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Adaptive Opportunistic Airborne Sensor Sharing
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Airborne sensor platforms are becoming increasingly significant for both civilian and military operations;

yet, at present, their sensors are typically idle for much of their flight time, e.g., while the sensor-equipped

platform is in transit to and from the locations of sensing tasks. The sensing needs of many other potential

information consumers might thus be served by sharing such sensors, thereby allowing other information

consumers to opportunistically task them during their otherwise unscheduled time, as well as enabling other

improvements, such as decreasing the number of platforms needed to achieve a goal and increasing the

resilience of sensor tasks through duplication. We have implemented a prototype system realizing these goals

in Mission-Driven Tasking of Information Producers (MTIP), which leverages an agent-based representation

of tasks and sensors to enable fast, effective, and adaptive opportunistic sharing of airborne sensors. Using a

simulated large-scale disaster-response scenario populated with publicly available Geographic Information

System (GIS) datasets, we demonstrate that correlations in task location are likely to lead to a high degree of

potential for sensor-sharing. We then validate that our implementation of MTIP can successfully carry out

such sharing, showing that it increases the number of sensor tasks served, reduces the number of platforms

required to serve a given set of sensor tasks, and adapts well to radical changes in flight path.
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1 INTRODUCTION

The use of airborne sensor platforms is rapidly increasing across a large number of commercial,
civilian, law-enforcement, and military organizations, particularly in time-critical situations such
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as management of mass public events or responding to natural or industrial disasters. Enabled by
advances in the automation of both flight control and sensor packages and increased availability of
platforms making use of such techniques, a great diversity of platforms are being deployed, large
and small, fixed and rotary-wing, manned and unmanned, and mounting a wide variety of sensors,
particularly for imaging. Even so, much of the potential of these airborne sensor platforms remains
untapped. Typically, any given platform is controlled by a single individual or organization with a
focused set of goals, and as a result, an airborne sensor typically spends a large fraction of its flight
time idle, e.g., while the platform is in transit to, from, and between the locations where sensor
tasks are intended to be executed.

This spare sensor capacity provides an opportunity: if the operator of an airborne platform is
willing to share their sensor, then it can be used to execute tasks for other organizations during
its “down time,” thereby potentially realizing the following benefits:

—Airborne sensing capabilities can be made available to organizations that lack their own
airborne platform.

—The number of airborne platforms necessary to carry out a given set of missions can be
reduced.

—Mission resilience and execution speed can both be increased by assigning multiple plat-
forms to perform the same task and/or by dynamically shifting tasks between platforms to
adapt to changing circumstances in the field.

Consider, for example, the scenario illustrated in Figure 1, in which a disaster response team is
using a ScanEagle UAV to check the San Luis Dam for damage following a large earthquake in the
San Francisco Bay area. The planned flight path to check the dam also flies close to many other
pieces of critical infrastructure, including airports, cell phone towers, and fire departments. Sensor
sharing can allow other disaster response teams, which may want information about these other
locations, to survey them while the UAV is in transit to and from the dam; complementarily, other
UAVs flying nearby can use their own spare sensor capacity to conduct additional surveys of the
dam, hedging against problems and possibly obtaining the information more quickly than with
the original mission plan.

To realize these potentials for usage of spare sensor capacity, we have developed the protoype
system Mission-Driven Tasking of Information Producers (MTIP) for the sharing of airborne sen-
sors, which obtains sensor tasks from explicit information requests or requests implicit in other
user interactions with information management systems, then uses an agent-based representa-
tion of tasks and sensors both to allocate tasks to sensors and to dynamically adapt that allocation
at runtime. This article makes a full presentation of MTIP, with particular focus on its agent-
based adaptive task allocation methods, combining and extending prior presentations in Beal et al.
(2016a) and Beal et al. (2016b). Following a brief review of related work in Section 2, Section 3
presents the MTIP architecture and Section 4 presents and analyzes MTIP’s agent-based method
for adaptive task allocation. Section 5 then presents a validation of the proposed benefits of air-
borne sensor sharing, followed by experiments in Section 6 that confirm that our MTIP prototype
can both effectively allocate tasks and also efficiently adapt those allocations at runtime. Finally,
Section 7 summarizes conclusions and discusses future work.

