
Distributed Recovery for Enterprise Services

Shane S. Clark
Raytheon BBN Technologies
Cambridge, MA, USA 02138

Email: sclark@bbn.com

Jacob Beal
Raytheon BBN Technologies
Cambridge, MA, USA 02138

Email: jakebeal@bbn.com

Partha Pal
Raytheon BBN Technologies
Cambridge, MA, USA 02138

Email: ppal@bbn.com

Abstract—Small- to medium-scale enterprise systems are typ-
ically complex and highly specialized, but lack the management
resources that can be devoted to large-scale (e.g., cloud) systems,
making them extremely challenging to manage. Here we present
an adaptive algorithm for addressing a common management
problem in enterprise service networks: safely and rapidly
recovering from the failure of one or more services. Due to poorly
documented and shifting dependencies, a typical industry practice
for this situation is to bring the entire system down, then to
restart services one at a time in a predefined order. We improve
on this practice with the Dependency-Directed Recovery (DDR)
algorithm, which senses dependencies by observing network
interactions and recovers near-optimally from failures following
a distributed graph algorithm. Our Java-based implementation
of this system is suitable for deployment with a wide variety
of networked enterprise services, and we validate its correct
operation and advantage over fixed-order restart with emulation
experiments on networks of up to 20 services.

I. INTRODUCTION

While a range of pragmatic approaches have been de-
ployed for managing both individual machines and large-scale
datacenters, management of small- to medium-scale enter-
prise systems has generally remained much more primitive
(Figure 1). Such systems, supporting a variety of enterprise
services, can often have quite complex architectures, but are
often too small to justify the time and financial investment
necessary to integrate and maintain the sort of sophisticated
failover mechanisms used by large enterprises, such as enter-
prise virtualization or replication products. Similarly, they are
at least as likely, if not more so, to contain hard-to-replace
legacy components with peculiar requirements and to suffer
from incomplete documentation or lack of understanding by
system administrators. As a result, these smaller enterprise
systems tend to fall back on process documentation, manual
interventions, and patchwork do-it-yourself automation, and
have a corresponding tendency to suffer much more disruptive
and extensive outages than large enterprise systems: a recent
survey [1] shows that small enterprises (<100 employees)
suffer more than 50% more downtime and 5 times more
relative financial impact than large enterprises, while medium
enterprises (100 to 1000 employees) are even more badly
impacted, with nearly 5 times the downtime and 25 times the
financial impact.

One approach to addressing this challenge is through self-
adaptation, by creating system-management tools that self-
customize to work with ill-documented, poorly understood,
and changing networks of services. This paper aims to address
one critical aspect of system management: recovery from
service failures. Recovery in enterprise service networks is

Large&Cloud&
Datacenter&

Individual&
Server&

High%Complexity%
Few%Admin%Resources%

Small5&to&Medium5&
Enterprise&Network&

Low%Complexity%
Few%Admin%Resources%

High%Complexity%
Many%Admin%Resources%

Fig. 1. Small- to medium-sized enterprises often have complex networks with
many services and servers, but are not large enough to have significant admin-
istrative resources to devote to customization or to benefit from economies of
scale.

complicated by the dependencies (sometimes undocumented)
between services. Restarting a service before its dependencies
restart can often result in a new failure, so typical current
practice for small- to medium-scale enterprise systems is
to bring the entire system down and restart each service
sequentially in a fixed “known safe” order of restarts.

To address this challenge, we have developed the
Dependency-Directed Recovery (DDR) algorithm, which in-
fers dependencies from network interactions and automatically
coordinates service restarts based on these observed depen-
dencies. While considerable prior work addresses the issue
of dependency detection via network observations [2], [3],
[4], this prior work focuses primarily on the mechanism for
detection rather than the application of that information to
service management. We thus begin with the assumption that
one can observe network interactions for dependency informa-
tion and build from that point to a self-stabilizing algorithm
for distributed recovery that near-optimally coordinates service
restarts without any need for specialization to a particular
enterprise system.

We have implemented the DDR algorithm within the
Java-based Protelis architecture [5], creating a self-adaptive
management framework suitable for immediate use with many
enterprise services, including legacy systems. Deploying this
framework requires only connecting each existing service with
Java or system hooks for observation and restart. For the small-
to medium-sized enterprises we are targeting with this work,
these requirements are likely modest compared to the time
and financial costs of re-architecting applications or integration
with large-scale enterprise solutions. Finally, we validate the
efficacy of our distributed recovery framework by comparing
it to fixed-order restart on three classes of emulated networks

with up to twenty services per network, finding that our
approach recovers at near-optimal speed and with many fewer
services affected.

A. Related Work

While there are many monitoring tools to assist with
detecting failed services and managing dependencies between
services, to the best of our knowledge no prior method provides
a practical end-to-end solution that includes both knowledge
of dependencies and automation-assisted recovery.

On the simpler side of prior approaches, a monitoring tool
such as mon [6] or Nagios [7] can be combined with custom
logic to handle dependencies and restart, or a system adminis-
trator can build their own custom watchdog scripts. These “do-
it-yourself” approaches, however, do not provide dependency
inference or adaptive execution, leaving the specification and
maintenance of recovery scripts entirely in the hands of a
system’s human operators. A number of more sophisticated
tools allow an administrator to manage a collection of ma-
chines by enforcement of set policies. Two popular examples
are Puppet [8] and Chef [9], both of which use agents with
optional server components to provision and manage hosts,
including the states of services and the order in which those
services are started. While these configuration management
systems do provide per-host management, they assume that
each host operates independently and do not offer any ability
to coordinate management of interdependent hosts.

