (an idempo-
tent value for accumulate). At each device, the idempotent null is combined
with the local value and any values from neighbors with higher values of
the potential field, using function accumulate to produce a cumulative
value at each device. For instance, if potential is exactly a distance gra-
dient computing with G in a given region R, accumulate is addition, and
null is 0, then C collects the sum of values of local in region R.

– T(initial,floor,decay) deals with time, whereas G and C deal with
space. Since time is one-dimensional, however, there is no distinction be-
tween spreading and collecting, and thus only a single operator. This opera-
tor takes three fields as inputs: initial (initial values for the resulting field),
floor (corresponding final values), and decay (a one-input strictly decreas-
ing function over values). Starting with initial at each node, that value
gets decreased by function decay until eventually reaching the floor value,

thus implementing a flexible count-down, where the rate of the count-down
may change over time. For instance, if initial is a pair of a value v and a
timeout t, floor is a pair of the blank value null and 0, and decay takes
a pair, removing the elapsed time since previous computation from second
component of the pair and turning the first component to null if the first
reached 0, then T implements a limited-time memory of v.

def G(source, initial, metric, accumulate) {
rep(dv <- [Infinity, initial]) {

mux(source) {
[0, initial]

} else {
minHood([nbr(dv.get(0)) + metric.apply(),

accumulate.apply(nbr(dv.get(1)))])

}
}.get(1)

}

Fig. 6. Protelis implementation of operator G

Although there are only a few operators identified in [45], they are so general
as to cover, individually or in combination, a large number of the common co-
ordination patterns used in design of resilient systems. More importantly, when
appropriately implemented in field calculus (e.g., Figure 6), it has been shown
that this system of operators, plus if and built-in operators, are elements of
a “self-stabilizing language” where every program is a guaranteed to be self-
stabilizing [45]. This means that distributed systems built from these operators
enjoy a number of resilience properties: stabilization: if the input fields even-
tually reach a fixed state, the same happens for the output field; resilience:
if some messages get lost during system evolution, or some node temporarily
fails, this will not affect the final result; and adaptability: if input fields or
network topology changes, the output field automatically adapts and changes
correspondingly. These operators and their compositions are all also scalable for
operation on potentially very large networks. Furthermore, this system of re-
silient operators can be readily expanded, simply by proving that any additional
operators are also members of the self-stabilizing language, thereby proving that
such an additional operator has the same resilience properties and can be safely
composed with all previously identified operators.

4.2 Pragmatic Distributed Systems Engineering APIs

Building block operators are for the most part still too abstract and generalized
to meet the pragmatic needs of typical applications programmers. To better meet

these needs, various applications and combinations of “building block” operators
can be captured into libraries, thereby forming a pragmatic and user-friendly
API while still retaining all of the same resilience properties. Such libraries,
both general and domain-specific, form the penultimate layer in Figure 3, upon
which application code (the highest layer) is actually written.

For example, a number of useful functions related to information diffusion
and distributed action can be constructed from various configurations of operator
G (along with built-ins). One such common computation is estimating distance
from a set of source devices, which we have previously discussed as part of the
field calculus example in Section 3. Implemented as an application of G, it may
be expressed in Protelis as:

def distanceTo(source) {
G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})
}

Applying G in a different way implements another common coordination action,
broadcasting a value across the network from a source:

def broadcast(source, value) {
G(source, value, () -> { nbrRange }, (v) -> {v})
}

Other G-based operations include construction of a Voronoi partition and a “path
forecast” that marks paths that cross an obstacle or region of interest.