2 BACKGROUND AND RELATED WORK

Many organizations already implement schemes for sharing information (including airborne sen-
sor data) through a variety of information management systems, many of which are also specifi-
cally focused on maintaining situational awareness in emergency or military situations (e.g., Gillen
et al. (2012), OMG Data Distribution Service Portal (2012), Xiong et al. (2007), Carvalho et al. (2011),
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Fig. 1. Example of sensor sharing with MTIP: the planned path of a UAV flight intended to check the San
Luis Dam for earthquake damage (cyan line with translucent blue air-asset tactical symbols) also flies close
enough (magenta sight lines) to survey other critical infrastructure (red icons), including the San Martin
airport, the South Valley Hospital and its heliport, and a number of fire departments and cell phone towers.

Usbeck et al. (2015), Rosenblum and Wolf (1997), Ma and Bacon (1998), and Essendorfer and Mueller
(2009)). MTIP itself is built upon one of these systems (Gillen et al. 2012), but while these systems
are good at enabling interested parties to share information, actually tasking sensors to gather
that information must still be manually accomplished outside of the system by humans. Sensor
sharing is thus still typically implemented by interactions between humans, which tends to create
problems in discovery and to compete for attention with other critical tasks, contributing to sensor
under-utilization.

Another closely related area is collective sensing, which has been studied for many years in a
number of contexts, both for airborne and other types of platforms (Chong and Kumar 2003). Col-
lective sensing also considers multiple sensor platforms, but often those platforms are all assumed
to be controlled by a single organization that can task them and often also place and move them at
will (e.g., Delin (2002), Burne et al. (1999), Allred et al. (2007), and Esterle et al. (2014)), rather than
needing to be shared within the constraints imposed by an independent platform owner. Recently,
smartphones and other human-carried sensors have begun to drive interest toward opportunis-
tic sensor systems (Lane et al. 2008; Krause et al. 2008; Ma et al. 2014). While a number of such
systems and mechanisms for such systems have been developed (e.g., Shin et al. (2011), Eisenman
et al. (2008), Sheng et al. (2012), Jayaraman et al. (2013), and Liang et al. (2014)), all of these sys-
tems have focused on diffuse tasks, such as noise or pollution monitoring, in which sensors are
non-directional and any given sensor contributes only a small portion of the sensing capability
needed for the task. As a result, prior work on opportunistic sensing systems has not considered
how to manage conflict between tasks for sensor resources.
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MTIP, by contrast, focuses on highly directional sensors such as airborne cameras, and on more
specific and localized tasks such as using a camera to image a particular target of interest. Further-
more, the requirements of information consumers (e.g., high-quality imagery) often mean that
sensors can effectively serve only one task at a time. Thus, rather than one diffuse task extended
over space and time, we are instead dealing with a potentially large number of discrete tasks with
specific and conflicting requirements. As a result, a key problem, which cannot be addressed with
prior opportunistic sensing systems, is to effectively manage the allocation of large numbers of
competing tasks to individual sensors, both taking advantage of opportunities as they appear and
rapidly adapting the allocation when tasks or sensor availability changes.

3 MISSION-DRIVEN TASKING of INFORMATION PRODUCERS (MTIP)

At a high level, the motivating purpose of MTIP is to address (in the context of airborne sensor
platforms) a deficiency common to most publish-subscribe (pub-sub) Information Management
Systems (IMS). Publish-subscribe systems decouple information producers from information con-
sumers (thereby enabling scalability and resilience desirable in an IMS). Subscriptions are made
by consumers as a way to inform the IMS what information is of interest to that consumer: clients
make subscriptions into a pub-sub system with a filter or predicate that limits the information they
receive to that which matches their interest. However, because a pub-sub IMS decouples informa-
tion producers from information consumers, it is often the case that information producers will
collect/provide information that is not of interest to any consumers, while remaining unaware of
what information the consumers are actually interested in, and thus causing consumer’s informa-
tion needs to be poorly met or not met at all.