At large scales, modern datacenters frequently integrate
open source or commercial offerings that use redundancy as
a way to mitigate failures, rather than explicitly managing
dependencies. For example, one straightforward approach for
stateless web servers is to maintain multiple running copies
behind a failure-aware load balancer, such as HAProxy [10].
Load balancers are more difficult to use with databases or
other stateful services because they do not manage data
consistency. Typical approaches for databases include multi-
master or master-slave clustering, which are transparently
tolerant to node failures but require multiple database hosts
regardless of load (e.g., [11], [12]). Other commercial products
include host-level mechanisms for failure recovery such as the
fault tolerance and high availability mechanisms in VMware’s
vSphere [13], which maintain “shadow copies” of running
VMs that can be promoted to active use in the event of failure,
along with automatic VM monitoring and restart functions.
All of these tools offer monitoring and/or restart functionality
but none of them actually address the problem of dependency
management. Instead, they treat each component in isolation
and attempt to use replication and rapid failover between
physical hosts to prevent the “virtual component” from ever
failing. These large-scale solutions also generally require spe-
cific infrastructure support and spare hardware resources that
are often not readily available for smaller enterprises.

With regards to adaptively identifying dependencies be-
tween services, there are currently no commonly deployed
administrative tools, but there is significant prior research in
the area [3], [4]. We do not attempt to advance the state of the
art for dependency detection in this work, given the variety
and effectiveness of systems already proposed and evaluated.
Published approaches include network traffic monitoring [3],

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

Fig. 2. Diagram of a typical enterprise service network, inspired by TBMCS,
featuring multiple layers of interwoven dependencies. Some hosts effectively
act as a single service (green servers), while others (grey servers) host multiple
services (green ovals below server).

log analysis [14], and hybrid approaches [15]. A number of
these approaches offer high accuracy in realistic environments:
for example, the Macroscope system correctly identified 95%
of dependencies in evaluation, with a false positive rate of
only approximately 18% of the number of dependencies [15].
Furthermore, the authors of the Orion system [3] claim that
such false positives are relatively easy to correct, given some
time for directed testing after initial dependency detection. We
thus take accurate dependency detection as a given (using a
simple such mechanism in our emulations) and focus instead
on applying information about service dependencies to achieve
efficient recovery coordination.

Finally, in the contexts of autonomic computing [16], or-
ganic computing [17], and other approaches to self-adaptation,
there have been a number of investigations of various self-
adaptive frameworks for managing multi-service environments,
including a number that take a distributed agent / distributed
control perspective such as we use in this paper (e.g., [18],
[19], [20], [21], [22], [23], [24]). To the best of our knowledge,
however, none of these publications to date have specifically
addressed the problem of dependency-aware recovery of failed
services. Most such frameworks, however, should readily be
able to incorporate the algorithm and results presented in this
paper for use in the more comprehensive coordination schemes
that such frameworks typically aim to support.

II. MOTIVATING EXAMPLE: TBMCS

Throughout this paper, our discussion will make use of a
motivating example based on a real system with properties
typical of small- to medium-scale enterprise services. This
example is based on the Theater Battle Management Core
Systems (TBMCS), a set of software systems used by the
United States military to plan and execute air campaigns [25].

We use TBMCS as a motivating scenario because it
is a real-world example of a long-lived complex deployed
enterprise-level system that spans multiple hosts and operating
systems, and whose operators actually encounter management
challenges of the type described in this paper. In a life cycle
typical of such systems, TBMCS was first released in 2000
and has undergone a number of releases since that time,
accumulating complexity and legacy requirements, resulting
in internal dependencies that are difficult for users or adminis-
trators to observe. At this point, a TBMCS deployment may be
comprised of many different components, including a legacy
UNIX server, a database server, a web application server, an
email server, and email and browser-hosted clients Each of
these components may in turn be made up of semi-independent
sub-components, with multiple dependencies between them.

This type of complexity of components and dependencies
is illustrated in Figure 2, which shows a network embodying
key relevant challenges faced by TBMCS1 that we will use as
a running example throughout the rest of this paper. This net-
work contains 10 services distributed across 6 physical servers,
and features multiple layers of interwoven dependencies.

Managing such a network often presents difficult and
poorly defined tasks. When components fail, they may fail
partially or cryptically, making it difficult to identify which
components, exactly, have failed. For example, a common
failure mode might be for a user to get a timeout message
from a mail client or a page not found error from a web
browser. Neither users nor administrators have a clear indi-
cation of which component has failed in such a case. The
failure could be at the client, the server that the client is
attempting to contact, a particular service within that server, or
some unseen (and possibly undocumented) dependency farther
“upstream” from that server. Recovering from failures can
also be difficult. Individual services or machines can typically
be easily restarted, but poorly managed (and again possibly
undocumented) dependencies between services can cause new
failures if a service is restarted before other services that it
depends on.

Managing enterprise services like TBMCS is thus often
a matter of applying either administrative experience (i.e.,
an administrator is available, has seen the specific error, and
knows the likely culprit) or applying a conservative recovery
strategy such as bringing down all services and then restarting
them sequentially in a known-safe order. The former strategy
requires action by a system administrator intimately familiar
with all of the components and dependencies, and the latter
guarantees maximal disruption for all users before the system
is brought completely back on-line. The goal for the auto-
mated recovery system presented in this paper is to improve
this situation by decreasing the need for intervention by a
system administrator, while simultaneously minimizing service
disruptions.

III. SERVICE MANAGEMENT ARCHITECTURE

The work presented in this paper builds upon on an archi-
tecture designed to support retrofitting of new service manage-
ment mechanisms onto existing services without modification

1Actual system specifics are not used since TBMCS is a deployed opera-
tional system.

Protelis)Parser)

Protelis)Coordina.on)

Environment)
Variables)

Protelis)
Interpreter)

Aggregate'Behavior'
Specifica1on'

Service)
Manager)
Daemon)

Networked)
Service)

Start/Stop)
Signals)

Status,)
Sockets)

Other&
Services&

Other&
Manager&
Daemons&

Enterprise&
Server&

Fig. 3. Server management architecture, adapted from [5]: within an
enterprise server, each managed service (red) is monitored and controlled
by a management daemon (purple), one daemon per service. Management
daemons maintain connections to one another that parallel the connections
they observe between their respective managed services. Management is then
coordinated using a distributed algorithm, in this case implemented using the
Protelis aggregate programming framework.

of those services. Such a retrofitting approach is important,
particularly given the motivation of supporting enterprises with
few administrative resources, since modifying existing services
can be extremely costly in time and resources. In fact, in many
cases, modifying existing services is nearly impossible due to
certification requirements or to use of effectively immutable
vendor-supplied or legacy binaries.

