
Efficient Engineering of Complex Self-
Organising Systems by Self-Stabilising Fields

Mirko Viroli∗, Jacob Beal†, Ferruccio Damiani‡, and Danilo Pianini∗
∗Università di Bologna, Italy; Email: {mirko.viroli,danilo.pianini}@unibo.it

†Raytheon BBN Technologies, USA; Email: jakebeal@bbn.com
‡Università di Torino, Italy Email: damiani@di.unito.it

Abstract—Self-organising systems are notoriously difficult
to engineer, particularly due to the interactions between
complex specifications and the simultaneous need for effi-
ciency and for resilience to faults and changes in execution
conditions. We address this problem with an engineering
methodology that separates these three aspects, allowing each
to be engineered independently. Beginning with field calculus,
we identify the largest known sub-language of self-stabilising
programs, guaranteed to eventually attain correct behavior
despite any perturbation in state or topology. Construction of
complex systems is then facilitated by identifying “building
block” operators expressed in this language, into which
many complex specifications can be readily factored, thereby
attaining resilience but possibly with improvable efficiency.
Efficient implementation may then be achieved by substituting
high-performance coordination mechanisms that are asymp-
totically equivalent to particular applications of building block
operators. We illustrate this workflow by construction and
simulation of example applications for evacuation alerts and
for live estimation of crowd feedback at mass events.

I. INTRODUCTION

Self-organisation mechanisms support adaptivity and re-
silience in complex natural systems at all levels, from
molecules and cells to animals, species, and entire ecosys-
tems. A long-standing aim in computer science is to
find effective engineering methods for exploiting such
mechanisms to bring similar adaptivity and resilience to
a wide variety of complex, large-scale applications—in
smart mobility, crowd engineering, swarm robotics, etc.
Practical adoption, however, poses serious challenges, as
self-organisation mechanisms often trade efficiency for
resilience and are often difficult to predictably compose
to meet more complex specifications. Despite much prior
work, e.g., in macroprogramming, spatial computing, pat-
tern languages, etc. [1], to date no such approach has pro-
vided a comprehensive workflow for efficient engineering
of complex self-organising systems.

Recent advances, however, have provided two key in-
gredients toward such an engineering workflow. First,
computational field calculus [2], [3] provides a universal
language for specifying self-organising distributed systems
and, critically, a functional programming model for encap-
sulation and safely-scoped composition of self-organising
systems. Second, “self-stabilising languages” have been
identified [4], [5], where every program is a self-organising
system with strong resilience and adaptivity guarantees.

This paper synthesises these two advances, plus a novel

Minimal'Resilient'
Implementa.on'

Op.mized'
Implementa.on'

Self5Org.'System'
Specifica.on'

Substitution 
Library 

"Building Block" 
Library 

Decompose(into(
Building(Blocks(

Op3mize(by(
subs3tu3on(

Subs3tu3on(
rela3ons(

Fig. 1. Proposed workflow for self-organising systems engineering: an
initial complex specification is implemented by decomposition into self-
stabilising “building blocks,” then optimised by substitution of equivalent
high-performance coordination mechanisms.

approach to optimisation of self-organising systems via
substitution of equivalent coordination mechanisms, into
a formal workflow for efficient engineering of complex
self-organising systems (Figure 1). In particular, this paper
explores this workflow in the context of spatially-embedded
systems, though it is not limited to such systems and should
apply well to most systems where device interactions form
a sparse network. Section II introduces this workflow and
positions it in the context of prior approaches. Following
a review of field calculus in Section III, Section IV then
formalises self-stabilisation for field programs and iden-
tifies the largest-to-date sub-language of such programs.
Section V shows an example of how programming in this
language can be simplified by means of “building block”
operators for distributed action, collection, and temporal
summary. Section VI then defines the class of substitutable
functions and illustrates its use by identifying specialised
alternatives for each identified building block operator.
Finally, Section VII demonstrates our proposed workflow
in action on two application scenarios, and Section VIII
summarises and discusses future directions.

II. ENGINEERING WORKFLOW

Our proposed workflow (Figure 1) is based on a set
of critical mathematical insights illustrated in Figure 2.
The (higher-order) field-calculus [3] is a tiny universal
language, in which any distributed computation can be



(Higher(Order),
Field,Calculus,

Self(Stabilising,
Calculus,

�
! �!

Building(Block(
Operator(

Coordina3on(
Mechanism(

�
!

�!
Fig. 2. Every coordination mechanism can be expressed in field calculus,
but many may be difficult or impossible to express within its guaranteed
self-stabilising subset. If one coordination mechanism is asymptotically
equivalent to another mechanism in the self-stabilising subset, however,
then it is guaranteed to be safely composable as well.

expressed, encapsulated, and safely composed (though it
is best suited for use with sparse networks, i.e., those in
which individual devices generally do not communicate
with very large numbers of other devices). Because field
calculus is universal, it can express both resilient and non-
resilient computations. It can, however, be restricted to a
sub-language in which all programs are guaranteed resilient
in the form of self-stabilisation (discussed in detail in
Section IV).

The succinctness that makies safety and self-stabilisation
proofs tractable also makes such languages too low-level to
be practical APIs for engineering complex self-organising
systems. This can be mitigated by highly reusable “build-
ing block” operators capturing common coordination pat-
terns [5], thus raising the abstraction level and allowing
programmers to work with general-purpose functionalities
or of user-friendly APIs capturing common use patterns.

These building blocks, despite their desirable resilience
properties, may not be particularly efficient or have de-
sirable dynamical properties. We thus incorporate a new
insight, discussed in detail in Section VI: due to the
functional composition model and modular proof used in
establishing the self-stabilising calculus, any coordination
mechanism that is guaranteed to self-stabilise to the same
result as a building block can be substituted for that
building block without affecting the self-stabilisation of the
overall program, including its final output. This enables a
“substitution library” of high-performance alternatives that
are more efficient or have more desirable dynamics (typi-
cally specialised for particular applications of the building
blocks, which are extremely generic).