MTIP addresses this deficiency by assigning tasks to information producers that have the ca-
pability and availability to collect information that is of interest to a consumer. To accomplish
this, MTIP monitors subscription predicates (including explicit requests for information about a
location or other target) and other information organically provided by information consumers in
the course of normal system usage. MTIP takes these expressed user interests and converts them
into tasking, which is sent to the information producers, thus increasing the chances of meeting
users’ information needs, as shown in Figure 2. Specifically, the current MTIP prototype provides
the following functionality:

—Extraction of information needs from existing user interfaces. MTIP is integrated with several
user interfaces, including map-based interfaces to Geographic Information System (GIS)
datasets, such as OpenStreetMap, to support both explicit user requests for information
and to extract implicit user interests from commonly performed actions. For example, MTIP
identifies placement of a Point of Interest (POI), drawing of an Area of Interest (AOI), or cre-
ation of a route on a map as indicating user interest in getting imagery at the POI, within
the AOI, or along the route, respectively. To this end, MTIP includes a rich set of semantic

extractors that extract user interests from these and other commonly used interface inter-
actions, such as requests and queries.

—Extraction of sensor tasks from information needs. MTIP turns the information needs it has
extracted into a set of inferred user goals that are desirable to achieve by sensor-carrying
airborne platforms and, in turn, generates a set of specific tasks that can be performed to
satisfy these goals.

—Allocation of tasks to available platforms. MTIP assigns the tasks it has derived to the set of
available platforms with the objective of satisfying the largest number of tasks within the
constraints of the expected flight plans of the platforms.
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Fig. 2. Traditional Publish-Subscribe IMS decouple information producers from consumers, potentially caus-
ing consumers’ information, needs to go unmet. MTIP uses organically-collected information from con-
sumers (e.g., the predicates/filters controlling the information they receive from the IMS) to task information
producers to collect and share information that is of interest to end-users.

Thus, by opportunistically increasing sensor utilization, MTIP can be used to achieve any or all of
the following goals (depending on choices in deployment):

—Increasing the number of information gathering tasks that can be served by a given set of
sensor platforms.

—Reducing the number of sensor platforms required to perform a given set of information
gathering tasks.

—Increasing resilience of information gathering tasks by serving them on multiple platforms.

3.1 Context: Marti and TAK

In order to give a clear path to adoption and deployment, MTIP is designed to operate with and
extend the capabilities of existing systems. In particular, MTIP is designed to augment the Team
Awareness Kit (TAK) ecosystem of Situation Awareness (SA) tools (though it can potentially in-
teract with any software that uses the Cursor on Target information exchange standard (Miller
2004; Kristan et al. 2009; Robbins 2007)). The TAK ecosystem is composed of a set of clients such
as ATAK (Usbeck et al. 2015) and/or its Windows or iOS ports (WinTAK and iTAK, respectively)
and an IMS, Marti a.k.a. TAKServer, which is an advanced tactical IMS that can be deployed on a
variety of hardware platforms and any IP network (Gillen et al. 2011, 2012). While ATAK can func-
tion in serverless environments, there are times when a server is needed to bridge networks to
provide Beyond Line-of-Sight (BLOS) communication (Gillen et al. 2012) or provide a communica-
tions substrate when networks otherwise prevent clients from communicating directly (e.g., those
separated by firewalls or lacking IP addressability, such as commercial cellular) in austere condi-
tions (Loyall et al. 2012). In those cases, Marti acts as the IMS to decouple information producers
from information consumers, allowing new producers or consumers to be added on demand.
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Fig. 3. Architecture of the MTIP prototype (blue), showing flow from situation information to sensor task
allocation, dispatching of tasks to a set of airborne platforms (grey), and feedback of task status and results
from platforms, triggering plan adaptation.

Marti uses a publish-subscribe model: information producers (publishers) are decoupled from
information consumers (subscribers). Publishers submit information to Marti with metadata de-
scribing the time, location, and content of the information. Subscribers register a request for their
information needs (i.e., their subscription) and Marti delivers published information matching that
subscription. Marti can also archive published information for consumers to query for information
that was published in the past. Further, Marti provides QoS management to prioritize and shape
traffic to the network’s available bandwidth. Full details of the Marti system are available in Gillen
et al. (2011) and Gillen et al. (2012).