Similarly, functions related to collective perception of information can be
implemented using operator C, such as accumulating a summary of all the values
of a variable in a region to a given sink device:

def summarize(sink, accumulate, local, null) {
C(distanceTo(sink), accumulate, local, null)
}

or computing the variable’s average or maximum value in that region. Likewise,
state and memory operations may be implemented using operator T, such as
holding a value until a specified timeout:

def limitedMemory(value, timeout) {
T([timeout, value], [0, false],

(t) -> {[t.get(0) - dt, t.get(1)]}).get(1)
}

These general API functions can then be combined together, just as in any
other programming environment, to create higher level general libraries and more
domain-specific libraries. For example, a common “higher-level” general opera-
tion is to share a summary throughout a region, which can be implemented by
applying broadcast to the output of summarize. Likewise, in the domain of
spatially-embedded services like the crowd-safety application discussed above,
a useful building block is to organize an environment into dynamically defined
“management regions,” which can be implemented by combining state and par-
tition functions.

(Higher(Order),
Field,Calculus,

Self(Stabilising,
Calculus,

�
! �!

Building(Block(
Operator(

Coordina3on(
Mechanism(

�
!

�!
Fig. 7. Although field calculus can express any coordination mechanism, many useful
mechanisms are difficult or impossible to express within a sublanguage that is known
to be self-stabilizing. Any coordination mechanism that is asymptotically equivalent to
a mechanism in the self-stabilizing subset, however, can be safely substituted without
compromising safety or resilience guarantees. Figure adapted from [45].

A mixture of such libraries at various levels of specificity and abstraction
thus forms the actual programming environment that a typical developer would
use for engineering the distributed coordination aspects of a resilient distributed
system, while implementing the purely local or cloud-based aspects of the service
using more standard programming tools for those aspects of the system. Because
the APIs are ultimately built on the foundations of resilient operators and the
field calculus, however, it is guaranteed that any service developed in this manner
also implicitly obtains the properties of resilience and safe composition from the
lower layers of the abstraction hierarchy.

4.3 Improving Performance by Equivalent Substitutions

Finally, just as the performance of more conventional programs can be improved
by changing the implementation of key libraries (e.g., changing a generic hash
table implementation to one better balanced for an application’s expected table
size and and access patterns), the performance of aggregate programs can be im-
proved by substituting the generic building block operators by more specialized
variants with better performance in particular contexts and patterns of use [45].

Specifically, these substitutions make use of the mathematical relationship
shown in Figure 7: due to the functional composition model and modular proof
used in establishing the self-stabilizing calculus, any coordination mechanism
that can be guaranteed to self-stabilize to the same result as a building block
operator can be substituted for that building block without affecting the self-
stabilization of the overall program, including its final output. This allows cre-
ation of a “substitution library” of high-performance alternatives that can be
used in certain circumstances and in those circumstances are more efficient or
have more desirable dynamics. More formally:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10−1

100

101

102

103

Time

Er
ro
r

Fig. 8. Example crowd opinion feedback application is incrementally improved from
its baseline performance (red) by first replacing T with an exponential filter (green),
then C with multi-path summation (blue), and finally G with Flex-Gradient (black).
Figure adapted from [45].

Definition 1 (Substitutable Function) Given functions λ, λ′ with same
type, λ is substitutable for λ′ iff for any self-stabilizing list of expressions e,
(λ e) always self-stabilizes to the same value as (λ′ e).

The basic idea is that the property of self-stabilization specifies only the
values after a function converges, so as long as two functions have the same
converged values, they can be swapped without affecting any of the resilience
properties based on self-stabilization. A building block operator with undesirable
dynamical properties can thus be replaced by a more specialized coordination
mechanism that improves overall performance without impairing resilience.

Three examples of substitution, given in [45], are:

– Distance estimation via G may converge extremely slowly when the network
contains some devices that are close together [6]. Much faster alternatives
exist, however, such as CRF-Gradient [6] and Flex-Gradient [4], and are are
known to self-stabilize to the same values as G distance estimation.

– Value collection with C is fragile: since it collects values over a spanning
tree, even small perturbations can cause loss or duplication of values, with
major transient impact on its results. When the accumulation is idempotent
(e.g., logical AND) or separable (e.g., addition), this can be mitigated by
accumulating across multiple paths.

– Low-pass filtering a signal is often useful for reducing noise. One common
method, an exponential backoff filter, is substitutable with tracking a value
via T, meaning that low-pass filters of this sort can be freely incorporated
into programs without affecting their resilience.