Together, these insights enable a three-stage engineering
workflow (Figure 1), which progressively treats complex
specification, resilience, and efficiency.

1) The starting point for the workflow is a specification
of the desired aggregate behavior to be implemented
by the self-organising system.

2) The specification is then decomposed into coordina-
tion patterns (e.g., information spreading, informa-
tion collection, state tracking) that can be mapped
onto building block operators. The result is a “mini-

mal resilient implementation” guaranteed to be self-
stabilising but possibly far from optimal.

3) Each building block is then considered for replace-
ment with a mechanism from the substitution library
expected to provide better performance, confirming
the improvement by analysis or simulation, then
iterating, until no further improvement can be made.

A. Relationship to Prior Work

Many prior efforts have aimed at addressing the same
problem of programming large-scale systems, and espe-
cially the challenge of mapping “macro-level” specifica-
tions for spatially situated computations into implementa-
tion in terms of individual devices and their local interac-
tions. An in-depth survey of such work in [1] found four
main classes of approach: Device abstraction approaches
provide means to make interactions implicit, allowing an
engineer to focus more directly on the macro/local problem
but not providing any methodology for addressing that
problem (e.g., NetLogo [6], Hood [7], TOTA [8], Gro [9],
MPI [10], SAPERE [11]); Pattern language approaches
allow definition and composition of module-like function-
ality in terms of geometric or topological constructions
(e.g., Growing Point Language [12], Origami Shape Lan-
guage [13]), while Information movement approaches focus
on gathering information from certain regions of space-
time, processing it, and delivering it to other regions (e.g.,
TinyDB [14] and Regiment [15]). Both pattern and informa-
tion movement languages provide good workflows for self-
organising systems engineering, but only within extremely
restricted domains and without any means of extension to
systems outside those domains. The work described in this
paper build on the final class, general-purpose aggregate
languages, which provide general mechanisms for pro-
gramming aggregates, but have typically lacked sufficiently
broad supporting libraries to enable efficient engineering of
complex systems (e.g., field calculus [2], [3], Proto [16],
Protelis [17], MGS [18]). Several recent works, however,
have begun to take a more systematic approach [19], [4],
[5], capturing common patterns from information move-
ment and pattern languages in more generalisable models,
now extended and synthesized in the workflow we present.

III. COMPUTATIONAL FIELD CALCULUS

In this section we briefly and semi-formally review
(higher order) field calculus—for complete details refer
to [3]. The basic idea derives from an “aggregate” view
of the network as a collective, in which the basic unit of
data is a dynamically changing field of values held across
many devices in the network. More precisely, a field value φ
is a function φ : D → L that maps each device δ in domain
D to a local value ` in range L. Similarly, a field evolution
is a dynamically changing field value, i.e., a function
mapping each point in time to a field value (evolution
is used here in the physics sense of “time evolution”). A
field computation takes field evolutions as input (e.g., from



` ::= c〈`〉
∣∣ λ local value

λ ::= o
∣∣ f

∣∣ (fun (x) e) function value

e ::= `
∣∣ x

∣∣ (e e) expression∣∣ (rep x w e)∣∣ (nbr e)∣∣ (if e e e)

w ::= x
∣∣ ` variable or local value

F ::= (def f(x) e) function declaration

P ::= F e program

Fig. 3. Syntax of (higher-order) field calculus.

sensors) and produces a field evolution as output, from
which field values are snapshots. For example, given an
input of a Boolean field mapping certain devices of interest
to true, an output field of estimated distance to the nearest
such device can be constructed by iterative aggregation and
spreading of information, such that as the input changes the
output changes to match. Note that while this model maps
most intuitively onto spatially-embedded systems, since it
is universal it can be used for any distributed computation
(though it tends to be best suited for sparse networks, of
which spatially-embedded systems are an example). The
(higher-order) field calculus [3] succinctly captures the
essence of field computations, much as λ-calculus [20]
does functional computation. This simplicity then enables
formal analysis of its properties and of the properties of
self-organisation mechanisms expressed in field calculus.

A. Syntax of Field Calculus

Figure 3 presents field calculus syntax. Following [21],
overbar notation denotes metavariables over sequences,
e.g., e is shorthand for the sequence of expressions
e1, e2, . . . en (n ≥ 0). A local value ` represents
the value of a field at a given device. It can be a
data value c〈`1, · · · , `m〉 (written c when m = 0),
such as Booleans true and false, numbers, strings,
or structured values like Pair〈3,Pair〈false, 5〉〉 or
Cons〈2,Cons〈4,Null〉〉, It can also be a function value
λ: a built-in operator o, user-defined function f, or anony-
mous function (fun (x) e) (in which we assume no
free variables exist). Alternately, a device δ can hold a
neighbouring field value φ, assigning a local value ` to each
neighbour of δ: this is not reported in the syntax since it
cannot be expressed in programs, only appearing dynami-
cally during computations (see operator nbr below).

Expressions are the main entities of the calculus, mod-
elling a whole field. An expression can be a local value
`, representing a constant field holding the value ` every-
where, a variable x used as function parameter or state
variable (the set of free variables in an expression e is
denoted by FV(e)), or a composed expression built using
the following constructs:
• Built-in operator call: (e e1 · · ·en), where e evalu-

ates to a (“point-wise”) built-in operator o, involving
neither state nor communication, e.g. mathematical

functions like addition, comparison, and sine, or an
environment-dependent function such as reading a
temperature sensor or the 0-ary nbr-range operator
returning a neighboring field mapping each neighbor
to an estimate of its current distance from δ. Ex-
pression (o e1 · · ·en) produces a field mapping each
device identifier δ to the result of applying o to the
values at δ of its n ≥ 0 arguments e1, . . . ,en.