3.2 MTIP Architecture

The overall architecture of MTIP is shown in Figure 3, comprising the following components:

—A set of Semantic Extractors that gather explicit and implicit information on user interest
(i.e., tasks) from user interfaces and activities, as well as receiving publications of platform
announcements and route plans.

—A Task Allocation component that assigns tasks to platforms and receives and acts on plat-
form responses and situation changes that may affect the assignment.

—A Task Dispatcher that sends task assignments to sensor platforms and receives back from
those platforms messages accepting or rejecting tasks and providing information on the
progress of tasks toward completion.

—A Closed Loop Controller that responds to requests for direct control of an airborne plat-
form’s sensor by a user (a separate means of control not further discussed in this article; its
interaction with the rest of MTIP is similar to pilot override).

At present, MTIP’s semantic extractors recognize five types of information:

—Sensor Points of Interest (SPoI),
—Routes (i.e., paths),
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—AoI,
—Information Requests (Subscriptions/Queries),
—Geospatial Annotations (e.g., Keyhole Markup Language (KML)).

These types of information can be produced both directly as information requests through appro-
priate interfaces in TAK clients or indirectly as a side effect of other collaboration activities by
TAK users, such as assignment of responsibilities or discussion of tactics regarding a target.

From these sources of information, the semantic extractors produce three classes of sensor task-
ing requests compliant to a specified platform interface: “point” tasks focused on a discrete loca-
tion, route tasks, and polygonal area tasks. Each task request can also be annotated with additional
requirements information derived from the initial communication flow by the semantic extractors,
including the following properties:

Property Description

Name Textual description of the request for display
Priority Importance of the request (e.g., based on user identity)
Start Time Time by which the request must start execution
End Time Time by which the request must be completed
Resolution Desired ground resolution of the resultant image(s)
Sensor Mode Desired mode for multi-modal sensors
Radius The radius of interest surrounding the AoI
Revisit Time Desired repetition frequency of a recurring task

These task requests are passed to the Task Allocation component in order to be assigned to
particular platforms whose sensors can fulfill the requests. The task allocation component also
receives advisements of the position, status, and path plan (if available) of all the platforms via
advertisements from the platforms themselves. With this information and the current state of task
allocation, the task allocation component determines which tasks will be assigned to which plat-
forms (as elaborated in Section 4): any given task might be assigned to one platform, multiple
platforms, or even no platforms at all if none is available that can satisfy the task. Task requests
are then dispatched to platforms whose operators decide whether and how to carry them out, re-
turning information to the task allocation component about whether they accept or reject requests
they have been given, when tasks will be started and completed, and the expected quality of the
resultant product.1 With feedback from the platforms passed through the task dispatcher, the task
allocation component can then adjust its assignment in response to this feedback, canceling or
reassigning tasks as necessary.

Finally, as platforms carry out their assigned tasks, the sensor data that they produce is placed
under management by the Marti system, where it is ultimately delivered to users in accordance
with their subscriptions.

4 AGENT-BASED TASK ALLOCATION

We now turn our focus to the task allocation component in particular, the workflow for which is
illustrated in Figure 4: as MTIP receives information about available resources (airborne sensor

1Note that MTIP does not currently include any explicit representation of costs, payments, or other information about

incentives: this is because for the types of scenarios initially considered, these issues are typically handled separately at an

organizational level through mechanisms such as mutual aid agreements and directives to organization members. Likewise,

every platform is assumed to be “owned” by some organization, which has ultimate authority over its route and availability

for tasking; thus, MTIP does not currently attempt to plan routes or otherwise override the operation of a platform.
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Fig. 4. MTIP (re)allocation workflow: whenever any change happens to a platform, a task, or the condition
of a task at a platform, the task allocation system is triggered to run.

platforms) and tasks, it generates a task allocation plan that is passed to the dispatcher so that it
can inform the platforms that have been assigned tasks. Those platforms may choose to accept or
reject tasks (either automatically or via an operator query), and also inform the dispatcher about
the progress of a task, including when a task has failed or has been successfully completed. Task
allocation does not distinguish any “pre-planning” phase, but rather operates continuously on the
evolving situation and set of tasks: upon any receipt of rejection, failure, or success messages,
or upon receipt of new information about tasks and resources (e.g., the changing location of a
platform over time), the task allocation component is triggered to update its plan and any allo-
cation changes are sent to the platforms. The goal is to execute as many tasks as possible, and
to ensure that those tasks that are executed as redundantly as possible, within the constraints of
available platforms and possible rejection by operators (which may force tasks to be reassigned
elsewhere).