When used in an application, such substitutions can markedly improve ap-
plication performance. For example, consider an extremely simple distributed

service for live estimation of crowd opinions of acts at a festival, implemented
using G to set up a potential field partitioning space into zones of influence for
each act, C to sum a binary field of feedback, and T to track values:

(def add-range (v) (+ v (nbr-range)))

(def opinion-feedback (acts feedback)

(T-filter

(C (G acts 0 nbr-range add-range) sum feedback 0)))

In simulations of this scenario from [45], each incremental substitution of a
generic function with a more optimized function improves the accuracy of the
application: Figure 8 shows how this application’s performance can then be in-
crementally improved by first replacing T with an exponential filter, then C with
multi-path summation, and finally G with Flex-Gradient.

Likewise, optimizations at lower layers of the framework have the potential
improve the efficiency of field calculus implementations and the efficiency and
simplicity of the implementation on particular devices and the interface with
other applications and services. This layered approach to aggregate programming
may thus serve as a framework for developing an efficient software ecosystem for
engineering complex distributed systems, analogous to existing ecosystems for
web or cloud development.

5 Application Examples

With the aid of appropriate domain-specific APIs, aggregate programming can
greatly simplify the development and composition of distributed applications
across a wide variety of domains. These can involve embedded devices and ap-
plications that are explicitly tied to space, but also can apply to more traditional
location-agnostic computer networks. This section illustrates the breadth of pos-
sible applications by presenting examples across four domains: crowd safety at
mass public events, UAV planning and control, construction of resilient enter-
prise systems, and network security.

5.1 Crowd Safety at Mass Events

One example, explored in [8], of an environment where aggregate programming
is particularly applicable is at mass public events, such as marathons, outdoor
concerts, festivals, and other civic activities. In these highly crowded environ-
ments, the combination of high densities of people and large spatial extent can
often locally overwhelm the available infrastructure, causing cell phones to drop
calls, data communications to become unreliable, etc. The physical environment
is often overwhelmed as well, and the movement of high numbers of people in
crowded and constrained environments can pose challenging emergent safety
issues: in critically overcrowded environments, even the smallest incident can
create a panic or stampede in which many people are injured or killed [43].

Fig. 9. A crowd safety service, restricted to run on personal devices (colored) in a
simulation of approximately 2500 personal and embedded devices at the 2013 Vienna
marathon, detects regions of potentially dangerous crowd density (red) and dissemi-
nates warnings to nearby devices (yellow). Figure adapted from [8].

Between smart-phones and other personal devices, however, the effective den-
sity of deployed infrastructure is much higher, since more people means more
personal devices. Aggregate programming can be used to coordinate these de-
vices, without the need for centrally deployed infrastructure, to provide services
such as for crowd safety, to help identify and diffuse potentially dangerous sit-
uations. For example, crowding levels can be conservatively estimated by first

estimating the local density of people as ρ = |nbrs|
p·πr2·w , where |nbrs| counts neigh-

bors within range r, p estimates the proportion of people with a participating
device running the app and w estimates fraction of walkable space in the local
urban environment, then comparing this estimate with “level of service” (LoS)
ratings [24], taking LoS D (>1.08 people/m2) to indicate a crowd and LoS E
(>2.17 people/m2) in a large group (e.g., 300+ people) to indicate potentially
dangerous density. Potential crowding danger can thus be detected and warnings
disseminated robustly with just a few lines of Protelis code dynamically deployed
and executed on individual devices [37, 20]:

def dangerousDensity(p, r) {
let mr = managementRegions(r*2, () -> { nbrRange });
let danger = average(mr, densityEst(p, r)) > 2.17 &&

summarize(mr, sum, 1 / p, 0) > 300;
if(danger) { high } else { low }
}

def crowdTracking(p, r, t) {
let crowdRgn = recentTrue(densityEst(p, r)>1.08, t);
if(crowdRgn) { dangerousDensity(p, r) } else { none };
}