• User-defined function call: (e e1 · · ·en), where e
evaluates to a user-defined function f, with corre-
sponding declaration (def f(x1 . . . xn) e). Eval-
uating (f e1 · · ·en) provides a standard (possibly
recursive) call-by-value abstraction.

• Anonymous function call: (e e1 · · ·en), has the
same semantics as calling a user-defined func-
tion, except e evaluates to an anonymous function
(fun (x1 · · · xn) e).

• Time evolution: (rep x w e) is a “repeat” con-
struct for dynamically changing fields, assuming each
device evaluates its main expression repeatedly in
asynchronous rounds. State variable x initialises to
the value of w, then updates at each step by com-
puting e against the prior value of x. For instance,
(rep x 0 (+ x 1)) counts how many rounds
each device has computed.

• Neighbouring field construction: (nbr e) models
device-to-device interaction, by returning a field φ
mapping each device δ to a neighbouring field value,
which in turn maps each neighbour to its most recent
available value of e (e.g., via periodic broadcast). Such
neighbouring field values can then be manipulated and
summarised with built-in operators, e.g., (min-hood
(nbr e)) maps each device to the minimum value
of e amongst its neighbours.

• Domain restriction: (if e0 e1 e2) is a branching con-
struct, computing e1 in the restricted domain where e0

is true, and e2 in its complement.
An example using the various constructs is:

(def distance-avoiding-obstacle (source obstacle)
(if obstacle infinity

(rep d infinity (mux source 0
(min-hood+ (+ (nbr-range) (nbr d))))))

coloring field calculus keywords red, built-in functions
green, and user-defined functions blue. This code estimates
distance to devices where source is true, avoiding
devices where obstacle is true. In the region outside
the obstacle (by if), a distance estimate d (established by
rep) is computed using built-in selector mux to set sources
to 0 and other devices by the triangle inequality, taking the
minimum value obtained by adding the distance to each
neighbor to its estimate of d (obtained by nbr).

B. Local Semantics and Properties

This aggregate-level model of computation over fields
can be “compiled” into an equivalent system of local



operations and message passing actually implementing the
field calculus program on a distributed system [2], [3], as
sketched in the following.

A field calculus program P is a set of user-defined
function definitions and a main expression e0. Given a
network of interconnected devices D that runs a program
P, “device δ fires” means that device δ ∈ D evaluates
e0. The output of a device computation is a value-tree:
an ordered tree of values tracking the result of computing
each sub-expression encountered during evaluation of e0.
Evaluation of an expression in device δ is performed against
the most recently received value-trees of its neighbours,
and the produced value-tree is conversely made available
to δ’s neighbours (e.g., via broadcast in compressed form)
for their next firing: (nbr e) uses the most recent value
of e at the same position in its neighbours’ value-trees,
(rep x w e) uses the value of x from the previous round,
and (if e0 e1 e2) completely erases the non-taken branch
in the value-tree (preventing interactions through construct
nbr). A complete formal description of this semantics is
presented in [3].

We shall assume a type system (a variant of the Hindley-
Milner type system [22]) can be built for this calculus along
the lines of [3], [4], which has two kinds of types: local
types (for local values) and field types (for field values).
This system associates to each local value a type L, and
type field(L) to a neighbouring field of elements of
type L, and correspondingly a type T to any expression. It
can hence statically intercept semantic errors in a program
(e.g., first expression of a call not evaluating to a function,
incorrect argument types for a call, first argument of if
not a Boolean), such that the following properties are
henceforth considered to hold:
• Type preservation: if well-typed expression e has type
T and e evaluates to v, then v has type T;

• Domain alignment: the domain of every field value
arising in evaluating a well-typed expression on device
δ consists of all aligned neighbours;

• Termination: any device firing is guarantee to termi-
nate in any environmental condition1.

IV. SELF-STABILISING CALCULUS

In the dynamic environments typically considered by
self-organising systems, a key resilience property is self-
stabilisation, the ability of a system to recover from arbi-
trary changes in state. In particular, of the various notions of
self-stabilisation (see survey in [23]), we use the definition
from [24] as further restricted by [4]: a self-stabilising
computation is one that, from any initial state, after some
period without changes in the computational environment,
reaches a single “correct” final configuration. As we will

1Termination of a round is clearly not decidable, but we shall assume—
without loss of generality for the results of this paper—that a decidable
subset of the termination fragment can be identified (e.g., by ruling out
recursive user-defined functions or by applying standard static analysis
techniques).

see, this definition covers a broad and useful class of
self-organisation mechanisms (though some are excluded,
such as continuously changing fields like self-synchronising
pulse-coupled oscillators [25]). Self-stabilisation thus fo-
cuses on a computation’s eventual behavior, rather than
its transient behavior, which also enables optimisation by
substitution of alternate coordination mechanisms.

A. Self-stabilisation for fields

Assume a certain program P and some fixed environmen-
tal conditions K (i.e., the network topology and the inputs
of sensors). Network state can be modelled by a field value
N mapping each device δ ∈ D to the value-tree produced
by its most recent firing, and change of these values by
a transition relation N ⇒ N′, expressing the change of
network state from N to N′ as a sequence of devices fire.
We write N⇒k N′ (k ≥ 0) to mean a k-fair transition, i.e.,
that each device of the network fired at least k times, and
for every h (1 ≤ h ≤ k), its h-th firing is followed by at
least k − h + 1 firings of all other devices, i.e., at least k
complete rounds of firing occurred in the network.