The architecture, first presented in [5] is illustrated in
Figure 3. For each service to be managed, an associated
management daemon is created (e.g., a server with four
managed services will have four management daemons). Each
management daemon needs to be able to do three things:

• Detect its managed service’s interactions with other
managed services.

• Detect current service state, including whether the
service is stuck in some form of failure state.

• Start and stop the managed service, even if it is
currently in a non-functional state.

For purposes of this paper, we assume that such software
instrumentation and controls are possible and available. As
discussed in Section I-A, there are multiple options for depen-
dency detection and service monitoring.

When a management daemon observes its associated ser-
vice interacting with another service, it attempts to create
a parallel communication link with the other service’s cor-
responding management daemon. The management daemons
then use these links to coordinate their actions, maintaining
the link as long as either the services are interacting within
some timeout or else the management daemon has some other
reason to believe the coordination link should be preserved.
In the example systems used in this paper, all services use
network sockets to communicate (even if they are communi-
cating locally within the same machine), and their management
daemons thus open a parallel socket connection with one

Symbol Definition
G = {V,E} Graph defining a service network in terms of a set of daemon

nodes V and communication edges E between them
N(v) Neighbors of daemon v in service network
t Update period for daemons
δ Network delay in communication between daemons
F Set of daemons that have either failed or whose service has failed

D(v) Dependencies D(v) ⊆ N(v) of service for daemon v
D−1(X) Inverse dependencies of daemons: {v|∃x∈X s.t. x ∈ D(v)}
D−1(X) Closure of a set X via inverse dependencies: X ∪ D−1(X) ∪

D−1(D−1(X)) ∪D−1(D−1(D−1(X))) ∪ . . .
rv Time required to successfully restart daemon v and/or its associ-

ated service, given no missing dependencies
Rv|F Minimum time to safely restart daemon v and/or its associated

service, given a starting failure set F

TABLE I. SYMBOLS USED IN DESCRIPTION AND PROOFS FOR
DEPENDENCY-DIRECTED RECOVERY ALGORITHM

another.

For simpler development of coordination mechanisms, the
architecture that we use separates the coordination logic from
instrumentation and controls. In particular, we implement
coordination using Protelis [5], a Java-based aggregate pro-
gramming framework based on field calculus [26], [27]. This
framework allows a programmer to specify an application in
terms of the collective behavior of a network rather than the
behavior of individual devices, raising the level of abstraction
for application development and making many implementation
details implicit. This allows coordinated services (such as
we discuss in this paper) to be implemented more cleanly
and succinctly than with conventional networking APIs, as
well as enabling them to be safely composed in an appli-
cations environment. It is thus a useful enabling technology
for lightweight development of enterprises services, but not
required for implementing or understanding the particular
distributed recovery mechanisms that we discuss in this paper.

IV. DEPENDENCY-DIRECTED RECOVERY ALGORITHM

We now present our Dependency-Directed Recovery
(DDR) algorithm. We first formalize the recovery problem in
the context of the service management architecture presented
in the previous section, then present our simple reactive
algorithm for solving this formalized problem.

A. Problem Formulation

We formalize the operating environment for enterprise
recovery as follows:

• The service network is a graph G = {V,E}, where the
nodes V are daemons (each associated with a service)
and undirected edges E indicate communication be-
tween services and their corresponding daemons. Each
service is also assumed to have a unique identifier
associated with it.

• Network communication is assumed to be reliable,
with a delay of up to δ to send a coordination message
from one daemon to another. Note, however, that the
algorithm can also assist in recovering from network
failures, and extension to this case is discussed in
Section V.

• Each daemon executes asynchronously, independent
of its associated service and of other daemons. Every
daemon v ∈ V executes, updating its state and pos-
sibly attempting to act, at least once every t seconds,
and shares state with its neighbors N(v) in the service
network on an as-needed basis (described in more
detail below).

• Every daemon has a reliable status detector that indi-
cates which of three states its associated service is in:
run (normal operation), stop (a safe shutdown state),
or hung (partial or complete failure).

• Every daemon v has a reliable dependency detector
that reports a set of dependencies D(v) ⊆ N(v),
indicating the set of neighbors that its associated ser-
vice needs correct responses from in order to operate
correctly. Such correct operation is only guaranteed
when all services of v and D(v) have status run.
If some services of D(v) are not running, then the
service of v is likely to fail and become hung.

• Daemons can take two actions to affect service state:
stopService attempts to move a service from run or
hung to stop; restartService attempts to move a service
from stop or hung to run. Either action may fail,
leaving the process in a hung state. Such a transition
takes some amount of time that may or may not be
predictable. We further assume that the stopService
and restartService actions are assumed to be idem-
potent (meaning in this case that if they are invoked
again while executing, the duplicate invocation is ig-
nored) and that invocation of restartService preempts
stopService.

• Both services and daemons may fail arbitrarily. When
a service fails, it is detected as hung by its daemon
within its update period of t seconds. When a daemon
fails, its failure is detected by its neighbors within t
seconds, which discard any state information they have
from that daemon. A failed daemon will automatically
attempt to restart, but this attempt may fail.

The goal of a distributed recovery algorithm is thus as
follows: given a service network with some set of failed
daemons and services, coordinate daemon actions in order to
return as rapidly as possible to a state in which all services are
running correctly. Restarting in an inappropriate order, on the
other hand, can significantly extend the recovery time due to
failures introduced while dependencies are restarting, as can
restarting services that do not need to be restarted.