def crowdWarning(p, r, warn, t) {

distanceTo(crowdTracking(p,r,t) == high) < warn
}

Figure 9 shows an Alchemist [38] simulation of such a crowd safety service
running in an environment of pervasively deployed devices: 1479 mobile personal
devices, each following a smart-phone position trace collected at the 2013 Vienna
marathon, as discussed in [36, 3], and 1000 stationary devices, all communicating
via once per second asynchronous local broadcasts with 100 meters range, with
all devices participating in infrastructure services but the crowd safety service
restricted to run only on the mobile personal devices. Building this program via
aggregate programming ensures that it is resilience and adaptive despite its very
short length, allowing it to effectively estimate crowding and distribute warnings
while executing on a large number of highly mobile devices.

5.2 Humanitarian Assistance and Disaster Relief Operations

Humanitarian assistance and disaster relief operations are another example of
an environment where distributed coordination is particularly valuable, due to
existing infrastructure being damaged or overwhelmed. With appropriate mech-
anisms for distributed coordination, however, ”tactical cloud” resources can sub-
stitute for fixed infrastructure in support of assistance and relief operations. For
example, [40, 44] present an architecture of “edge nodes” equivalent to a 1/2-rack
of servers in sturdy self-contained travel cases, which can be effectively mounted
and operated even in small vehicles such as HMMVWs or towed trailers. Con-
tinuing advances in computing capability mean that such edge nodes actually
offer a startling amount of capability: 10 such units can be equivalent to an
entire cargo-container portable data center. The challenge is how to effectively
coordinate and operate mission critical services across such devices, particularly
given that the communications network between nodes has limited capacity and
changes frequently as nodes are moved around and also given that individual
edge nodes may be taken offline at any time due to evolving mission require-
ments, failures, accidents, or hostile action. Aggregate programming can simplify
the development of resilient services for the tactical cloud environment, whereas
existing methods tend to push application development toward a “star” topology
where edge nodes interact mostly indirectly by means of their communications
with a larger infrastructure cloud.

Consider, for example, a representative service example of assisting in the
search for missing persons following a major disaster such as tsunami. This is
a good example of a distributable mission application, since it involves data
at several different scales: missing person queries (e.g., providing a photo of a
missing loved one) and responses (e.g., a brief fragment of a video log showing a
missing person) are fairly lightweight and can be spread between servers fairly
easily, while video logs (e.g., from helmet- and vehicle-mounted cameras) are
quite large and are best to search locally.

An implementation of this coordination service requires less than 30 lines of
Protelis [37] code: this implementation distributes missing person queries, has

Fig. 10. Simulation of tactical cloud coordination in a humanitarian response scenario:
tactical cloud nodes in survey team vehicles collectively help families find missing per-
sons following a natural disaster: a query lodged with one team is opportunistically
disseminated from its cloud node (red), to be compared against the video logs stored
locally in each team’s node. The desired information is located at a distant node (blue),
then opportunistically forwarded to other nodes (green) until it can reach either the
original source or some other node where the response can be received, thereby satis-
fying the query.

them satisfied by video logged by other teams, then forwards that information
back toward the team where the query originated. Figure 10 shows a screen-
shot from simulation of this scenario in the Alchemist simulator [38]. In this
scenario, a group of eleven survey teams are deployed amphibiously, then move
around through the affected area, carrying out their survey mission over the
course of several days. Each team hosts a half-rack server as part of their equip-
ment, coordinating across tactical networks to collectively form a distributed
cloud host for mission applications, such as searching video logs for missing per-
sons and collating survey data. The distributed service implementation oppor-
tunistically disseminates queries, such that they end up moving implicitly by a
combination of forwarding and taking advantage of vehicle motions to ferry data
across gaps when there is no available connectivity. At each tactical cloud node,
the query is executed against its video logs, and any matches are forwarded by
the same opportunistic dissemination and marked off as resolved once the results
of the service have been delivered to the person who requested assistance.