We say that a network state N is stable if no device
firing will change it, i.e., N ⇒ N′ implies N = N′, and
network state N self-stabilises to stable state N0 if through
a sufficiently long fair sequence of transitions it necessarily
reaches N0 and remains there, i.e., for some k ≥ 0, N⇒k

N′′ implies N′′ = N0. Note that if a network state N self-
stabilises, than it does so to a state that is unequivocally
determined by the environmental conditions K (i.e., it does
not depend on N), and can hence be interpreted as the output
of computation.

Finally, we say that program P (or equivalently, its
main expression) is self-stabilising if every state of every
network running P is self-stabilising to some state under
fixed environmental conditions. Note that this definition
implies that field computations recover from any change
on environmental conditions, since they react to them by
forgetting their current state and reaching the stable state
implied by such a change. Likewise, computation can
reach a stable state only when environmental changes are
transitory or do not affect N0.

B. Preliminary definitions

Without risk of ambiguity, we abuse notation to use T
both to name a type, as already mentioned, and also for its
sets of values. We assume each local type L is associated
with a total order relation ≤L that is locally noetherian
[4], namely, for every element ` ∈ L there are no infinite
ascending chains of elements smaller than `—this typically
holds for numeric data-types like Java’s int, double,
and BigInteger, and for any data-type expressed with a
fixed number of bits. If type L has a maximal element, it is
denoted >L. We also assume each field type field(L) is
associated with a partial order relation that is the element-
wise extension of ≤L to ≤field(L) (i.e., φ ≤field(L) φ

′ iff
φ, φ′ have the same domain and φ(δ) ≤L (δ)).



s ::= `
∣∣ x

∣∣ (s s)
∣∣ (nbr s)

∣∣ (if s s s)∣∣ (rep x w (πMB x s)) x /∈ FV(s)∣∣ (rep x w (πF sA (nbr (s x)) s)) x /∈ FV(s,s,sA)∣∣ (rep x w (π (π′ (nbr (π′′ x s′′)) s′) s)) π′ ◦ π = πMD, π′′ ◦ π′ = πMBP,x /∈ FV(s,s′,s′′)

Fig. 4. Self-stabilising calculus is a restricted sub-language of field calculus in which e is replaced by s above.

We say a function value is a pure function (denoted π)
if its behaviour is point-wise, i.e., if it contains no nbr-
expressions, rep-expressions, or built-in operators whose
behaviour depends on environmental conditions, and all
functions it calls are also pure. With abuse of notation,
a pure function can be interpreted as a (mathematical)
function over local values, writing e.g. π(v) to denote the
result of applying arguments v1, . . . ,vn to function π. A
pure function may also be:
• Monotonic non-decreasing in its first argument (of

type T), written πM, meaning that:

∀v,v′,v : v ≤T v
′ implies πM(v,v) ≤T π

M(v′,v)

• Bounded in its first argument (of type T), written πB,
meaning that:

∃v0 : ∀v,v : πB(v,v) ≤T v0

• Double bounded in its first argument (of type
field(L)), written πD, meaning that ∃` : ∀v∀φ :

min(((min-hood+ φ), `) ≤L πD(φ,v) ≤L `

• Progressive in its first argument (of type L, equal to
the return type), written πP, meaning that

∀` 6= >L : ∀` : ` <L π
P(`,v).

This notation is used also for functions taking as first
argument a local value of type L and returning a field
of type field(L), meaning that for all local values `
and for all devices δ in the domain of φ = πP(`,v) it
holds that ` <L φ(δ).

• Filtering in its first argument (of type field(bool),
with second argument of type field(L)), written πF,
meaning that ∀φb, φ,v

πF(φb, φ,v) = πF(φb|φ−1
b (true), φ|φ−1

b (true),v)

namely, πF ignores the values of φ corresponding to
devices where b holds false.

Notationally, we allow the symbol of a pure function
to have multiple labels, e.g., πMBP is a monotonic non-
decreasing, bounded and progressive pure function.

C. Definition of Self-Stabilising Calculus

A self-stabilising sub-language of field calculus can be
obtained by replacing e with ss-expressions, denoted s,
following the syntax in Figure 4. We shall assume an
ss-expression is well-typed if, in addition to the checks
performed on a standard expression e, the body of any
user-defined function or anonymous function it directly

or indirectly calls is also an ss-expression. Symbol sA

denotes an acyclic topological relation, namely, an ss-
expression yielding a neighbouring field of Booleans to
be interpreted as presence/absence of a logical directed
connection with neighbours, such that these connections
form a direct acyclic graph. This sub-language contains
only self-stabilising programs:

Theorem 1 (Self-stabilising calculus) Any well-typed ss-
expression s is self-stabilising.

Proof (sketch): The proof is by structural induction on
the expression being evaluated (which, by construction does
not contain free variables). It is straightforward to prove that
all expressions not using the rep-construct self-stabilise
in each device as soon as each argument self-stabilises
and an additional firing occurs. Moreover, each of three
rep patterns guarantees self-stabilisation. The case for the
first pattern holds due to monotonicity and boundedness
of the update function. The case for the second patten
follows from acyclicity: at least one device will have no true
values in sA, hence it stabilises in one step; then, a device
is always found that has true values in sA only relative
to devices already self-stabilised, hence it eventually self-
stabilises as well. The case for the third pattern adapts the
technique used in the proof of Theorem 3 of [4], which
proves self-stabilisation for a tiny calculus providing a
spreading construct is a restricted form of this pattern.

The set of ss-expressions can be extended to include
many more self-stabilising expressions by allowing any
function λ (or π) be substituted by its body. Let E be an
expression with one hole in it, and E[e] be the expression
obtained from E by placing e in place of its hole. Let
'T be the smallest congruence (i.e. equivalence applicable
at any level of depth) between expressions of type T that
satisfies the following rules:

1) E[e] 'T ((fun (x) E[x]) e) if x /∈ FV(e, E).
2) ((fun (x) e) e) 'T (f e) where (def f (x) e).
The following theorem states that self-stabilising ex-

pressions can be refactored according to congruence 'T
without losing the self-stabilisation character, a property
that will be used in next section to state self-stabilisation
of building blocks.