Note that this problem formulation can model both process
and server failures, as well as failures that require human
intervention to resolve. Process failures are independent, while
server failures will cause correlated failures in both daemon
and service, possibly multiple pairs if there are multiple ser-
vices running on a given server (e.g., the application server in
Figure 2). The difference between failures that can be handled
with automation versus failures requiring human intervention
(e.g., a hardware failure that requires a component be replaced)
is modeled by the potential for stopService, restartService, and
daemon restarts to fail; in this case, the goal remains the same,
but recovery is inescapably delayed until the restart actions are
able to succeed.

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(a) Failure

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(b) Preventive Shutdown

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(c) Initial Recovery

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(d) Incremental Progression

App#1#

Portal'

Exchange'

Core'Logic'

Database'

App'Server'
Legacy'Unix'

App#2#

Gateway#B#Gateway#A#

Core#1#

Core#2#

Core#3#

(e) Full Recovery

Fig. 4. Example of how dependency management proceeds with recovery in a service network, showing status run as green, stop as blue, and hung as red.
Following failure of some set of services (a), other services that depend on them shut themselves down (b). When the initial failures have been able to restart
(c), the services that depend on them restart incrementally (d), until the entire service network has recovered (e).

B. Algorithm

Given this problem formulation, Dependency-Directed Re-
covery can be realized using the following reactive algorithm,
(presented here as implemented in Protelis [5]):

// Collect state of monitored service from service manager daemon
let status = self.getEnvironmentVariable("serviceStatus");
let serviceID = self.getEnvironmentVariable("serviceID");
let depends = self.getEnvironmentVariable("dependencies");
let serviceDown = status=="hung" || status=="stop";

// Compute whether service can safely be run (i.e. dependencies are satisfied)
let liveSet = if(serviceDown) { [] } else { [serviceID] };
let nbrsLive = unionHood(nbr(liveSet));
let liveDependencies = nbrsLive.intersection(depends);
let safeToRun = liveDependencies.equals(depends);

// Act based on service state and whether it is safe to run
if(!safeToRun) {
if(!serviceDown) {
self.stopService() // Take service down to avoid misbehavior

} else { false } // Wait for dependencies to recover before restarting
} else {
if(serviceDown) {
self.restartService() // Safe to restart

} else { false } // Everything fine; no action needed
}

In essence, the code is relatively straightforward. Each
daemon executes the whole sequence at each of its periodic
updates. In the first block the DDR algorithm simply accesses
the service identifier, status, and dependencies detected by the
daemon. In the second block, each daemon computes whether
it is safe for its service to run. The liveSet variable is a set
that contains the local service if it is running, is empty for a
failed service, and is non-existent for a failed daemon. This set
is then shared with neighbors via the Protelis function nbr,2
and combined with other neighboring values via unionHood,
which takes the union of the sets shared from neighbors, to
produce at each daemon a set of the services currently running
on its neighbors. Intersecting this with the local service’s
dependencies produces a set of live dependencies, and if this
set is equal to the set of dependencies, then it is safe for
the service to run. Finally, the daemon uses this judgement
to adjust service state: if the service is running but it is not
safe for it to do so, the algorithm tries to stop it; if it isn’t

2Note that this does not mean that a message is sent each round: caching
and reliable communication via sockets means that the Protelis infrastructure
only needs to actually send a message on initial connection with each neighbor
or when the shared set changes.

running but it is safe to do so, the algorithm tries to restart it.

The effect of this algorithm is to follow chains of de-
pendencies, neighbor by neighbor, from failed services to the
services that depend on them. When a service fails, all of the
services that depend on it attempt to shut down in an orderly
fashion. Services then wait to restart until nothing they depend
on is down, restarting in an orderly and incremental fashion
following the partial order established by dependencies.

Figure 4 shows an example of DDR in operation on the
service network from Figure 2. The algorithm, quiescent when
all services are running, is triggered into action by the failure of
services App 2 and Core 1 (Figure 4(a)). Their corresponding
daemons report this change in status to all of their neighbors,
and the three that depend directly on these services (Gateway
A, Legacy Unix, and App 1 on App Server) transition to a safe
stop state, while the other two neighbors, that have no such
dependency, do not (Figure 4(b)). In this case, there are no
further “upstream” dependencies, but if there were the safe
stopping of processes would continue chaining up through
dependencies, stopping each service affected by the failures. In
parallel with the safe shutdown of upstream dependencies, the
failed services, having no unsatisfied dependencies themselves,
begin trying to restart. When they succeed (Figure 4(c)),
this means that Legacy Unix and App 1 have all of their
dependencies once again satisfied and are able to safely restart
(Figure 4(d)). Gateway A, however, also depends on Legacy
Unix and App 1 and is not able to safely restart until these two
services have also finished restarting. Finally, when Gateway
A completes its restart, all services are running again and
the system is fully recovered (Figure 4(e)). Importantly, note
that throughout the whole recovery process, the operation of
Gateway B and all of the services that it depends on was
unaffected, even though these services share the Portal and
Core Logic servers with services affected by the failure.

V. ANALYSIS OF DEPENDENCY-DIRECTED RECOVERY

We now prove that Dependency-Directed Recovery pro-
vides near-optimal recovery time for a service network. After
first analyzing the case where only services fail, we then extend
to the case where daemons and network connections may fail
as well. Finally, we analyze the resource costs associated with
the DDR algorithm.

A. Near-Optimal Recovery of Failed Services

First, we will compute the optimal recovery time that can
be achieved. To do this, we will make one further assumption,
that, after any given failure, the time required to restart a
service (assuming its dependencies are satisfied) is independent
of when the attempt to restart is initiated. In other words, each
daemon v is assigned a fixed restart duration rv (e.g., very
fast for a lightweight web server, much slower for a large
database that performs thorough integrity checks as part of
its startup). This independence assumption also subsumes the
possibility that a restartService action will independently fail:
this essentially just results in a higher value for rv than would
otherwise be the case.