5.3 Resilient Enterprise Systems

Aggregate programming can also be applied to networks that are not closely tied
to space, such as enterprise service networks, as in the work on distributed re-
covery of enterprise services presented in [15]. Management of small- to medium-
scale enterprise systems is a pressing current problem, since these systems are

Large&Cloud&
Datacenter&

Individual&
Server&

High%Complexity%
Few%Admin%Resources%

Small5&to&Medium5&
Enterprise&Network&

Low%Complexity%
Few%Admin%Resources%

High%Complexity%
Many%Admin%Resources%

Fig. 11. Small- to medium-sized enterprises often have complex networks with many
services and servers, but are not large enough to have significant administrative re-
sources to devote to customization or to benefit from economies of scale. Figure adapted
from [15].

often quite complex, yet typically managed much more primitively than either
individual machines (which are simpler and more uniform) or large-scale data-
centers (which can invest in high-scale or custom solutions). As a result, small
and medium enterprises tend to have poor resilience and to suffer much more
disruptive and extensive outages than large enterprises [1].

In [15], aggregate programming is used to address the common problem of
safely and rapidly recovering from failures in a network of interdependent ser-
vices, for which typical industry practice is to shut the entire system down and
then restart services one at a time in a ”known safe” order. The solution pre-
sented in [15], Dependency-Directed Recovery (DDR), uses Protelis [37] to im-
plement a lightweight network of daemon processes that monitor service state,
detecting dependencies (e.g., via methods such as in [13, 42, 29, 39]) and con-
trolling services to proactively bring down only those services with failed de-
pendencies, then restart them in near-optimal time (Figure 12). This system is
realized with management daemons implemented Java, each hosting a Protelis
VM executing the following simple coordination code:

// Collect state of monitored service from service manager daemon
let status = self.getEnvironmentVariable("serviceStatus");

let serviceID = self.getEnvironmentVariable("serviceID");

let depends = self.getEnvironmentVariable("dependencies");

let serviceDown = status=="hung" || status=="stop";

// Compute whether service can safely be run (i.e. dependencies are satisfied)
let liveSet = if(serviceDown) { [] } else { [serviceID] };
let nbrsLive = unionHood(nbr(liveSet));

let liveDependencies = nbrsLive.intersection(depends);

let safeToRun = liveDependencies.equals(depends);

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(a) Failure

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(b) Preventive Shutdown

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(c) Incremental Recovery

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(d) Full Recovery

Fig. 12. Example of dependency-directed recovery in a service network, showing status
run as green, stop as blue, and hung as red. Following failure of some set of services
(a), other services that depend on them shut themselves down (b). As failed services
restart, services that depend on them restart incrementally (c), until the entire service
network has recovered (f). Figure adapted from [15].

// Act based on service state and whether it is safe to run
if(!safeToRun) {
if(!serviceDown) {

self.stopService() // Take service down to avoid misbehavior
} else { false } // Wait for dependencies to recover before restarting

} else {
if(serviceDown) {

self.restartService() // Safe to restart

} else { false } // Everything fine; no action needed
}

With this program, any failure leads to a sequence of shutdowns, following de-
pendency chains from failed services to the services that depend on them. Com-
plementarily, when a service’s dependencies start running again, that service
restarts, becoming part of a wave of restarts propagating in parallel up the par-
tial order established by dependencies.

Analysis of this system shows that it should produce distributed recovery in
near-optimal time, slowed only be communication delays and the update period
of the daemons. Experimental validation in emulated service networks of up
to 20 services verifies this analysis, as well as showing a dramatic reduction
in downtime compared to fixed-order restart, and allowing many services to
continue running uninterrupted even while recovery is proceeding.

5.4 Network Security

For a final example, consider the value of effective and resilient coordination
in network security. Improvements in virtualization technology have made it
possible to trace and record the state evolution of an entire service or server,
which can allow checkpointing of key points in process history, so that if attacks
or faults are later detected the process can be “rewound” to a known-safe state
and re-run with a dynamic patch or with the bad interaction edited out of the
flow [16, 35]. Executing such mechanisms, however, requires that interactions be
able to be tightly monitored and ordered, which is often quite difficult and costly
for networked services.

