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Introduction

This report summarizes the discussions and findings from the Workshop on an EDA/BDA Interaction
Roadmap that was held at Newcastle University in Newcastle upon Tyne, UK on August 19 - 20, 2016.
The workshop featured contributions from a selected group of experts who provided perspectives on
opportunities and challenges for development of biological design automation software and its potential
for interaction with existing EDA tools and frameworks. The agenda and presentation materials can be
found at https://www.src.org/calendar/e006098/ (log-in required). An ancillary goal of the workshop

was to provide input information for the SemiSynBio Roadmap and to serve as background for decision-
makers in industry, government and academia who are developing a vision for future EDA and BDA
development.

The first session focused on the state of biological design automation (BDA) tools for design of biological
systems and the relationship of these tools to existing EDA tools. In contrast with modern Electronic
Design Automation (EDA), at present Biological Design Automation (BDA) is much more fragmented and
task-specific. While “low-level” BDA that addresses the fabrication and optimization of nucleic-acid
sequences is evolving rapidly, “high-level” BDA that focuses on system design appears unlikely to see
major commercial growth until there are significant improvements in the information available about
biological devices and the cost and time to build and test biological systems, particularly in the
characterization and standardization of biological devices to support BDA. There is a great deal of
similarity between EDA and BDA, however, and as these foundations are developed, there is a great
potential to recapitulate a similar trajectory of success in design automation, and EDA tools and/or
principles are likely to be one of the keys for doing so.

The second session explored the development of hybrid semiconductor/biological technologies and
design automation. From a technology platform perspective, much of the focus was on microfluidics,
and in particular, technologies utilizing semiconductor manufacturing techniques, compatible/scalable
processes, and integrated electronic control and measurement. Implications for platform-level
architectural approaches are becoming clearer (e.g., separation of wet and dry interfaces). As for design
automation, adapting tools from EDA looks practical, with fairly direct reuse of many classes of tools;
there does not appear to be a technical barrier so much as a lack a familiarity with EDA tool capabilities
and the tendency for researchers to develop new tools for a specific purpose rather than deal with a
learning curve to adapt. Finally, recent interest in using DNA as a digital storage medium shows great
potential for driving the development of foundational new technologies integrating semiconductor and
biochemical components.

The third session’s focus was on lessons that can be derived from biology and utilized to improve
semiconductor technology. This is a very challenging problem for the following reason: although we
have gained substantial knowledge of the world of cells, metabolic reactions, neuro architecture, etc.,
we still need to know much more before we can effectively borrow from the biological world into the
semiconductor world. Semiconductor systems are complex in the aggregate but fairly simple in their
building blocks. On the other hand, the fundamental components of life, cells, are very complex
structures with each cell performing remarkable computations. The lessons we will learn from biology
might not simply help semiconductors but could theoretically have the potential to disrupt and displace
the existing semiconductor ecosystem. However, there are limited learning opportunities that we can



benefit from in the short to medium term including, but not limited to: utilizing microorganisms for
sensing applications; algorithms for processing information such as sound; neural architectures for
lower energy; manufacturing through self assembly; and DNA-based memory.

The final session focused on what methodologies and design principles might support “bioprogramming
languages” that can effectively handle the complexity of multi-scale electronic-biological systems
integration. The discussion included theoretical foundations, design methodology and standards,
research targets aimed at development of new engines for transformation and integration of synthesis
artifacts, and effective methods for programmer interaction and feedback. Software design automation
and representation are already becoming quite important for design of biological systems, particularly
with regards to standards for design representation and data exchange. At the same time, biological
data is expanding rapidly in volume and scope while suffering major problems in curation. The key for
progress in this area appears to be a combination of standards, machine learning and inference
technologies to assist with curation, and automation that can enable the adoption of effective design
and test strategies by reducing the requirement for expensive and slow human-centric laboratory work.

In sum, the four sessions indicate high potential for development of valuable BDA tools, as well as for
application and adaptation of existing EDA tools and principles in BDA. For the most part, however, this
potential will require additional development of certain key underlying technologies before BDA can
begin to have wide-scale commercial significance. In particular, strategic investment in characterization
and standardization of biological devices, microfluidics-based engineering workflows, and curation and
exchange of biological engineering data, are each likely to have a transformational impact on BDA within
a 5-10 year time-scale.
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In contrast with modern Electronic Design Automation (EDA), at present Biological Design Automation
(BDA) is much more fragmented and task-specific. BDA appears likely to remain so until there are
significant improvements in the information available about biological devices and the cost and time to
build and test biological systems. In the session keynote, Morgan Madec presented an overview of
synergies and differences between EDA and BDA and discussed various ways in which existing EDA tools
have been or are being adapted for use in BDA. Once of the major messages was that we have not yet
achieved the necessary level of characterization and standardization of biological devices to support
BDA. Jacob Beal focused on the challenges of characterization and abstraction, showing how these can
simplify the engineering of previously fragile and tightly coupled systems. Douglas Densmore discussed
the need for a better framework for interconnection, validation, and measurement of BDA, observing
that many people are currently building BDA tools in isolation, leading to much duplicate and wasted
effort. Paul Bogdan showed that one of the key limitations of BDA at present is the cost (in time and
resources) of building and testing systems and the difficulty in accessing well-curated and relevant
biological data, arguing a need to move toward verifying higher-level abstract behaviors rather than
micro-level actions and values. Finally, Peter Carr discussed how microfluidics can miniaturize and
accelerate building and testing systems, showing how EDA can be applied to raise the level of
abstraction on microfluidics and related protocols and instrumentation to make them much faster and
easier to apply, making fast and cheap biological build and test widely accessible.

State-of-the-art and current challenges

The value of design automation is determined primarily by the complexity of the designs to which it is
being applied, and becomes high value only when the scale of the systems being engineered are well
above the ability of small teams of humans to manage without computational assistance. One of the key
guestions in examining BDA is thus how to meaningfully define the complexity of the system that is
being engineered.