Given an arbitrary set F ⊆ V of daemons with a failed
service, the set of services affected by this failure can be
computed using the dependency function D(v). The inverse of
this function can compute the set of daemons whose services
depend directly on the service of any daemon in a set X ⊆ V ,
namely:

D−1(X) = {v|∃x∈X s.t. x ∈ D(v)} (1)

The closure of this function then determines the set of all
daemons with services dependent through any chain of depen-
dencies:

D−1(X) =D−1(X)

∪D−1(D−1(X))

∪D−1(D−1(D−1(X)))

∪ . . .

(2)

The minimum time to safely restart the service at daemon
v, given failure set F can then be computed by induction as:

Rv|F =

0 : v /∈ D−1(F)
rv : v ∈ D−1(F), D(v) = ∅
rv +maxv′∈D(v)(Rv′|F) : v ∈ D−1(F), D(v) 6= ∅

(3)

Two important notes about the values thus computed: first,
note that this value only converges when G|D−1(X) (i.e., the
sub-network formed by considering only nodes and edges in
the region of the failures and their dependencies) is a directed
acyclic graph. If there are cycles, Rv|F is ill-defined for any
daemon participating in a cycle, indicating the intuitive fact
that the service network cannot be safely restarted when there
are dependency cycles. Second, note that if all rv are equal,
then the maximum Rv|F is equal to c·rv , where c is the length
of the longest chain of dependencies from the failure, i.e., the
diameter of the graph G|D−1(X). In other words: restart time
is proportional to the length of dependency chains, unless some
services are much faster or slower to restart than others.

We can now prove that DDR self-stabilizes [28], meaning
that the service network will return to a correct state (i.e.,
all services in the run state) from any arbitrary initial state
in a finite number of steps. Moreover, when recovering from
failed services it performs near-optimally, slowed only by
communication delays and the update period of the daemons:

Theorem 1. Given a set F of failed services, DDR self-
stabilizes on any acyclic dependency graph G within time

(maxv∈V Rv|F + (2t + δ) · c) where c is the diameter of
G|D−1(F) (i.e., the longest chain of dependencies).

Proof: Consider the subgraph G|D−1(F), which contains
all daemons for failed services, daemons with services de-
pendent on those failed, and dependencies between elements
of this set. Any daemon outside of this subgraph must, by
definition, have its service in the run state, and will remain
there since by definition it has no dependency relationship,
direct or indirect, with any daemon with a service not in the
run state. These services thus start in and remain in a correct
state.

Returning to services in the subgraph: since G is acyclic,
this subgraph must be acyclic as well. Any directed acyclic
graph may be interpreted as a partial order, so let us choose
the interpretation where the minima M are those daemons that
have no dependencies contained within G|D−1(F). This set
M of minima is non-empty because the graph is finite and
acyclic.

For any daemon v in the minima M , its variable
nbrsLive must contain all of the dependencies D(v), as oth-
erwise it would not be a minimum, and thus its safeToRun
variable is true. If the daemon’s service is currently in the run
state, then no action need be taken; if it is not running, then
the restartService action will be asserted and it will take up
to rv + t for the associated service to restart, return to the run
state, and have this recognized by the daemon during an update
(note that since restartService is assumed to be idempotent and
to preempt stopService, we can ignore the question of whether
any action is currently executing on the service).

After the daemon returns to the run state, it can take up
to δ time for this information to be sent to its neighbors,
such that their nbrsLive variables can update, and up to
another t time for that update to actually occur. At this point,
all of the daemons in the minima M have restarted (their
services are in the run state) and their neighbors information
updated, such that we may consider instead a reduced graph
G|D−1(F)−M . By the same reasoning as before, this graph
is also acyclic and has a non-empty set of minima that can
restart, but has a diameter that has decreased by one.

This cycle may thus repeat up to c times, where c is
the diameter of G|D−1(F), before the maximum diameter
reaches zero, meaning the subgraph of daemons that may have
a service not in the run state is guaranteed to be empty. The
sum of the rv components along any path is equal to Rv|F ,
and there can be up to c steps of (2t+ δ) additional delay per
step, so therefore the total restart time must be bounded by
maxv∈V Rv|F + (2t+ δ) · c.

A key implication of this result is that the time for DDR to
recover from failures will generally be dominated by service
restarts, unless those restarts are very fast. Another corollary
implication of this proof is that DDR will also self-stabilize on
cyclic graphs, as long as G|D−1(F) is acyclic. Since a failure
might potentially occur anywhere, however, this distinction is
not particularly useful.

B. Failed Daemons and Communication Links

The same basic principles for failed services hold as well
for extension of the proof to the case where daemons and
services fail together (e.g., hardware failures), since the DDR
algorithm treats a missing daemon the same as a daemon
reporting that its service is failed. In this case, the restart
time may be further extended by the time required to restart
a daemon and to detect a missing neighboring daemon (it is
not affected by diameter since daemons have no dependencies
and can restart in parallel).

Likewise, failure of a network connection is equivalent to
service failure for any dependency that requires that connec-
tion; the same directed subgraph reasoning can thus be applied
for any set FE of failed edges in E, as well as to mixtures of
failed edges and services.

Treating a missing daemon as equivalent to a failed service,
however, does mean that the DDR algorithm will perform
suboptimally when a daemon fails but its associated service
does not. In this case, any daemon with the failed daemon as
a dependency will stop its service and wait to restart, when in
fact the service could have continued safely running. This is
an inherent limitation of instrumenting services, however, and
cannot be addressed at the algorithmic level, but rather only
by improving instrumentation, e.g., to infer that a neighboring
service is still operating correctly, even though its daemon is
down, by examining incoming traffic from it.

C. Resource Requirements

Dependency-Directed Recovery has relatively low resource
requirements. Statically, each daemon requires |N(d)| + 1
sockets: one dedicated socket for each live connection to a
neighbor, plus a server socket listening for new connections.
This is unlikely to pose a significant burden on system
resources unless there are either a very large number of
neighbors or a very large number of services (and associated
daemons) on a single machine.