Taking an aggregate programming perspective, however, we may recognize
that when interactions between services can be monitored, as in many networked
services, a partial order of events based on the sending and receiving of mes-
sages can be substituted for the total order otherwise required for checkpointing
or rewind and replay. To enable this, each service in the network takes local
checkpoints every time that it sends a message or processes a message that it
has received. A send/receive pair between two interacting services may then be
interpreted as a directed graph edge, from send to receive, and the union of these
directed edges with directed edges expressing the local order of local checkpoints
on each server forms an distributed acyclic directed graph that can be safely in-
terpreted as a partial order over events. A distributed checkpoint can then be
computed emergently using distributed graph inference to compute the closure
of graph succession on a set of local events (e.g., a set of faults or attacks), rewind
executed by coordinated deletion of this subgraph, and replay executed by re-
executing the incoming edges to the subgraph. Critically, this does not require
any sort of synchronization between services, as well as allowing recovery to take
place asynchronously, with any service not affected by possible contamination
able to run uninterrupted and other services being able to run again as soon as
they themselves are free of possible contamination.

Fig. 13. Screenshot of distributed rewind and replay isolating and eliminating contam-
ination (yellow machines) from an attack on a service network: following detection of an
injected attack on a service (red box), potentially contaminated services (yellow box)
suspend, trace potential contamination, and begin rewinding potentially contaminated
interactions. Meanwhile, adjacent unaffected services (blue box) temporarily suspend
operations to prevent spread of contamination while non-adjacent services (green box)
continue to operate normally.

Using aggregate programming to implement this partial order approach, co-
ordination for rewind and replay can be implemented in less than 100 lines of
Protelis [37]. Figure 13 shows an example screenshot from a rewind and replay
system running on a network of emulated services, in the process of editing out
an injected attack. Following detection of an injected attack on a service (e.g.,
via [16, 35]), potentially contaminated services suspend, trace potential contam-
ination, and begin rewinding potentially contaminated interactions. Meanwhile,
adjacent unaffected services temporarily suspend operations as a “firebreak”
against further spread of contamination, while non-adjacent services continue to
operate normally.

6 Summary and Future Directions

This review has presented a summary of the aggregate programming approach to
distributed systems engineering, including a review of its theoretical foundations
in field calculus, how resilience can be guaranteed through composable ”building
blocks,” and how these can be combined and refined to make effective APIs for
engineering distributed applications across a wide range of domains. Overall, the
aggregate programming approach offers the potential for complex distributed
services to be specified succinctly and treated as coherent objects that can be

safely encapsulated, modulated, and composed together, toward the ultimate
goal of making distributed systems engineering as routine as ordinary single-
device programming.

From this present state, four key directions for future work are:

– Further development of the theoretical foundations of aggregate program-
ming, particularly with regards to mobile devices and the relationship be-
tween continuous environments and discrete networks of devices.

– Expansion of resilience results, including expansion of the set of building
blocks and extension to a broader range of resilience properties, particularly
regarding dynamical properties and feedback systems.

– Pragmatic improvements to the infrastructure and integration of aggregate
programming, including expansion of libraries and APIs to more capabilities
and more domains, integration with other pragmatic concerns such as se-
curity, optimizing usage of energy and other resources, and development of
“operating system” layers for aggregate and hybrid aggregate/cloud archi-
tectures, as well as improvements to Protelis or other aggregate programming
implementations.

– Developing applications of aggregate programming for a variety of problem
domains, and transition of these applications into useful real-world deploy-
ments.

Our world is increasingly a world of computational aggregates, and methods
such as these are the only way that we are likely to be able to keep engineering
tractable, safe, and resilient in the increasingly complex interweaving of the
informational and physical worlds, and our increasing dependence upon such
distributed systems in the infrastructure of our civilization.