In EDA, a useful yardstick for design complexity has been the number of transistors that are used in a
design, which has generally risen exponentially over time following Moore’s Law (Fig. 1). Similar
exponential curves, constructed by Carlson [Carlson10], show a rapid increase in the number of DNA
base-pairs in synthetic DNA constructs, recently reaching scales of 10°, with synthesis toward a
refactored E. coli [Ostrov16] and continuing to rise with the synthetic yeast project [Richardson17].
From this perspective, synthetic biology has clearly reached a point where it is at least valuable to have



“low-level” BDA tools for managing the optimization, editing, and assembly of large nucleic acid
sequences - at the level of their fabrication as sequences of individual nucleic acids.
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Figure 1: The number of nucleic-acid base pairs in fabricated biological systems has been rising exponentially, beginning to
approach the number of transistors in semiconductor systems. This scale drives a rising need for low-level BDA [Zhirnov16].

It is important to realize, however, that base-pairs of nucleic acids are not a direct analogy to transistors.
An individual transistor is a functional device, which is used to manipulate signals such as current flow
and voltage level. An individual nucleic acid base pair, however, is not functional but rather a
fundamental structural element. Nucleic acid base pairs are thus more closely analogous to pixels in the
photolithography masks that are used to fabricate a silicon design.

A better comparison to transistors would instead be functional biological elements, such as a template
that catalyzes molecular production (e.g., protein coding sequence) or a site where such production is
regulated (e.g., promoter). While no consensus has yet emerged on how to draw boundaries for such
counts, it is clear that by such measures the complexity of the largest engineered systems to date
appears to be on the order of dozens of elements rather than millions. As one might then expect, there
appears to be much less demand at present for “high-level” BDA tools that assist in the selection,
arrangement, and optimization of functional elements and interactions in biological designs.

Guided by this perspective, we can compare the evolution of abstractions in semiconductors versus
biology in order to inform our understanding of the likely preconditions to enable high-level BDA tools
and the likely drivers for their demand. In semiconductors, abstractions rose over time in stages, from
the basic physical theory to isolation of regulatory components, then to circuits made of those elements,



to standardized components for the modular assembly of circuits, and finally from standardized
components to a progression of BDA tools for managing ever-increasing circuit complexity.
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Figure 2: Semiconductor computing rose over time in abstraction, from physical theory, to regulatory component, circuit,
standardized component, CAD tools, and finally exponential complexity growth. Biological computation abstractions are
rising as well, but emerging BDA tools are not yet grounded in standardized components [Madec16].

For biological systems based on genetic expression, the basic underlying theory is well established, the
components are identified and circuits can be constructed. Anticipating the BDA stage, many
experimental tools have been constructed (Fig. 2). The utility and application of these tools, however, is
currently significantly impeded by the lack of a sufficient system of standardized components for
modular construction of circuits. Until this precondition is fulfilled, it is unlikely that modular circuit
construction will proceed to the level of complexity that is necessary to support and drive development
of an effective ecosystem of high-level BDA tools.

As noted, however, there is already both sufficient complexity and market to drive development of low-
level BDA tools. In particular, these tools are predicated on the assumption that the functional aspects
of a design have already been determined, and focus instead on the transductions from information to
biological matter and back. For example, in converting from information to biology, BDA tools may be
given a specification of a set of DNA sequences, then assist in the synthesis and assembly of those
sequences, performing quality control on the products, and transforming those samples into the context
where they will be evaluated (Fig. 3). Going in the opposite direction, BDA tools can assist in managing
the execution of an experiment, applying instruments to measure performance, and collating
performance data for interpretation. The value of BDA in this context is in allowing the engineers to
focus more of their time and energy on the specification of the sequence (the “design” phase of a
design-build-test loop), rather than the experimentation required for building and testing. Low-level
BDA tools can also enable miniaturization and integration of the build and test processes, thereby
allowing more processes to be run much more cheaply and possibly at a faster rate as well. There is
already much work ongoing in this field, both in the academic and corporate worlds, with a particular
emphasis on development of flexible hardware platforms (e.g., robotics and microfluidics), and
associated supporting software. Some of the key technologies aimed at miniaturization (and how EDA
may support them) were covered in Session 2; a separate branch of development aims at “cloud labs”
that would allow outsourcing of build and test efforts.
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Figure 3: Low-level BDA focuses on automation of the transformations from information to biological matter and back, such
as the exemplar tasks shown in this diagram [Carrl6-1].

Returning to the question of high-level BDA, obtaining effective modular standardized components
requires maturation of a number of different supporting technologies. In particular, in order to support
an effective “design kit” for synthetic biology (Fig. 4):

Fabrication must be sufficiently reliable to allow designs to be realized with cost-effective yield.
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Simulation tools must be able to evaluate those models in reasonable time.
Characterization procedures must be able to capture the information needed for models.
Libraries of characterized devices must share a standard description of this information.
Design rules must capture the intuitions of human experts for automatic application.

Only when all of these supporting technologies are available can effective design tools can be

constructed to marshal them together into an effective “toolkit” for supporting biological engineering.
Furthermore, note that these requirements are not tied to biology in particular, but are rather the
general requirements for modularity that are encountered in any engineering discipline.
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Figure 4: Supporting technologies needed for effective application of high-level BDA to organism engineering [Madec16].



Just as in the electronic world, a wide diversity of tools and approaches will likely be needed in order to
cover the breadth of commercially significant organisms and engineering goals (Fig. 5). Success with only
a small subset of organisms and goals, however, will likely be all that is needed in order to support
development of a high-value commercial market.
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Given the range of different scales and challenges involved in biology, it will often not be possible to
address all aspects of a problem simultaneously in a single tool. Instead, it should be expected that a
single problem will often need to be addressed by many different tools making different heuristic
tradeoffs (e.g., speed vs. resolution vs. scale) and that these tools should be applied at different stages
in an engineering workflow (Fig. 6). For example, [Weil3] reviews a number of cellular simulation tools
that make different tradeoffs in scale and fidelity; all are applicable to significant engineering challenges
and none dominates the others in value. BDA tools may also need to deal with the system itself
changing on different scales of time, as an organism evolves in response to its environment. Genetic
instability is not a certainty, however: many long-lived organisms are able to preserve their genetic
stability quite effectively, and there is no reason to presume that it will be impossible for engineers to
draw on similar principles to achieve stability in deployed systems as well.
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Figure 6: Differences in scale and fidelity requirements will lead to specialized niches for many different tools, as in this
example of simulation tools from [Bogdan16].