Theorem 2 (Refactoring of self-stabilisation) If e 'T
e′, then e is self-stabilising iff e′ is self-stabilising.

Proof (sketch): It can be shown: (if e e′ e′′) 'T
(mux e e′ e′′): this is because if is just a mux on
a virtual topology enacting restriction of the two regions



where branches execute. Since if is the only construct
with no call-by-value semantics, and it is 'T -equivalent to
a construct with call-by-value semantics, hence the calculus
is 'T -equivalent to a version with call-by-value semantics,
in which the semantics of a function call (user-defined or
anonymous) is exactly that of substituting its body after
proper substitution of formal arguments with actual ones.

V. EXAMPLES OF BUILDING BLOCK OPERATORS

We now present an example of “building block”
operators—in particular three highly reusable space and
time operators from [5]—and show that they are members
of the self-stabilising calculus based on the theorems pro-
vided in the previous section.

A. G: Spreading Information Across Space

We begin with operator G, which spreads information
across space, potentially further organising and computing
as it proceeds. This operator is a generalisation covering
two of the most commonly used self-stabilising distributed
algorithms—distance estimation (also often called “gradi-
ent”) and broadcast—as well as a number of other appli-
cations, such as forecasting along paths. We define the G
operator with the following field calculus expression:
(def G (source initial metric accumulate)
(2nd // Return the reduction, discarding the computed distance
(rep distance-value
(tuple infinity initial) // Initial value
(mux source
(tuple 0 initial)// Source is distance zero, initial value
(min-hood+ // Minimize lexicographically over non-self nbrs
(tuple
(+ (1st (nbr distance-value)) (metric))
(accumulate (2nd (nbr distance-value)))))))))

where min-hood+ takes the minimum of all neighbors’
values (excluding the device itself), mux multiplexes be-
tween its second and third inputs, returning the second if
the first is true and the third otherwise; and tuple creates a
tuple of values, accessed by 1st and 2nd. The G operator
may be thought of as executing two tasks, coupled together
by the tuple distance-value in the rep expression.
The first is computation of a field of shortest-path distances
from a source region (indicated as a Boolean field) via
the triangle inequality, where distance is computed by the
supplied function metric. The second is accumulating
values along the gradient of the distance field away from
the source, using a function accumulate of one argu-
ment, the current accumulated value, beginning with initial
value initial. The G operator can be configured to
provide many different useful services: estimating distance,
maximum-likelihood path probabilities, broadcasting val-
ues, forecasting obstacles, creating Voronoi partitions, etc.
For instance, distance to source can be estimated as:
(def distance-to (source)
(G source 0 nbr-range (fun (x) (+ x (nbr-range)))

Operator G can be proved self-stabilising when applied
to a metric yielding positive values on neighbours. It

follows the third rep pattern in Figure 4, where functions
π, π′, and π′′ are defined as follows:
(def pi (x source initial)
(mux source (tuple 0 initial) (min-hood+ x)))

(def pi’ (x metric accumulate)
(tuple (+ (1st x) (metric)) (accumulate (2nd x))))

(def pi’’ (x) x)

B. C: Collecting Information From Across Space

The C operator is complementary to the G operator:
whereas G spreads information away from the source, C
accumulates information to the source. In order to maxi-
mize orthogonality with G, C assumes it is supplied with
a potential field directing the accumulation of information.
It may thus be defined:
(def C (potential accumulate local null)
(rep v local
(accumulate local
(accumulate-hood accumulate
(mux (= (nbr (find-parent potential)) (uid))
(nbr v)
null)))))

where uid returns a unique identifier for each device,
accumulate-hood uses the function in its first argument
to combine values from the field in its second argument,
and the find-parent function is defined as:
(def find-parent (potential)
(mux (< (1st (min-hood (nbr potential))) potential)
(2nd (min-hood (nbr (tuple potential (uid)))))
NaN))

Here potential is the potential field up which the values
of local should be accumulated, combining values with
accumulate, which must be a commutative and associa-
tive function of two arguments. In order to avoid multiply-
counting devices (for those accumulations that are not
idempotent), some neighbors are ignored, and their values
replaced by a null that must not affect the accumulated
value.

Combining with G (or G-derived functions), we can
obtain a general “summary” operator that aggregates the
values of a region to a sink and then spreads it throughout
space, or similarly an “averaging” operator, or one that
computes an integral or champions minimum or maximum
value. For instance, the following function summarises the
value of local into a sink device:
(def summarize (sink local)
(C (distance-to sink) + local 0))

Operator C can be proved self-stabilising following
the second rep pattern in Figure 4: find-parent by
construction yields an acyclic topological relation, and the
following function is a filtering one:
(def pi (x y accumulate null)
(accumulate local (accumulate-hood accumulate

(mux (= x (uid)) y null))))

C. T: Summarising Information Across Time

As C and G are for space, the T operator is for time.
Since time is one-dimensional, however, there is no dis-
tinction between spreading and collecting, and thus there



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

Time

M
ea

n 
Er

ro
r

 

 
G
Flex−Gradient
CRF−Gradient

(a) Small Perturbation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10−4

10−3

10−2

10−1

100

101

Time

M
ea

n 
Va

lu
e 

C
ha

ng
e

 

 

G
Flex−Gradient
CRF−Gradient

(b) Small Perturbation Stability

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Time

M
ea

n 
Er

ro
r

 

 
G
Flex−Gradient
CRF−Gradient

(c) Large Perturbation

Fig. 5. Examples comparing of convergence dynamics for distance estimation via G, CRF-Gradient, and Flex-Gradient: (a) with small perturbations,
G produces the best estimates, but (b) Flex-Gradient has much more stable values. (c) With large perturbations, CRF-Gradient is both fast and accurate;
Flex-Gradient is nearly as fast, but allows distortions to remain, and G is likely to converge slowly due to the rising value problem.

is only need for a single operator. We define the T operator
as:
(def T (initial zero decay)
(rep v initial (min initial (max zero (decay v)))))

where decay is a function strictly decreasing the value of
its input. This operator may thus be understood as a flexible
count-down toward zero, where the rate of the count-down
may change over time. Example applications of T include
timers, time-limited memories, and so on. Operator T is
self-stabilising as it trivially adheres to the first rep pattern
as of Figure 4, when decay is a decreasing function.