Acknowledgment

This work has been partially supported by the EU FP7 project “SAPERE -
Self-aware Pervasive Service Ecosystems” under contract No. 256873 (Viroli),
by the Italian PRIN 2010/2011 project “CINA: Compositionality, Interaction,
Negotiation, Autonomicity” (Viroli), and by the United States Air Force and
the Defense Advanced Research Projects Agency under Contract No. FA8750-
10-C-0242 (Beal). The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright no-
tation thereon. The views, opinions, and/or findings contained in this article
are those of the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government.
Approved for public release; distribution is unlimited.

References

1. Aberdeen Group: Why mid-sized enterprises should consider using disas-
ter recovery-as-a-service. http://www.aberdeen.com/Aberdeen- Library/7873/AI-
disaster-recovery-downtime.aspx (April 2012), retrieved July 13, 2015

2. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on.
pp. 4–10. IEEE (2004)

3. Anzengruber, B., Pianini, D., Nieminen, J., Ferscha, A.: Predicting social density
in mass events to prevent crowd disasters. In: Jatowt, A., Lim, E.P., Ding, Y.,
Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B. (eds.) Social
Informatics, Lecture Notes in Computer Science, vol. 8238, pp. 206–215. Springer
International Publishing (2013), http://dx.doi.org/10.1007/978-3-319-03260-3 18

4. Beal, J.: Flexible self-healing gradients. In: ACM Symposium on Applied Comput-
ing. pp. 1197–1201. ACM, New York, NY, USA (March 2009)

5. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intelligent Systems 21, 10–19 (March/April 2006)

6. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In:
Proceedings of ACM SAC 2008. pp. 1969–1975. ACM (2008)

7. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the
aggregate: Languages for spatial computing. In: Mernik, M. (ed.) Formal
and Practical Aspects of Domain-Specific Languages: Recent Developments,
chap. 16, pp. 436–501. IGI Global (2013), a longer version available at:
http://arxiv.org/abs/1202.5509

8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the in-
ternet of things. IEEE Computer 48(9), 22–30 (September 2015),
http://jakebeal.com/Publications/Computer-AggregateProgramming-2015.pdf

9. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: Eighth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2014, London, United Kingdom, Septem-
ber 8-12, 2014. pp. 8–13 (2014), http://dx.doi.org/10.1109/SASOW.2014.6

10. Beal, J., Viroli, M.: Formal foundations of sensor network applications. SIGSPA-
TIAL Special 7(2), 36–42 (July 2015)

11. Beal, J., Viroli, M.: Space-time programming. Philosophical Transactions of the
Royal Society Part A 73, 20140220 (June 2015)

12. Beal, J., Viroli, M., Damiani, F.: Towards a unified model of spatial computing.
In: 7th Spatial Computing Workshop (SCW 2014). AAMAS 2014, Paris, France
(May 2014)

13. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application de-
pendency discovery: Experiences, limitations, and new solutions. In: OSDI. vol. 8,
pp. 117–130 (2008)

14. Church, A.: A set of postulates for the foundation of logic. Annals of Mathematics
33(2), 346–366 (1932)

15. Clark, S.S., Beal, J., Pal, P.: Distributed recovery for enterprise services. In: Self-
Adaptive and Self-Organizing Systems (SASO), 2015 IEEE 9th International Con-
ference on. pp. 111–120 (Sept 2015)

16. Clark, S.S., Paulos, A., Benyo, B., Pal, P., Schantz, R.: Empirical evaluation of
the a3 environment: Evaluating defenses against zero-day attacks. In: Availability,
Reliability and Security (ARES), 2015 10th International Conference on. pp. 80–89.
IEEE (2015)

17. Coore, D.: Botanical Computing: A Developmental Approach to Generating Inter-
connect Topologies on an Amorphous Computer. Ph.D. thesis, MIT (1999)

18. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Sym-
posium on Principles of Programming Languages. pp. 207–212. POPL ’82, ACM
(1982), http://doi.acm.org/10.1145/582153.582176

19. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields.
Science of Computer Programming 117, 17–44 (2016)

20. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
A higher-order calculus of computational fields. In: Graf, S., Viswanathan, M.
(eds.) Formal Techniques for Distributed Objects, Components, and Systems, Lec-
ture Notes in Computer Science, vol. 9039, pp. 113–128. Springer International
Publishing (2015), http://dx.doi.org/10.1007/978-3-319-19195-9 8

21. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

22. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: OOPSLA. pp. 307–309. ACM (2010)

23. Finin, T., Fritzson, R., McKay, D., McEntire, R.: Kqml as an agent communication
language. In: Proceedings of the third international conference on Information
and knowledge management. pp. 456–463. CIKM ’94, ACM, New York, NY, USA
(1994), http://doi.acm.org/10.1145/191246.191322

24. Fruin, J.: Pedestrian and Planning Design. Metropolitan Association of Urban
Designers and Environmental Planners (1971)

25. Gentzsch, W.: Sun grid engine: Towards creating a compute power grid. In: Clus-
ter Computing and the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on. pp. 35–36. IEEE (2001)

26. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology. Tech. Rep. 72-2002, Univerite d’Evry, LaMI
(2002)

27. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems
23(3) (2001)

28. Inchiosa, M., Parker, M.: Overcoming design and development challenges in agent-
based modeling using ascape. Proceedings of the National Academy of Sciences of
the United States of America 99(Suppl 3), 7304 (2002)

29. Lou, J.G., Fu, Q., Wang, Y., Li, J.: Mining dependency in distributed systems
through unstructured logs analysis. ACM SIGOPS Operating Systems Review
44(1), 91–96 (2010)

30. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

31. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The tota approach. ACM Trans. on Software Engineering Methodologies
18(4), 1–56 (2009)

32. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 2.2 (September 2009)

33. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
MIT (2001)

34. Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sen-
sor networks. In: First International Workshop on Data Management for Sensor
Networks (DMSN). pp. 78–87 (Aug 2004)

35. Paulos, A., Pal, P., Schantz, R., Benyo, B., Johnson, D., Hibler, M., Eide, E.: Isola-
tion of malicious external inputs in a security focused adaptive execution environ-
ment. In: Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on. pp. 82–91. IEEE (2013)

36. Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation
perspective: The case of crowd steering at the urban scale. In: High Performance
Computing Simulation (HPCS), 2014 International Conference on. pp. 460–467
(July 2014)

37. Pianini, D., Beal, J., Viroli, M.: Practical aggregate programming with protelis.
In: ACM Symposium on Applied Computing (SAC 2015) (2015)

38. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. Journal of Simulation (2013), http://www.palgrave-
journals.com/jos/journal/vaop/full/jos201227a.html

39. Popa, L., Chun, B.G., Stoica, I., Chandrashekar, J., Taft, N.: Macroscope: end-
point approach to networked application dependency discovery. In: Proceedings of
the 5th international conference on Emerging networking experiments and tech-
nologies. pp. 229–240. ACM (2009)

40. Simanta, S., Lewis, G.A., Morris, E.J., Ha, K., Satyanarayanan, M.: Cloud com-
puting at the tactical edge. Tech. Rep. CMU/SEI-2012-TN-015, Carnegie Mellon
University (2012)

41. Sklar, E.: Netlogo, a multi-agent simulation environment. Artificial life 13(3), 303–
311 (2007)

42. lgorzata Steinder, M., Sethi, A.S.: A survey of fault localization techniques in
computer networks. Science of computer programming 53(2), 165–194 (2004)

43. Still, G.K.: Introduction to Crowd Science. CRC Press (2014)
44. Suggs, C.: Technical framework for cloud computing at the tactical edge. Tech.

rep., US Navy Program Executive Office Command, Control, Communications,
Computers and Intelligence (PEO C4I) (2013)

45. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organizing systems by self-stabilising fields. In: IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO). pp. 81–90. IEEE (September
2015)

46. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C.,
Villari, M. (eds.) Advances in Service-Oriented and Cloud Computing, Communi-
cations in Computer and Information Sci., vol. 393, pp. 114–128. Springer Berlin
Heidelberg (2013)

47. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of the 2nd international conference on
Mobile systems, applications, and services. ACM Press (2004)