In some cases there are specific opportunities for application of existing EDA tools. For example
[Gendrault11] demonstrates that certain biological genetic regulatory network circuits can be mapped
onto an equivalent electrical circuit description (Fig. 7). Once this mapping has been accomplished, then
existing EDA tools for analysis of electrical circuits can be directly applied, and their results translated
back to the biological circuit in order to predict its properties.
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Figure 7: Example of direct EDA adaptation, for certain biological relations that can be modeled as equivalent circuits
[Madec16].

In other cases, the particulars of biological engineering will impose requirements distinct enough that
EDA tools are unlikely to be applicable, and BDA tools will need to be novel. This is already the case with
many of the low-level BDA tools, which tend to be tightly linked with the biochemical particulars of
biological processes and products. At higher levels of abstraction, it appears more likely that there will
be more commonalities, driven by the universal and substrate-independent nature of information
processing and control. The particular regions of that design trade-space that are emphasized, however,
are likely to be different than are emphasized in much of EDA, e.g., involving more analog, hybrid, and
uncertain elements.



As already noted, however, it will be difficult for high-level BDA to have a high degree of impact until the
“component gap” is addressed. This will not be done by application of EDA/BDA tools, but knowledge of
those tools and their supporting principles will be valuable for guiding the development of standardized
components by providing development targets and metrics. Already, key advances have been made,
such as the improved libraries of orthogonal devices (e.g., [Bonnet13], [Kianil4], [Stanton15], [Li15]),
development of genetic elements that improve modularity in composition (e.g., [Mutalik13], [Lou12],
[Carrl6-2]), reproducible and comparable methods for characterizing device performance (e.g.,
[Beall5], [Beall16]), and model-driven methods for prediction of composite system behavior (e.g.,
[Davidsohn14], [Beal14], [Nielsen16]). These areas, and others, still require significant investment in
order to progress, but there do not appear to be any fundamental challenges to progress, only a need
for a large amount of research and development, coordinated and guided by EDA/BDA principles.

The synthetic biology community thus appears to be well positioned toward resolving the “component
gap,” if sufficient investment in research and development can be supplied. As progress continues in this
area, the complexity of systems that can reasonably be contemplated for engineering should begin to
rise sharply, and the need for high-level BDA tools will increase correspondingly. Ultimately, there will
be a strong need to address many of the same sorts of complexity challenges that have been addressed
in EDA, and technologies and experience from EDA will likely increase significantly in value in their
application to BDA.

Finally, there are two less technical aspects of design automation are likely to be of high import in the
development of BDA and where EDA may have critical contributions to make. First, as BDA makes it
much easier for a potentially much larger population to engineer organisms, there are critical ethical
and safety concerns that must be addressed. One of the ingredients in dealing with these considerations
will be management of the security and traceability of designs. Design tools are important agents of
monitoring and enforcement of standards in such areas, so techniques from the EDA community may be
of use in this area. Second, one of the important services of EDA tools is to help in management of
intellectual property, licensing, and contracting. Biological intellectual property practices, which have
historically been focused on exploitation of individual elements, are not currently well organized to
support componentization and composition, and EDA experience with both the organizational and legal
aspects of IP composition as well as the tooling to support IP composition may be of high value in
developing a mature biological engineering industry.

Session 1 Roundtable Discussion Summary
Discussions in this session centered around the following points:

* Itis unclear whether enough is known about biology to effectively enable high-level BDA. On the
one hand, experimentation can be used to get around poorly understood biological constraints,
for example by exploring design space to find the solutions that do work. On the other hand,
such exploration is not efficient and more biological knowledge will allow biological constraints
to be more clearly defined and to be overcome via rational solutions rather than exploration. In
practice, engineering is likely to progress along a spectrum ranging from brute-force exploration
to rational design, but it is unclear where things currently stand or how quickly it is possible to
progress.



In general, biologists are not “ready” for BDA and are in fact still grappling with the lower levels
of automation in the laboratory, e.g., LIMS. Most biologists have not yet been trained in any
systematic and standardized approach to biological design. Applying more systematic and
standardized approaches, however, does require design tools and is rapidly increasing in both
prevalence and importance in biology.

BDA is different enough from EDA that although much is shared the general principles, most
existing EDA tools are unlikely to be directly applicable to BDA except in certain limited cases.
Software design automation tools, on the other hand, operate at a greater remove from the
computational substrate and are more likely to be directly applicable.

Intellectual property is often a challenge in development of biological products: the intellectual
property model used with EDA tools may provide a better means of dealing with managing
these problems.

Forward Outlook
Analysis of the forward outlook for this topic is organized in several categories: (i) Major challenges and

issues, (ii) Promising research topics, and (iii) Vision for the next 5 years, 10 years, and 15-20 years.

(i) Major challenges and issues

Characterization and abstraction require better-curated data than most experimentalists are
currently gathering.

Need for identification and agreement on metrics for characterization of devices and modules
that can support abstraction and decoupling of design elements.

Multi-scale modeling, incorporating complex-systems understanding of self-organization,
feedback, and emergent phenomena

Need for clear and accessible metrics and benchmarks for success in BDA

Experimental validation (or lack thereof) for designs needs to be incorporated as feedback into
BDA tools and workflows.

(ii) Promising research directions/topics

“Data sheet” standards for reusable, composable biological components, and improvement of
available components so that there are large numbers of components that can be effectively
reused and composed.

Sequence “porting” tools to support transfer of components and designs from one host context to
another.

Sequence optimization tools, both for individual components and for dealing with the interfaces
and interactions between components in a system.

Tools to automate build and test of biological designs.

Standards, practices, and workflow abstractions to support effective integration of BDA tools.
Safety assessment and threat screening of designs.

Development and integration of laboratory automation into routine biological engineering
workflows.

Adaptation of existing EDA tools for BDA purposes.

Standards, practices, and tooling for handling of IP in biological designs.



(iii) Vision for the next 5 years, 10 years, and 15-20 years

5 years

Widespread availability of effective and commercially viable BDA tools. Early tools are likely to
focus on narrowing search spaces and elimination of bad solutions.

Standards for characterization and composition of biological components, backed by large
databases of useful components that conform to those standards.

Standard interfaces and tools that enable flexible workflows customized to lab and project
needs.

Effective sequence porting and optimization and tools applicable to most common organisms
and components.