VI. IMPROVING DYNAMICS BY SUBSTITUTION

The self-stabilising subset of field calculus identified in
Section IV is valuable, in that it provides strong guaran-
tees of composable resilience in distributed systems. With
respect to pragmatic applications development, however,
there are two critical shortcomings that need to be ad-
dressed: due to their generality, building blocks do not
provide particularly good dynamic performance at any
particular task; and many coordination mechanisms with
better performance exist. Some of these are also known to
self-stabilise, but may be difficult or impossible to express
in the self-stabilising calculus.

We can short-circuit these issues with a notion of “sub-
stitutable functions” that extends the properties of self-
stabilising calculus to a much broader class of coordination
mechanisms. In particular, we consider two self-stabilising
functions to be “substitutable” if the results that they
eventually converge to are always identical, given the same
inputs. More formally:

Definition 1 (Substitutable Function) Given functions
λ, λ′ with same type, λ is substitutable for λ′ iff for
any self-stabilising list of expressions e, (λ e) always
self-stabilises to the same value as (λ′ e).

In essence, since self-stabilisation says nothing about
what happens before the function converges, then as long
as the converged values are the same, we can freely swap
functions without affecting any properties based on self-
stabilisation. A “correct” building block with undesirable
dynamical properties can thus be replaced by a more

specialised coordination mechanism that improves overall
performance without impairing resilience.

Pragmatically, what this means is that we can extend
the composability guarantees of the self-stabilising calculus
to any coordination mechanism whose result is equivalent
to some application of “building block” operators, per
Figure 2. The remainder of this section illustrates this
approach by presenting substitutable alternatives for G, C,
and T, each of which is less general but offers superior
performance in those cases where it can be applied.

A. G vs. CRF-Gradient and Flex-Gradient
As noted above in Section V-A, one of the most com-

mon operations covered by the G operator is estimating
distance to a source region. The proposed implementation
of distance-to, however, produces rather sub-optimal
convergence dynamics, and since distance estimation is
such a common operation, it has been the subject of
significant prior study. In particular, the G implementa-
tion of distance estimation is subject to the “rising value
problem” studied in [26], which can cause extremely slow
convergence when any devices are close to one another.
Two good substitutable alternative algorithms are CRF-
Gradient [26] and Flex-Gradient [27], both of which have
already been proven to self-stabilise to the same values as G
configured to estimate distance. Their field calculus code
(not reported for the sake of space) is equivalent to the
Proto code given in [26], [27].

CRF-Gradient adjusts very quickly to changes in the
network, at the cost of having a large minimum change size,
so that even minuscule changes can make many devices’
values rise before returning to their correct values. It is
good for situations where it is important to get a correct
value as quickly as possible. Flex-Gradient, on the other
hand, prioritises smooth changes, at the cost of allowing
small distortions in distance that are only slowly removed.
It is good for situations where it is important for values to
change smoothly and minor imprecision can be tolerated.

Figure 5 illustrates the differences of dynamics with two
simulated examples. Both simulate all three algorithms in
parallel2 on 100 devices in a 200x20 meter space with

2All simulations of Flex-Gradient in this paper use parameters ε = 0.3,
f = 10, δ = 0.2; see [27] for explanation.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
4000

4500

5000

5500

6000

Time

Su
m

 

 
C
Multipath−Sum
True Value

(a) Example of Small Perturbation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 104

Time

Su
m

 

 
C
Multipath−Sum
True Value

(b) Example of Large Perturbation

Fig. 6. A multi-path variant of summation for C improves dynamical
stability for small perturbations, but can amplify problems with large
perturbations.

20-meter unit disc communication and 1 second rounds.
Error is computed as the difference between true distance to
source and the current estimate. In the “small perturbation”
simulation, a single source device performs a 2D random
walk with steps drawn uniformly from range [−0.1, 0.1]
in each dimension. With constant small perturbations, G
has the least error, but Flex-Gradient has much more stable
values—in 83% of computational rounds not a single device
changes its value. In the “large perturbation” simulation,
every 200 seconds the source switches between two de-
vices, one at [−100, 0] the other at [100, 0]. With infrequent
large perturbations, CRF-Gradient is both fast and accurate,
while Flex-Gradient allows distortion to persist and G can
be badly slowed by the rising value problem.

B. C vs. Multi-Path Summation/Combination

The value collection implemented by C is fragile, since
C collects values over a spanning tree; even small per-
turbations can cause loss or duplication of values with
major transient impact on its result. When the accumulation
operation for C is either idempotent (e.g., logical and, or)
or separable (e.g., summation), this can be mitigated by
using all paths down the potential function rather than just
one. For example, implemented for summation this is:
(def C-multisum (potential local)
(rep v initial
(+ initial
(sum-hood (mux (>= potential (nbr potential)) 0

(nbr (/ v
(sum-hood (< (nbr potential) potential)))))))))

A similar pattern, substituting appropriate functions, can
implement any other idempotent or separable function.