The actual DDR algorithm is very simple, so as long as
t is non-trivial, executing the computational components of
the algorithm should not pose any significant computational
burden on a machine. In terms of its communication: the
only signals that need to be sent between daemons (by a
smart infrastructure) are announcements of changes in the
liveSet variable, plus infrequent “heartbeat” messages to
let neighboring daemons know a daemon is still alive when
this variable is not changing. The number of change messages
required for a recovery is bounded by 2N(D−1(F)): one to
each neighbor as a daemon’s service goes down (failing or
preemptively stopped) and another as it returns to the run state.
Heartbeat messages may be much more infrequent, though
their frequency does determine how quickly a daemon failure
can be detected. With such small and infrequent messages,
this is again unlikely to pose a significant burden on system
resources unless the number of neighbors is very large.

Taken together, what this all means is that, for most rea-
sonable deployments, the main cost of Dependency-Directed
Recovery is likely to not be the algorithm itself, but the
instrumentation for detecting dependencies and for monitoring
service state.

VI. EXPERIMENTAL VALIDATION

We now turn to validation of the DDR algorithm and the
theoretical results presented in the previous section. We first
provide additional details of the implementation and emulation
environment, then present a set of distributed recovery exper-
iments that provide experimental validation of the analytical
results presented in the previous section.

A. Emulation Environment

Building on the architecture presented in Section III, we
developed a Java-based enterprise service emulation environ-
ment to evaluate our dependency-directed recovery algorithm.
The environment is an emulation rather than a simulation.
Using a JSON specification file, our emulation system can
remotely launch and manage an arbitrary network of “query-
response” services and associated daemons. By using actual
distributed services, potentially across many different ma-
chines, this emulation environment allows a more realistic
approximation of actual enterprise service environments. The
emulation environment also includes an optional management
GUI for visual monitoring of the running network of services
and daemons.

For simplicity, the query-response services are imple-
mented in Java and offer hooks for observation and control
by the daemon implementation, which is executed in the
same JVM. Although these services are very lightweight,
they emulate the longer initialization time of more complex
services by sleeping for a fixed delay during a restartService
action. Each query-response service has a set of other query-
response services as dependencies; when it receives a query,
it passes it onto all of its dependencies and waits for a
response. Once all dependencies have responded (or if there
are no dependencies), it sends its own response to the query it
received. If a fixed timeout passes without dependencies being
satisfied, the service drops the query, and if it drops queries
too frequently, it hangs (this creates persistent state that can
cause failures to propagate and recur when restarts occur in the
wrong order). Finally, a subset of services are designated as
query originators, representing points of external interaction
with users of the service network: these behave identically
except that they also spontaneously originate queries (which
then are passed on to their dependencies). Both query-response
services and daemons communicate with one another via
standard TCP network sockets; the query-response services
have their relationships hard-wired by the JSON specification
file, while the daemons start with no such knowledge. Instead,
daemons rendezvous by observing the connections made by
their service, and serving a socket of their own at a port with
fixed offset from that of their service.

Given the strength of prior dependency detection work
(as discussed in Section I-A) and our focus on the use of
dependency information rather than its acquisition, we chose
not to attempt to integrate a dependency detection system like
PinPoint [2] or Orion [3], but instead simply to use emulated
services whose dependencies are easily extracted from their
traffic. In particular, the emulated services 1) initiate socket
communication with all other services that they depend on at
least once every T seconds and 2) do not initiate commu-
nication with any service that they do not depend on. Each

management daemon then embeds a sensor in its associated
service that reports an <IP address,port,timestamp> tuple for
each client socket creation, and takes the set of dependencies
to be the set of IP-address/port pairs that it has observed within
the last T seconds. When combined with the constraints placed
on services, this guarantees every daemon will have correct
dependency information that is no more than 2T + δ seconds
out of date.

This emulated implementation is thus fairly close to a real
deployable system. Modification for a real enterprise service
network deployment would require that the implementation
of monitoring, dependency detection, control, and rendezvous
be changed to a “wrapper” model that does not require
cooperation from the managed service. The naive dependency
detection just described would also need to be replaced with a
real state-of-the-art dependency detection mechanism, such as
the ones discussed in Section I-A, and distinctions might also
need to be drawn between startup dependencies and runtime
dependencies.

B. Experimental Setup

We evaluate the performance of the DDR algorithm by
emulating failure recovery on a variety of service networks,
comparing against the common current strategy of sequential
restart in a fixed “known-safe” order.

To obtain a sufficient variety of service network topologies,
we evaluate both of these algorithms on random service
networks of n devices. Services are numbered sequentially,
from 1 to n; graphs are generated with undirected edges, which
are then interpreted as dependencies from the higher numbered
service on the lower numbered service (thereby guaranteeing
graphs are acyclic). We generated these networks from three
classes of random graph selected to be representative of typical
service architectures (examples shown in Figure 5), with either
sparse or dense dependencies for each graph class:

• Erdos-Renyi: The network is generated using the
Erdos-Renyi process [29], where there is probability
p of each possible edge existing, using p = 2/n for
sparse and p = 0.3 for dense. These networks have
high variability in dependency chain length and the
number of dependencies per service. Queries originate
from the three highest-numbered services.

• Layered: The network is organized into dp
√
ne

equally sized layers, where p = 10U [−0.5,0.5], i.e., a
uniform geometric distribution from “short and wide”
to “thin and deep” distributions. Services in each layer
are numbered sequentially, and each layer is connected
to the prior layer by a set of random edges, using edge
probability 1/n for sparse and 0.5 for dense. When the
number of total services did not divide evenly by the
number of services per layer, lower layers were filled
first. Queries originate from all services in the highest
layer.