Widespread availability and integration of laboratory automation for key build and test
workflow steps. Automation might be implemented either via local “black box devices” or via
cloud/outsourcing.

Integration of pathogen screening safety measures into key BDA tools.

Effective exploitation of most EDA tools that are applicable to the BDA context.

Routine BDA-assisted engineering of simple biological designs (< 10 functional units).

10 years

Effective and commercially viable BDA tools based on analog and stochastic models.

BDA workflows that enable complex designs largely without need for laboratory work, except
for final verification and testing.

Large numbers of “lab-less” biological engineers, similar to fabless electronics manufacturers.
Mature informational and commercial ecosystem supplying biological components and modules
at many levels of abstraction and complexity (by analogy to EDA, from “capacitor” to “op-amp”
to “graphics card”).

Widespread availability and integration of laboratory automation for all workflow steps.
Integration of generalized threat assessment and management into BDA workflows.

Routine BDA-assisted engineering of complex biological designs (up to 100 functional units).

15-20 years

Effective and commercially viable integrated BDA/EDA workflows for hybrid bio-electronic
systems.

Laboratory automation displaces most “by hand” experimental work.

Mature BDA industry with segmentation of markets and separation of trades.

Routine BDA-assisted engineering of biological designs at the scale of complex organisms (10* to
10° functional units)
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Session Summary

This session explored the development of hybrid semi/bio technologies and design automation. From a
technology platform perspective, much of the focus was on microfluidics, and in particular, technologies
utilizing semiconductor manufacturing techniques, compatible/scalable processes, and integrated
electronic control and measurement. Implications for platform-level architectural approaches are
becoming clearer (e.g., separation of wet and dry interfaces). As for design automation, adapting tools
from EDA looks practical, with fairly direct reuse of many classes of tools; there does not appear to be a
technical barrier so much as a lack a familiarity with EDA tool capabilities and the tendency for
researchers to develop new tools for a specific purpose rather than deal with a learning curve to adapt.
Finally, recent interest in using DNA as a digital storage medium shows great potential for driving the
development of foundational new technologies integrating semiconductor and biochemical
components.

State-of-the-art and current challenges

To date, most instrumentation, and automation more generally, consists of discrete components
connected together by purpose-built software, biochemical protocols, or manual implementation. The
most advanced examples include the trend toward “lab in the cloud”, where some progress is being
made on more abstract, parameterized descriptions of biochemical protocols and measurement. These
typically room-sized platforms rely on robotics and automated fluidics systems to eliminate most human
interaction, and are suitable for a certain scale of production.

In regards to characterizing the scale of such systems, it may be useful to look at major parameters such
as working volumes and cell counts in addition to more conventional metrics such as device count and
feature size.

Building microfluidic systems at scale is a challenge [Brisk16]. Semiconductor and electronic fabrication
depend on scale (volume and integration) to drive costs down to pragmatic levels. Currently, however,
most microfluidic chips are ASICs: universal programmable machines may be unlikely due to the
diversity of sensing and biological operations. That said, there is an enormous role for low-cost
prototyping, and modular, even standardized construction systems and component libraries are
beginning to close important gaps between one-offs and mass production, such as the system shown in
Fig. 8:
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Figure 8: Example of a standardized library closing the gap between one-offs and mass production [Brisk16].

This example shows an integrated subsystem customized for a common biological fabrication flow.
Similar devices have been fabricated on printed circuit boards, capable of handling single cells. The
complexity and scale shown here approach limits for single-layer integration on glass without embedded
active components. Integration into larger systems (microfluidics, microscopes, thermal control, cell
counters, etc.) also limits the miniaturization and capacity/throughput. While this component is well-
integrated, the larger system is not. Similar devices are fabricated using printed circuit board
technologies, and have potential for integrating active components, even embedded silicon.

While most technologies currently used are not directly compatible with semiconductor processes,
electrowetting shows some reuse of electronic manufacturing processes and materials (Fig. 9). In
particular, electrowetting technologies are broadly compatible across different electronics
manufacturing platforms, and show great potential as a core integration technology [Brisk16].
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Figure 9: Electrowetting provides improved compatibility between biological and silicon surfaces [Brisk16].



Recently electrowetting platforms with increased integration density and functionality (e.g., embedded
temperature control, optical feedback) have been demonstrated [Gach16]. Scaling up throughput and
reducing cost per operation has been seen to bring a clear benefit.
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Figure 10: Example of integrated microfluidic system [Shih15, Gach16].

CMOS itself is clearly becoming the platform of choice for applications such as sequencing and lab-on-a-
chip assay-scale measurement. CMOS feature sizes and sensitivities scale from the cellular to the
molecular (Fig. 11), but the intermediate scale, system assembly and integration technologies are critical
to effectively accessing the potential of CMOS-based technologies beyond architecturally simple sensor
components [Widdershoven16]. The cellular and molecular scales also represent distinct but coupled
design regimes, each requiring its own set of specific technologies. A key observation is that these two
regimes should be developed on a mutually compatible technology platform. Some possible design
conventions are beginning to emerge, such as segregation into a “wet” fluidics/optical side and a “dry”
electronic and thermal side. Using standard interfaces is key to scalable “wet-dry” co-design
[Widdershoveni6].
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Figure 11: Scale similarities between silicon and biological components in CMOS [Widdershoven16].

Commodity technologies are being utilized, but it is difficult for the biological community to access more
advanced technologies that have not been tailored to biological usages in high volume manufacturing.
Integrating silicon with microfluidics and/or optical systems requires deviating from the main CMOS



development route. Because of the huge costs involved this appears likely to have a hard time getting
financed. Although keeping the silicon, microfluidics and optical technologies strictly separated
significantly limits the size of the solution space, in practice the impact of this separation appears
unlikely to be severe because it is mainly the commercially or technically non-viable “solutions” that will
be pruned. Ideally, a silicon-based platform (e.g., electrowetting, possibly with some extensions and
enhancements) could be developed to generalize and subsume the capabilities of existing non-silicon-
based platforms, which could then be tailored to biological usages in high volume manufacturing.