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Es
tim

at
e

 

 

T
α = 0.02
α = 0.1
Ideal

(a) Example of Square Wave

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Es
tim

at
e

 

 

T
α = 0.02
α = 0.1
Ideal

(b) Example of Sine Wave

Fig. 7. When used to track a value, T is highly subject to noise; an
exponential filter is a substitutable alternative that provides an adjustable
trade-off between smoothness and time lag, as illustrated here with noisy
square and sine waves.

Such functions are substitutable for C when the potential
function has a single global minimum, and are expected to
provide improved performance whenever there are likely to
be many paths, at least some of which are stable.

Figure 6 illustrates the differences of dynamics with two
simulated examples. Both algorithms are simulated in paral-
lel devices in a 200x20 meter space with 20-meter unit disc
communication and 1 second rounds. Potential is computed
using Flex-Gradient to a single source, and the local value is
a sequential identifier for each device, numbering 0 to n−1.
The “small perturbation” simulation has 100 devices and
the source device performs a 2D random walk with steps
drawn uniformly from range [−0.1, 0.1] in each dimension.
In this case, multi-path improves performance significantly.
The “large perturbation” simulation, on the other hand,
shows how multi-path can actually degrade performance
when there is too much volatility: here 200 devices wander
between random waypoints at 0.01 meters/second, which
produces enough volatility to sometimes disrupt multi-path
summation worse than C.

C. T vs. Exponential Filter

Finally, let us consider the common task of low-pass
filtering a signal in order to smooth out noise. A common
simple method for this is an exponential filter, which can
be implemented:
(def exponential-filter (x alpha)
(rep v x (+ (* x alpha) (* v (- 1 alpha)))))

This is substitutable with T used to track a value:
(def T-filter (signal) (T signal signal 0))



0 200 400 600 800 1000 1200 1400 1600 1800 2000
10−1

100

101

102

103

Time

Er
ro
r

(a) Crowd Opinion Feedback

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Time

M
ea

n 
Er

ro
r

(b) Evacuation Alert

Fig. 8. Example crowd opinion feedback (a) and evacuation alert (b)
applications are incrementally improved from their baseline performance
(red) by first replacing T with an exponential filter (green), then C with
multi-path summation or logical “or” (blue), and finally G with Flex-
Gradient (black).

Where this configuration of T passes all noise, however,
an exponential filter trades off smoothness with response
rate. Figure 7 illustrates this by comparing the response
of T with that of an exponential filters with two different
values of alpha. In particular, we simulate the response
for unit square and sine wave of period 20 seconds with
the addition of sparse noise U [−1, 1]11 sampled every 0.1
seconds. T passes all noise; α = 0.1 tracks with a small
delay but passes some noise, while α = 0.02 smooths away
virtually all noise at the cost of a significant delay.

VII. APPLICATION EXAMPLES

We now illustrate how substitutable functions can be
applied to rapidly engineer and optimise resilient distributed
applications, using two examples, live feedback on opinions
from a crowd and evacuation alerts. The building blocks,
plus field calculus’ construct if and built-in operators,
are sufficient to create both applications, hiding lower-level
constructs rep and nbr “under the hood” as advocated
in [5].

In the first example, the collective opinions of crowd
members at a large festival are estimated by tracking how
many are indicating (e.g., via an app on a smart device)
a positive opinion of the act they are currently closest to.
This application is first implemented using G to set up a
potential field partitioning space into zones of influence for

each act, C to sum a binary field of feedback, and T to
track values:
(def add-range (v) (+ v (nbr-range)))

(def opinion-feedback (acts feedback)
(T-filter

(C (G acts 0 nbr-range add-range) sum feedback 0)))

Figure 8(a) shows how this application’s performance can
then be incrementally improved by first replacing T with an
exponential filter, then C with multi-path summation, and
finally G with Flex-Gradient. In particular, we show results
from simulating all four variants in parallel on a network
of 400 devices with 20-meter unit disc communication, in
a 200x40 meter space, with stationary acts at [−80, 0] and
[80, 0], and all other devices wandering between random
waypoints at 0.3 meters/second. Devices have a fixed
opinion of each act, 30% positive for the left act and 60%
positive for the right act, and report their opinion of the
act they are currently closest to. Error is computed as the
sum of the absolute differences between true and estimated
opinion count. In this case, substituting T produces a large
improvement, C a somewhat smaller improvement, and G
mostly a minor incremental improvement.

The second example is dissemination of an evacuation
alert from a controlled zone, plus computation of recom-
mended paths for evacuation, coordinated via a designated
device. This is first implemented using T to track whether
any device in the zone is currently alerted (using G to create
a potential field to the coordinator and C to perform a
logical “or”), then using G to broadcast that value from
the coordinator throughout the zone and again to compute
paths to the non-alerted areas outside of the zone:
(def evacuation-alert (zone coordinator alert)
(G (not

(if zone
(G coordinator

(T-filter
(C (G coordinator 0 nbr-range add-range)

or alert false)
nbr-range identity))

false))
0 nbr-range add-range))

Figure 8(b) shows how this application’s performance
can then be incrementally improved by first replacing T
with an exponential filter, then C with multi-path logical
“or,” and finally both distance-measure Gs (but not the
broadcast G) with Flex-Gradient. In particular, we show
results from simulating all four variants in parallel on a
network of 200 devices with 15-meter unit disc communica-
tion, in a 200x20 meter space, with a stationary coordinator
at [−50, 0] and all other devices wandering between random
waypoints at 0.1 meters/second. The “zone” is all devices
in the left half of the space, and the emergency alert is
perceived by any device within 3 meters of [−25, 5] starting
at 250 seconds and lasting until 750 seconds. Error is
computed as the fraction of devices that are provided with
evacuation routes that will not make rapid progress out
of the zone, computed as those where the dot product
of the ideal direction and the direction to the neighbor



with lowest potential is less than 0.5. In this case, each
substitution makes a significant improvement in the quality
of the evacuation information provided.