• Clustered: The network is formed as an Erdos-Renyi
graph of a set of “clusters,” where each cluster is itself
an Erdos-Renyi graph of size b

√
nc Services in each

cluster are numbered sequentially, and connections
between clusters are realized by randomly selecting

9"10"

1"

2"3"

4"
5"

6"7"

8"

(a) Erdos-Renyi

10#

1#2#

3#4#

5#6#7#

8#9#

(b) Layered

9" 8"

7"

6"

5"

1"

2" 3"

4"

(c) Clustered

Fig. 5. Typical examples of the three classes of random dependency graphs
used for evaluation of dependency-directed recovery: Erdos-Renyi (a), layered
(b), and clustered (c).

one service in each cluster. When the number of ser-
vices did not divide evenly by the number of services
per cluster, the lower-numbered clusters were filled
completely. These networks have the shortest depen-
dency chains on average, but each service may have
many dependencies within its own cluster. Queries
originate from the three highest-numbered services in
each cluster.

For each network class and density, we generated 50 random
samples each for n equal to 2, 4, 8, 12, 16, and 20. In
total, this is 1800 service networks3, with a wide variety of
topologies and spanning a range from very simple to rather
complex service networks. On each of these service networks,
we executed both DDR and fixed-order restart, using a t = 0.5
second update period and setting the restart delay to 3 seconds
(producing an rv of the actual restart time plus 3 seconds).

For each experimental run, the service network was first
initialized and allowed to stabilize in operation. One service
was then randomly selected to fail. Following the injection
of the failure, the service network was then run until at least
30 seconds elapsed with every service staying in the run state.

On fixed-order restart runs, a central controller executed
the recovery by first invoking stopService on all services, then
invoking restartService on each service sequentially, starting
with service 1 and moving to each subsequent service as the
prior one returns to the run state. For DDR runs, the algorithm
executed as described in Section IV.

C. Results

As predicted, the time required for recovery from failure
is dramatically lower for DDR than for fixed-order restart.
Figure 6(a) shows restart time as a function of the number
of services. The recovery time for fixed-order restart is, of
course, directly proportional to the number of services, and
shows minimal variation since it does not adapt to either failure
location or network structure. DDR, on the other hand, grows

3A small number of experimental runs failed to execute properly for
unrelated reasons, so the actual number of experimental samples for which
data was collected is 1766 for DDR and 1756 for fixed order.

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

of services

R
es

ta
rt

tim
e

(s
ec

on
ds

)

Fixed−Order
Erdos−Renyi
Layered
Clustered

(a) Time vs. Network Size

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

55

Depth of failure

R
es

ta
rt

tim
e

(s
ec

on
ds

)

Mean recovery estimate
Least squares regression
Erdos−Renyi
Layered
Clustered

(b) Time vs. Failure Depth

Fig. 6. (a) Fixed-order restart (red) always requires recovery time proportional
to the number of services in the network, while the time for Dependency-
Directed Recovery (all others, with solid lines being sparse and dashed lines
being dense) tends to grow much more slowly. (b) The time for DDR is instead
proportional to the depth of the longest dependency chain stemming from the
set of failures (‘+’ markers indicate sparse edges and ‘o’ markers indicate
dense edges). For visualization purposes, depth and time have been randomly
perturbed in the range ±0.1 to avoid aliasing.

much more slowly with respect to the size of the service
network, and with a great degree of variation. This is because,
as analyzed in Section V-A, the recovery time is proportional
to the longest dependency chain c. This is verified by graphing
recovery time against c (Figure 6(b)), producing a clearly linear
relation. Given t = 0.5 and the 3-second restart delay, the
estimated mean recovery time is 3.75 · c (for each service in
the chain: restart time, plus one update to notice, plus half
an update average asynchrony between daemons, omitting δ
and the unknown portion of dv). Linear regression against the
experimental data finds an observed mean recovery time of
4.9 · c, implying that some combination of δ and variation in
dv is adding about one second per restart—a reasonable degree
of additional overhead to observe in this emulation experiment.

The other predicted advantage of DDR is that some
services can remain operational throughout the recovery, if
they are not affected by the failure. Fixed-order restart, by
definition, always shuts down all services. With DDR, on the
other hand, only those devices directly dependent on the failure
will be affected, which means that, for the most part, larger

2 4 6 8 10 12 14 16 18 20 22
−10

0

10

20

30

40

50

60

70

80

90

100

of services

P
er

ce
nt

 o
f s

er
vi

ce
s

af
fe

ct
ed

Erdos−Renyi
Layered
Clustered

(a) Devices Restarted

2 4 6 8 10 12 14 16 18 20 22

0

10

20

30

40

50

60

70

80

90

100

of services

P
er

ce
nt

 o
f q

ue
ry

 o
rig

in
at

or
s

af
fe

ct
ed

Erdos−Renyi
Layered
Clustered

(b) End-User Services Disrupted

Fig. 7. Dependency-Directed Recovery reduces the disruption caused by
recovery by ensuring that services unaffected by a failure remain undisturbed.
Whereas fixed-order restart always restarts all devices, causing 100% disrup-
tion (not shown), with DDR more complex networks tend to be proportionally
less disrupted by any given failure (except for dense Erdos-Renyi). Solid lines
indicate sparse graphs and dashed lines indicate dense graphs.

networks should have a smaller percentage of their services
affected. Figure 7(a) shows that this indeed holds for all of
the service networks except for dense Erdos-Renyi networks,
where there are so many dependencies that most failures affect
many services.

Finally, shifting from a system administrator perspective to
a user perspective, disruption of services in the service network
would only be apparent to an external user when query-
originator services are affected. Here as well, the same trend of
lower impact in larger networks should hold. Figure 7(b) shows
that this does indeed hold as expected, in this case even for
dense Erdos-Renyi (where there are many dependency paths,
but most do not make it all the way to all of the originators).
We thus see that DDR provides a major improvement not
only in the time for recovery, but also the number of services
affected and the degree of service disruption that affects users.

VII. CONTRIBUTIONS

In this paper, we have demonstrated a lightweight adaptive
capability for managing recovery from failures in enterprise
service networks, based on dependency detection and a reactive
Dependency-Directed Recovery algorithm. This mechanism

guarantees an optimal automation-assisted recovery time, pro-
viding a large gain in performance over the typical current
practice of fixed-order restart, and we have further validated
this performance experimentally on emulated service networks.