With regards to tools, EDA shows strong potential for being adapted for use in a BDA context while
retaining complementary EDA function. For example, tools used for physical simulation and analysis of
thermal design in packaging may be adapted to also model microfludic device physics (Fig. 12). Until
system design reaches the level of requiring the capabilities of CAD frameworks to flexibly integrate tool
sets across multiple design domains, however, it is unclear if adoption of EDA tools (with their inherent
learning curves) would serve early-stage research and development.
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Package/layout multiscale simulation scheme based on the FIoTHERM-
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specific resolution

Microfluidic simulation is possible
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Figure 12: Example application of EDA tools to microfluidic designs [Sukharev16].

An example of domain-spanning design is the work presented in [Thorsen16], which described a layered
approach to development of hybrid fluidic systems. This begins from protocol description languages
(architecture-independent), and then proceeds to fluidic instruction sets before ultimately mapping to
hardware primitives (Fig. 13). This system has permitted the design, construction, and operation of a
feedback system for dynamically adjusting chemical inputs based on sensor data.
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Figure 13: Example of integrated fluidic design flow [Thorsen16].

Finally, many of the areas discussed could be driven much more coherently with a coordinated agenda if
a high-volume design of sufficient complexity was targeted. For example, today, DNA synthesis is a clear
bottleneck for several grand applications of DNA technology, such as synthesis of whole genomes or
using DNA for digital storage [Hessel16]. Semiconductor-based genetic synthesis needs to be explored in
order to enable a next-generation DNA synthesis market. DNA digital storage may provide a target with
sufficient economic payoff for the required investment, and this should benefit biological applications as
well. Storing and manipulating large numbers of very small volumes of material is one potential
approach to bringing such systems down to chip- or package-scale.

A second area with potential for pharmaceutical and other industrial biotech as a driver/collaborator are
lab-on-a-chip platforms, especially ones capable of integrating in situ cellular culture and measurement
with molecular sensing. The economic tradeoff here is lower volume than DNA memory (but still high
volume manufacturing) for a higher-margin application.

In either case, a small number of key applications could provide the focus and structure needed to
develop a coherent, scalable platform. Examples like these could form the basis of a roadmap spanning
from more easily achievable devices (e.g., advanced lab-on-a-chip) to the more challenging ones (e.g.,
DNA memory).

Session 2 Roundtable Discussion Summary

One of the major barriers to adoption of microfluidics and other hybrid semiconductor/biological
technologies is the complexity of engineering these devices, particularly since there are many different
types of expertise needed. CAD tools per se are not the key barrier, but the larger EDA pipeline,
including fabrication, build, and test automation. Many types of protocols and assays can be
miniaturized this way, but there needs to be a significant degree of flexibility and receptivity to user
customization in order to be applicable to a large number of practitioners. The device/world interface is
also a problem, which might be addressed through standardization.



Forward Outlook
Analysis of the forward outlook for this topic is organized in several categories: (i) Major challenges and
issues, (ii) Promising research topics, and (iii) Vision for the next 5 years, 10 years, and 15-20 years.

(i) Major challenges and issues

* Many issues are economic rather than technical; semiconductors are predicated on high-volume
manufacturing, which in turn requires large markets for a given design.
* Lack of standardization, at least in terms of interfaces for integration/assembly.

(ii) Promising research directions/topics

* Application of EDA tools, workflows, and practices to microfluidics.
* Standardization of chip interfaces to reduce complexity of customization.
* Direct integration with CMOS sensing and actuation technologies.

(i) Vision for the next 5 years, 10 years, and 15-20 years

5 years

* Accessible microfluidics for most common assays.

* Synthesis of the expertise of the biological and semiconductor communities, as well as experts
in software development, to design hybrid bio/CMOS chips with applications in DNA synthesis,
read/write nucleic acid-based memory.

* Exploration of new biocompatible materials that can be readily integrated into the fabrication
path.

* Accessible software design of silicon-based microfluidic devices, similar in complexity to current
FPGA or printed circuit board design.

10 years
* Desktop laboratory-in-a-box systems.

* Chip fabrication and realization of the designs developed in the 5 year vision.

* Automatic conversion of a high-level description of a biochemical reaction or ongoing
biochemical process into a customized device that can efficiently execute the reaction and/or
process.

15-20 years
* Cheap consumer laboratory-in-a-box.
*  Truly hybrid bioCMOS chips, combining biological and electronic logic.
* Silicon-based DNA storage technology with CAD-designed fluidic subsystems.
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Session Summary

Although the progress of CMOS technology has been extraordinary, submicroscopic computers remain
outside of our grasp. However, nature appears to have successfully addressed the submicroscopic
design challenge, and may suggest new solutions for future microsystems for information processing.
Deeper understanding of the principles of cellular information processing may enable new generations
of computing systems. Among the most promising characteristics of biological computing is the
extremely low requirement for energy of operation, much closer to thermodynamic limits than the
semiconductor systems, which may address the semiconductor industry’s grand challenges of energy
and cost. The industry’s innovation model that has been centered on Moore’s law is changing. This
community needs to find ways to make a more compelling argument for research funding and take
advantage of this changing innovation model. This session’s focus was on lessons that can be derived
from synthetic biology and utilized to improve semiconductor technology. This is challenging for the
following reason: although we have gained substantial knowledge in recent years into the world of cells,
metabolic reactions, neuro-architecture, etc., we still need to know much more in order to attempt to
realize the conjectured potential for biology-based disruption of today' computing architectures and
other practices of the semiconductor information and communication technology (ICT) world.

Semiconductor systems are complex in the aggregate but fairly simple in their building blocks. On the
other hand, the fundamental components of life, cells, are very complex worlds with each cell
performing remarkable computations. The lessons learned from biology may not just influence the
evolution of semiconductor technology but might actually significantly disrupt the $350 billion
semiconductor ecosystem, which is expected to grow at a CAGR of 6.7% over the next ten years.

There are some learning opportunities that we can benefit from in the short to medium term including,
but not limited to: utilizing microorganisms for sensing applications; biology-inspired algorithms for
processing information such as sound, neural architectures for lower energy, manufacturing through self
assembly, energy-modulated design where information flow would be commensurate to energy flow,
and DNA-based memory.



State-of-the-art and current challenges

For this session, one of the clearest takeaways is that knowledge of biological systems is nascent,
especially in terms of both the scale of systems which can be predictably engineered, and in using that
knowledge to drive new approaches in semiconductors and computing.