VIII. CONTRIBUTIONS

We have identified a large class of self-stabilising dis-
tributed algorithms, including a set of general “building
block” operators that conceptually simplify the specification
of programs within this class. Further, we have introduced
a notion of substitutable algorithms that allow dynami-
cal performance to be optimised by replacing building
block operators with other coordination mechanisms that
converge to the same values, illustrating this process via
simulation and application examples.

An important future direction for improvement is to
obtain a more systematic characterisation for the dynamic
trade-space, in order to enable a more systematic approach
to optimisation via mechanism substitution. In addition
to making human engineering easier, this may also en-
able automated substitution optimisation, both during the
engineering process and dynamically at run-time. Other
important directions for improvement are expansion of
the library of building blocks (including to non-spatial
systems), identification of more substitution relationships
between building blocks and high-performance resilient co-
ordination mechanisms, and development and deployment
of applications based on this approach.

ACKNOWLEDGMENTS

This project has received funding from the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 644298 HyVar (Damiani), EU
FP7 project SAPERE under contract No 256873 (Viroli),
ICT COST Actions IC1402 ARVI and IC1201 BETTY
(Damiani), Italian PRIN 2010/2011 project CINA (Dami-
ani & Viroli), Ateneo/CSP project SALT (Damiani), and
the United States Air Force and the Defense Advanced
Research Projects Agency under Contract No. FA8750-
10-C-0242 (Beal). The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The
views, opinions, and/or findings contained in this article
are those of the author(s)/presenter(s) and should not be
interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.
Approved for public release; distribution is unlimited.

REFERENCES

[1] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Develop-
ments, M. Mernik, Ed. IGI Global, 2013, ch. 16, pp. 436–501.

[2] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational
fields,” in Advances in Service-Oriented and Cloud Computing, ser.
Communications in Computer and Info. Sci., C. Canal and M. Villari,
Eds. Springer, 2013, vol. 393, pp. 114–128.

[3] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility
meets self-organisation: A higher-order calculus of computational
fields,” in Formal Techniques for Distributed Objects, Components,
and Systems, ser. LNCS, S. Graf and M. Viswanathan, Eds. Springer
International, 2015, vol. 9039, pp. 113–128.

[4] M. Viroli and F. Damiani, “A calculus of self-stabilising computa-
tional fields,” in Coordination Languages and Models, ser. LNCS,
eva Kühn and R. Pugliese, Eds. Springer-Verlag, Jun. 2014, vol.
8459, pp. 163–178.

[5] J. Beal and M. Viroli, “Building blocks for aggregate programming
of self-organising applications,” in Workshop on Fundamentals of
Collective Adaptive Systems, 2014, pp. 8–13.

[6] E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial
life, vol. 13, no. 3, pp. 303–311, 2007.

[7] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a
neighborhood abstraction for sensor networks,” in Int’l Conf. on
Mobile Systems, Applications, and Services. ACM Press, 2004.

[8] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Trans. Software
Eng. Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[9] The Klavins Lab, Gro: The cell programming language, University
of Washington, 2012.

[10] MPI: A Message-Passing Interface Standard Version 2.2, Message
Passing Interface Forum, September 2009.

[11] F. Zambonelli et al., “Developing pervasive multi-agent systems with
nature-inspired coordination,” Pervasive and Mobile Computing, vol.
17, Part B, pp. 236–252, 2015.

[12] D. Coore, “Botanical computing: A developmental approach to
generating interconnect topologies on an amorphous computer,”
Ph.D. dissertation, MIT, 1999.

[13] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathemat-
ics,” Ph.D. dissertation, MIT, 2001.

[14] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Sup-
porting aggregate queries over ad-hoc wireless sensor networks,” in
Workshop on Mobile Comp. and Sys. Apps., 2002.

[15] R. Newton and M. Welsh, “Region streams: Functional macropro-
gramming for sensor networks,” in 1st Int’l Workshop on Data
Management for Sensor Networks, Aug. 2004, pp. 78–87.

[16] J. Beal and J. Bachrach, “Infrastructure for engineered emergence
in sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp.
10–19, March/April 2006.

[17] D. Pianini, J. Beal, and M. Viroli, “Practical aggregate programming
with PROTELIS,” in ACM Symposium on Applied Computing (SAC
2015), 2015.

[18] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation
in space and space in computation,” Univerite d’Evry, LaMI, Tech.
Rep. 103-2004, 2004.

[19] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Vi-
roli, and J. L. Arcos, “Description and composition of bio-inspired
design patterns: a complete overview,” Natural Computing, vol. 12,
no. 1, pp. 43–67, 2013.

[20] A. Church, “A set of postulates for the foundation of logic,” Annals
of Mathematics, vol. 33, no. 2, pp. 346–366, 1932.

[21] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A
minimal core calculus for Java and GJ,” ACM Transactions on
Programming Languages and Systems, vol. 23, no. 3, 2001.

[22] L. Damas and R. Milner, “Principal type-schemes for functional
programs,” in Symposium on Principles of Programming Languages,
ser. POPL ’82. ACM, 1982, pp. 207–212.

[23] M. Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25,
pp. 45–67, 1993.

[24] S. Dolev, Self-Stabilization. MIT Press, 2000.
[25] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-

coupled biological oscillators,” SIAM Journal on Applied Mathe-
matics, vol. 50, no. 6, pp. 1645–1662, 1990.

[26] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in ACM Symposium on Applied Computing. ACM, 2008,
pp. 1969–1975.

[27] J. Beal, “Flexible self-healing gradients,” in ACM Symposium on
Applied Computing. ACM, March 2009, pp. 1197–1201.