From these results stem two clear directions for future
work: the first is maturation and transitioning of these mecha-
nisms for use in actual enterprise management environments.
This will require integration with state-of-the-art dependency
detection mechanisms and replacement of the service status
and action mechanisms, as well as general hardening and
interface improvement. At the same time, this work has also
demonstrated the potential ease with which self-adaptive enter-
prise management tools can be developed using an aggregate
programming architecture like that described in Section III.
Distributed recovery is only one of many management chal-
lenges faced by small- to medium-scale enterprise systems,
and this same approach is likely to be able to produce useful
self-adaptive management tools for addressing others of these
challenges as well.

ACKNOWLEDGMENTS

This work has been supported by the United States Air
Force and the Defense Advanced Research Projects Agency
under Contract No. FA8750-10-C-0242. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. The views, opinions, and/or findings contained in this
article are those of the author(s)/presenter(s) and should not
be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. Approved
for public release; distribution is unlimited.

REFERENCES

[1] Aberdeen Group, “Why mid-sized enterprises should consider using
disaster recovery-as-a-service,” http://www.aberdeen.com/Aberdeen-
Library/7873/AI-disaster-recovery-downtime.aspx, April 2012,
retrieved July 13, 2015.

[2] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pin-
point: Problem determination in large, dynamic internet services,” in
Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on. IEEE, 2002, pp. 595–604.

[3] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating network
application dependency discovery: Experiences, limitations, and new
solutions.” in OSDI, vol. 8, 2008, pp. 117–130.

[4] M. łgorzata Steinder and A. S. Sethi, “A survey of fault localization
techniques in computer networks,” Science of computer programming,
vol. 53, no. 2, pp. 165–194, 2004.

[5] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate pro-
gramming,” in ACM Symposium on Applied Computing, 2015.

[6] J. Trocki, “mon(8) - linux man page,” http://linux.die.net/man/8/mon,
Accessed May 2015.

[7] Nagios Enterprises, “Nagios - The Industry Standard in IT Infrastructure
Monitoring,” http://www.nagios.org, Accessed May 2015.

[8] Puppet Labs, “Puppet labs: It automation software for system adminis-
trators,” https://puppetlabs.com/, Accessed May 2015.

[9] Chef, “An overview of chef - chef docs,”
http://docs.chef.io/chef overview.html/, Accessed May 2015.

[10] W. Tarreau, “HAProxy-the reliable, high-performance TCP/HTTP load
balancer,” http://www.haproxy.org/, 2012.

[11] Oracle Corporation, “Mysql 5.1 reference manual :: Multi-master and
circular replication,” https://dev.mysql.com/doc/refman/5.1/en/mysql-
cluster-replication-multi-master.html, Accessed May 2015.

[12] ——, “Mysql 5.1 reference manual :: Replication,”
https://dev.mysql.com/doc/refman/5.1/en/replication.html, Accessed
May 2015.

[13] VMware, “vSphere 6.0,” https://www.vmware.com/products/vsphere,
Accessed May 2015.

[14] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 1, pp. 91–96, 2010.

[15] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft, “Macro-
scope: end-point approach to networked application dependency discov-
ery,” in Proceedings of the 5th international conference on Emerging
networking experiments and technologies. ACM, 2009, pp. 229–240.

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[17] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck,
“Towards a generic observer/controller architecture for organic comput-
ing.” GI Jahrestagung (1), vol. 93, pp. 112–119, 2006.

[18] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, “On patterns for
decentralized control in self-adaptive systems,” in Software Engineering
for Self-Adaptive Systems II. Springer, 2013, pp. 76–107.

[19] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif, “Con-
straining self-organisation through corridors of correct behaviour: The
restore invariant approach,” in Organic ComputingA Paradigm Shift for
Complex Systems. Springer, 2011, pp. 79–93.

[20] F. de Oliveira, T. Ledoux, and R. Sharrock, “A framework for the
coordination of multiple autonomic managers in cloud environments,”
in Self-Adaptive and Self-Organizing Systems (SASO), 2013 IEEE 7th
International Conference on, Sept 2013, pp. 179–188.

[21] N. Gui and V. De Florio, “Towards meta-adaptation support with
reusable and composable adaptation components,” in Self-Adaptive
and Self-Organizing Systems (SASO), 2012 IEEE Sixth International
Conference on. IEEE, 2012, pp. 49–58.

[22] H. Nakagawa, A. Ohsuga, and S. Honiden, “Towards dynamic evolution
of self-adaptive systems based on dynamic updating of control loops,”
in Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on. IEEE, 2012, pp. 59–68.

[23] B. Debbabi, A. Diaconescu, and P. Lalanda, “Controlling self-organising
software applications with archetypes,” in Self-Adaptive and Self-
Organizing Systems (SASO), 2012 IEEE Sixth International Conference
on. IEEE, 2012, pp. 69–78.

[24] P. Vromant, D. Weyns, S. Malek, and J. Andersson, “On interacting
control loops in self-adaptive systems,” in Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2011, pp. 202–207.

[25] T. Gorman and L. Muir, “Theater Battle Management Core Systems
(TBMCS) executive overview,” ESC/AFC2TIG/LMMS, Hurlburt Field
FL, vol. 23, 2003.

[26] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational
fields,” in Advances in Service-Oriented and Cloud Computing, ser.
Communications in Computer and Information Sci., C. Canal and
M. Villari, Eds. Springer Berlin Heidelberg, 2013, vol. 393, pp. 114–
128.

[27] J. Beal and M. Viroli, “Space-time programming,” Proceedings of the
Royal Society A, to appear.

[28] S. Dolev, Self-Stabilization. MIT Press, 2000.
[29] P. Erdos and A. Renyi, “On random graphs I,” Publicationes Mathe-

maticae, vol. 6, pp. 290–297, 1959.