Little of known advantages of biological systems, including low power, high volume of potential
information processing capabilities, have been realized in technologies in computing systems.
Application of the qualities of either cells or brain architecture to semiconductor designs is limited by
available data and knowledge about biological systems. One focus may be to develop computational
methods to analyze biological data that are available but rarely being used (e.g., the rapidly
accumulating databases of sequence and microarray data), in order to gain better understanding of
biological phenomena/behaviors, and to build better models that can be improved by comparing
simulation results and real data.

New abstractions may result from developing new mathematical tools or borrowing analytical tools
from statistical physics and quantum mechanics to mine biological data (potentially with new machine
learning techniques for uncovering and managing interactions in synthetic biology) and provide a system
level understanding. These models might in turn form the basis for developing new abstractions and
programming models for both biological systems and bio-inspired engineering approaches.

In principle, living cells can be used for computing, as biological systems implement very low energy, yet
complex information processing, while interfacing with many different modes of inputs and outputs
spanning chemical, electrical, temperature, pressure and optical signals [Perlil16]. Figure 14 provides a
comparison between Si-based “cells” and biological cells. It shows that in today’s technologies, a Si-
based cell cannot match a biological cell in operational energy [Zhirnov16].
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Figure 14: Theoretical logic gate equivalence in living cells [Zhirnov16].

Learning from neural cells might open new opportunities for extremely low power systems, but in order
to fully realize the potential of such systems, it appears likely that new simulation and design tools



would have to be developed, including quantitative models for neural simulation that are likely to be
stochastic and have no direct EDA equivalent [Zhang16]. Hybrid computing systems, whether neural or
otherwise, would need a well-defined interface between biological and electronic layers of
implementation, requiring standardization and simulation of biological systems from receptors to whole
cell interaction [Agabil6].
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Figure 15: Conceptual design for a generic hybrid information processor utilizing an interface between biological and
electronic layers of implementation [Agabil6].

Figures 16 and 17 give some examples of how living cells can model digital and analog operation
[Perli16]. In terms of efficiency, a good place to start is co-localizing computation and storage, as in the
example digital counter that follows. To date, tight coupling of computing and memory has not been
common in silicon architectures.
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Figure 16: Logic gate equivalence in living cells [Perli16].
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Figure 17: Modeling sequential machines in living cells [Roquet16]

In order to support computation with living cellular systems, BDA needs a clear definition of device
function and performance [Parsons16]. There is still an open question, however, on what are useful
irreducible device elements for engineering computation in cellular systems. There is also a need for
understanding more about how a hybrid bio-electronic system might benefit from stochastic events, and
a need to further develop methods for electronically accessing and controlling chemical activity,
including electrically addressed gene expression [Parsons16].

Automated design (e.g. based on machine learning) may also offer new opportunities for EDA-BDA
interfaces, both in the understanding of underlying biological-based substrates and providing new
design principles, ultimately increasing automation in the programming of living matter [Krasnogor16-1].

Quantifying computation in living cells versus silicon is a difficult problem. Most of the literature is
strongly tied to digital systems and a von Neumann style of conceptualization of computing. However, it
might be more useful to look at organism-level computation instead of living cells. What does the
organism compute at an instantaneous time and how many resources does it deploy for that function?
Can those resources be cloned, especially using a similar substrate (i.e., a biological tissue or wetware)?
Furthermore, much processing in biological systems stems from the multimodal, plastic nature of
biological systems. For example, this allows a single neuron to be massively non-linear, and to
potentially perform many functions depending on context [Yakovlev16].

Another concern is the possibility of switching from a performance-driven energy-efficient paradigm to
energy-driven and space-limited performance-optimized systems design, in which computation should
be quantified in decisions per Joule. Figure 18 shows a comparison between legacy systems and energy
modulated systems [Yakovlev16]. A key challenge here for semiconductor systems is how to achieve
massive informational connectivity at all levels of hierarchy or spatial layers of powering and timing.
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Session 3 Roundtable Discussion Summary

The roundtable discussion for this session centered on the following questions and related answers:

How can this community pool its intellectual resources and make the right case to attract the right
level of funding from the semiconductor industry?

Funding in areas directly related to the topic of the session is scarce. It was pointed out during the
discussions that recent efforts such as the SIA-SRC report on “Rebooting the IT Revolution” make a
good case for additional government funding. These kinds of industry-driven results can make a
significant difference in attracting funding.

To what extent can lessons from biology be applied in semiconductors and is enough understood
about cell computation and metabolic processes to extract lessons and use them in the right
context for advancing semiconductor technology?

Biological systems make complex decisions with great energy efficiency. However, semiconductor
systems process algorithmic type operations much faster than humans can. It would be a
tremendous leap forward if semiconductor technology could also process information and weigh
tradeoffs like a human brain can (neuromorphic design). However, as noted earlier, there is still
much to be learned about biological systems before we can do similar things in semiconductor
technology.

Would these lessons disrupt the industry and create a new value system?
If biological principles turn out to be fundamentally different, lessons from biological systems
would have a disruptive impact on semiconductor technology.

How should today’s semiconductor industry prepare for such disruption?
The industry can prepare by investing in R&D programs in partnership with the synthetic biology
community, both academic and industrial. This is consistent with the semiconductor industry’s



push towards MtM technologies, especially as we approach the end of device shrinking in the next
7-10 years.

* To what extent is the analogy between semiconductors and synthetic biology valid?
Attempts have been made to establish analogies, at a certain level of abstraction, such as the
similarities between chemical reactions induced by enzymes and the operations of a logic gate.
These analogies are valid at the right level of abstraction. There are also valid analogies between
DNA memory and semiconductor memory that can be made.

* Biosystems do more computations and operate on much lower energy — how can we incorporate
this into semiconductor technology?
There are two factors to the energy issue: fundamental operation and architecture. Semiconductor
systems push electrons to communicate, but in biological systems such as the brain, neural
excitability is driven by chemical (ion concentration) activity and electrical activity. At the
architecture level, semiconductor systems are mostly von-Neumann-type architectures requlated
by synchronous clocks, whereas what we know so far about the brain is that the architecture is
fundamentally different, with an average of 7000 synapses per neuron resulting in over 1000
trillion synapses by some estimates, providing asynchronous communication among neurons.
Achieving the energy efficiency of the brain will likely require fundamental changes in scale,
architecture and physical operation.

Forward Outlook
Analysis of the forward outlook for this topic is organized in several categories: (i) Major challenges and
issues, (ii) Promising research topics, and (iii) Vision for the next 5 years, 10 years, and 15-20 years.

(i) Major challenges and issues

* Lack of sufficient depth of understanding of many details of biological systems.

* Definitions of biological computational potential not yet well settled.

(ii) Promising research directions/topics

* Biological principles for information processing in analog and noisy environments.
*  Blurring the distinction between computation and memory.

* Biology-inspired low energy computation.

(iii) Vision for the next 5 years, 10 years, and 15-20 years

5 years
* First market-ready sensor systems based on biological tissues.

* Increased understanding of computational potential and nature of biological systems.

10 years
* Neural computation understood well for at least some brain areas or functions.

* Some commercial biologically-inspired computing systems.



* Biological principles exploited for order-of-magnitude reduction in energy budget required for
information processing.

15-20 years
* Application-specific biologically-inspired computing systems become readily available.

* Computational devices based on neurons commonly used for specialized applications enabled
by form factor and power consumption.
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Understanding and engineering biological systems sets new goals and challenges for software
engineering. Is it possible to devise new methodologies and design principles that embrace (rather than
shy away from) the complexity of multi-scaled electronic-biological systems integration? The focus of
this session was thus to prospect for “bioprogramming languages” and design representation standards
that embrace multi-scale processes, automated program synthesis tools to create software that meets
specifications for complex biological-electronic systems, etc. The discussion scope included theoretical
foundations, design methodology and standards, and research targets aiming development of new
engines for transformation and integration of synthesis artifacts, and effective methods for programmer
interaction and feedback. The keynote for this session was given by Mike Holcombe, who argued that
current formal verification approaches are likely of limited use for biological systems due to the complex
systems nature of both organism and environment, and then presented the X-machine formalism as a
possible candidate approach to specification. Sumit Jha took an opposing perspective, arguing that well-
curated models and experimental data will allow formal verification and synthesis to apply effectively to
biological systems. Chris Myers showed that lower-level genetic design aspects of biological design are
already benefiting from automation and how standards are key to enabling abstraction, decoupling, and
interchange. Anil Wipat observed that there is already a vast amount of available biological data that is
barely able to be used at present, and argued that semantics-mediated data integration may be an
effective approach to integration, curation, and utilization. Finally, Natalio Krasnogor identified desktop-
scale experimentation and instrumentation, which can displace lab-work as the critical path in
engineering, as a key missing component that will likely heavily utilize specialized silicon products.

State-of-the-art and current challenges

While biological systems in general are amongst the canonical examples of massively complex systems,
it is important to remember that engineering practices have been able to successfully manage other
systems with massive complexity. Notable amongst those are two other canonical examples of
massively complex systems: software engineering and the semiconductor engineering that underlies it.
While there are many differences between these two areas, complexity management within them has
come to share many key techniques and practices, such as formal verification, deep integration of
testing into design workflows, and standards-driven integration across organizations. The complexity of
individual cells is large but not obviously more so than the complexity of large-scale software
engineering projects: consider, for example, the interaction networks for E. coli and the Linux kernel
compared in Fig. 19 [Yan10]: while there are differences in emphasis and balance in the networks, the
overall scale and meta-structure is not dissimilar.



E. coli transcriptional

regulatory network Linmgeallgraph

master regulator

middle manager

workhorse

Lower-level genetic design aspects of biological design have already drawn significantly from EDA, and
will continue to do so [Myers16]. Many possible approaches to design automation have indeed been
proposed, as discussed above in Session 1. Most, however, have drawn primarily on simple models of
digital circuitry and Boolean logic. There is a rich world of work on asynchronous logic, stochastic
computation, and analog computation that has not yet been well-explored and may offer much
potential.

For the engineering of biological organisms to be effective and commercially realized, the engineering
process must also support consideration of the full lifecycle, including deployment, maintenance, and
disposal. It must be possible to evaluate how organisms are likely to behave under a wide variety of
environmental conditions of operation. It must also be possible to predict and manage the possible
autonomic evolution of the organisms over time, in response to the selective pressures of the
engineered system incorporated within them and their operating context.

For performing such testing and validation of designs, the dominant approach to date has been to
construct detailed biochemical models of cell behavior. Two key alternate approaches take a more
abstract view of cell behavior: agent-based models abstract and approximate mechanisms, while formal
verification performs model analysis at a more abstract mathematical level. Both of these approaches
are already extremely well-developed in other domains.

Biochemical modeling has recently been able to model an entire simple cell [Karr12], M. genitalium (Fig.
20). This bacterium is one of the world’s simplest living organisms, with only about one tenth as many
genes as E. coli and far less than complex eukaryotes. The whole-cell model for M. genitalium has been
able to effectively predict some cellular behaviors. Its implementation involves the integration of a large
number of heterogeneous model components, enabled by SBML [Hucka03]. While successful, this
project also illustrates a key limitation of biochemical modeling: it is difficult to scale both in complexity
and execution speed. Making this model work has required hand-tuned representational choices, and
the details of its quantitative relationship with actual cellular behavior are still being determined. Note
that such modeling may become a significant target for co-development with specialized hardware to
support faster simulations, though the degree of speed-up possible through such processes has not yet,
to the best of our knowledge, been analyzed for whole-cell models.



One approach to the challenge of scalability is to simplify modeling by raising the level of abstraction,
e.g., via agent-based models [Holcombe16, Bail4]. Agent-based models (and other similar model
abstraction approaches) offer the potential to capture much more complex, often stateful, functions in
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Figure 20: Modules of whole-cell model of M. genitalium (reproduced from [Karr12])

describing the elements of a system and their evolving interactions over time (Fig. 21). When such
representations are properly tuned, this can allow a dramatic reduction in complexity with comparison
to more fundamental physics- and chemistry-driven biochemical models. The complementary challenge
is that configuring and validating such models is much more difficult, for the simple reason that, unlike
physical or chemical models, there is no well-defined relationship of an agent to underlying physical
processes. As such, to date agent-based models have typically been applied to particular specialized
cases where their validity can be approximately established, rather than to more complex and holistic

challenges such as whole-cell modeling.

Figure 21: Agent-based model of E. coli interacting with oxygen (reproduced from [Bail4]



As an alternative to raising the level of abstraction in a model, one may instead raise the level of
abstraction in how a model is applied and analyzed [Jhal6]. Formal verification, such as the work
presented in [Jha09], takes this approach, applying the arsenal of tools that have been constructed for
verification and validation of software and hardware designs. Here, the underlying model is still likely to
be physical or chemical in nature. Rather than analyzing the system by executing simulations using this
model, however, these approaches analyze the model directly to determine its mathematical structure
and whether it conforms to specified properties. One challenge in applying these approaches is that
much of formal verification is predicated on assumptions of deterministic relations with a small number
of states per variable, whereas biological systems often involve significant stochastic relations and large
ranges of variable values (well-approximated in many cases by continuous ranges). A number of
techniques likely to be relevant to such systems, however, have also already been developed. For
example, stochastic model checking has already been applied to analysis of biological systems (e.g.,
[Calder06, Madsen14]) and fluid model checking being used for complex systems analysis in other fields
[Bortolussil12] is likely to be of use in formal verification of biological systems as well.

No matter what technique is applied to analyze systems, it is also important to be able to scope what
properties are to be analyzed and in what conditions. Here, synthetic biology appears likely to diverge
strongly from systems biology in the type of questions that may be considered relevant to ask. Systems
biology aims at a general understanding of the nature and behavior of biological systems, which is a very
open-ended question. Any given synthetic biology engineering project, like any other engineering
project, is likely to be focused on the satisfaction of a particular collection of specifications. Again, there
is a well-developed set of techniques that might be drawn upon to build the testing and validation
portions of biological engineering workflows, such as regression testing [Fisher04].

Just as in other engineering disciplines, testing will need to operate at different levels of abstraction. The
more sophisticated the underlying models, the more precise the debugging that can be offered by such
tests: black-box testing considers only the externally observable input/output relations of a system,
grey-box testing uses some (generally abstract) knowledge of its contents, and white-box testing
incorporates a full specification. Black-box testing is good for “sanity checks,” but can never provide full
validation of any but the simplest systems, and biological systems are not simple. White-box testing
(e.g., unit testing) can potentially provide complex validation, but requires deep understanding of both
system and specification. Grey-box testing provides an intermediate point with some of the advantages
and disadvantages of both. At present, challenges of both modeling and test data availability limit most
validation to black-box testing. As these are improved, it is likely that synthetic biology workflows will be
able to progress to routinely incorporate grey-box testing and white-box testing as well [Krasnogor16-2].
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Data availability is a critical challenge for model validation [Wipat16]. Some of this challenge can be met
by integration of existing data. The amount of biological assay data being gathered and stored is growing
exponentially, providing a potentially vast amount of resources (Fig. 23). This data is scattered across
many different databases and organizations, however, and its quality of curation and metadata is often
highly variable. Because of such scale and heterogeneity, automation-assisted curation and integration
of biological databases will be required in order to make effective use of these resources for biological
engineering. Work is ongoing on such systems, based on existing and emerging standards [Misirli16,
Roehner16].

Figure 23: The rapidly growing collection of biological information scattered in various databases can be integrated with
appropriate interchange standards for describing biological designs, evaluation contexts, and results [Wipat16].

Ultimately, however, the engineering of biological systems cannot depend on either opportunistic use of
data gathered for other purposes or on slow and costly human-centric experimentation. Instead,
biological engineering workflows will be supported by testing that is fast, low-cost, and tightly
integrated into every aspect of the workflow. Agile development techniques that serve well in the
software and hardware world, such as continuous integration and regression testing, will be needed to
bring any complex system safely to deployment and to support maintenance and continued
development of fielded biological systems. This will only be possible through vastly improved
miniaturization and automation, such as was discussed in Session 2.

Session 4 Roundtable Discussion Summary
Discussions in this session centered around the following points:

* Software design automation and representation are already becoming quite important for
design of biological systems, particularly with regards to standards for design representation
and data exchange.

* Biological data is expanding rapidly in volume and scope but is suffering major problems in
curation and integration. Better representations, likely assisted by machine learning and
inference technologies, are needed in order to integrate this data and realize its potential.



There are many interesting possible approaches to “higher-level” software design automation
and representations of biological systems. The degree to which these can currently be
developed, however, appears to be limited by current biological knowledge and bottlenecks in
experimentation related to the current labor-intensive nature of laboratory work.

Forward Outlook
Analysis of the forward outlook for this topic is organized in several categories: (i) Major challenges and

issues, (ii) Promising research topics, and (iii) Vision for the next 5 years, 10 years, and 15-20 years.

(i) Major challenges and issues

Design needs to support consideration of the full lifecycle, including deployment, maintenance,
and disposal.

BDA needs to be able to effectively consider environmental interactions and the possible self-
evolution of the system over time.

Need for cheap “on the desktop” experimentation in the loop with design tools.

Software tools to detect potential threats must be balanced with need for open interchange in a
developing commercial ecosystem.

Both business development and complexity management require development and adoption of
standards and integration of disparate data sources.

(ii) Promising research directions/topics

Standards and integration methods to enable BDA to effectively draw on existing and emerging
biological databases.

BDA tools outside of the simple digital paradigm.

Application of “whole cell models” to predictive and precise engineering of novel organisms.
Tools for monitoring, testing, and management of biological designs across multiple scales, from
cells to tissues and organisms to ecosystem and society.

Fast, cheap, low-scale build and test hardware (see Session 2) and its integration into biological
engineering processes.

Adaptation of agile development workflows for biological engineering.

(iii) Vision for the next 5 years, 10 years, and 15-20 years

5 years

Comprehensive models, on the scale of a complete bacterium, integrated to support precision
engineering.

Integration of all major human-curated biological databases into an effective federated resource
to support biological design.

BDA tools based on asynchronous and stochastic computational abstractions.

10 years

Comprehensive models, on the scale of a complete eukaryotic cell, integrated to support
precision engineering.
Automatic curation of biological databases



* Biological engineering informational costs dominate lab work costs.
* Biological engineering adopts agile software development practices such as test-driven
development and continuous integration.

15-20 years
* Comprehensive models, on the scale of a complex many-tissue eukaryotic organism, integrated
to support precision engineering.
* Agile development practices for biological engineering on same scale of complexity as agile
software development.
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