To implement task allocation, MTIP uses an agent-based approach, which we have chosen over
typical planning or optimization algorithms for three key reasons: First, with an appropriate choice
of algorithm, agent-based planning executes rapidly and its current state always provides a viable
(though possibly still improving) allocation plan, which means that it can be safely used in real-
time situations with strict time constraints. The cost of this speed is that task allocations will
generally be somewhat sub-optimal (possibly including some tasks being unable to be served at
all), though this need not be a significant cost (as will be shown in Section 6).

Second, our agent-based approach is also well-suited for rapid dynamic replanning, which in
MTIP is triggered by runtime monitoring of execution in response to changes in tasks, priorities,
platform routes, and availability of platform sensors. With an agent-based approach, replanning
need not begin from scratch, but can be implemented simply by modifying the agent represen-
tation and allowing the agents to continue interacting. Third, although currently all agents are
located within a single server, the agent-based approach provides a natural path toward further
decentralization whereby platform agents and nearby task agents are proxied to particular plat-
form agents or mirrored and synchronized across multiple platforms. Such distribution of agents
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Fig. 5. In MTIP’s agent-based task allocation, agents for current platforms (light blue) and projections
(translucent blue) along the platform’s anticipated trajectory communicate (purple arrows) with task agents
(red) within line-of-sight and sensor range limitations to determine which tasks will be assigned to which
platforms and on which segments of their anticipated route.

would then enable platform clients to dynamically reallocate tasks amongst themselves, even when
communication with the task allocator is limited or unavailable, yet still allow fast and efficient
planning under normal communication conditions.

4.1 Agent-Based Representation

The MTIP agent-based task allocation mechanism uses two classes of interacting agents: platform
agents and task agents (Figure 5). For each airborne sensor resource,2 an agent is created for its
current position along with a set of projected agents at intervals of a parametrically specified
resolution along its anticipated future trajectory (similar to the polyagents approach presented
in Parunak and Brueckner (2007)). Likewise, one or more agents is created for each task: point tasks
and other tasks with small extent in space and time are represented by a single agent; tasks with
larger extent can be broken up into intervals (routes) or tiles (areas and circles) at a parametrically
specified resolution.

A bipartite network between tasks and platform agents is then formed by creating an edge be-
tween each task agent and every current or projected platform agent that could plausibly carry
out that task. This is determined by sensor range (e.g., close enough to achieve a specified camera
resolution) and by line of sight, as computed from the planetary horizon and GIS terrain data—in
particular, our implementation accomplishes this with the aid of NASA’s WorldWind GIS envi-
ronment (Bel et al. 2007). The agents then communicate with one another along the edges of the
bipartite network in order to determine which tasks will be allocated to which platforms and on
which segments of their anticipated route.

2The work presented in this article assumes one sensor per platform: this can be readily generalized to multiple sensors

per platform by the use of multiple agents, one per sensor, which share the trajectory of their joint platform.
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Each platform agent and projected agent is responsible for computing the sensor tasks that it
is best equipped to perform. Finally, the collection of individual agents’ decisions produces an
overall task allocation for the whole system, i.e., a mapping between resources and tasks. Note
that the cardinality of resources and tasks in a task allocation is many-to-many, where a single
platform agent may be assigned many tasks and a single task may be assigned to multiple platform
agents.

4.2 Stable Task Allocation Algorithm

For actually allocating tasks to platforms and adjusting those allocations as the situation changes,
MTIP must balance the concerns of efficiency and stability. On the one hand, it is obviously
important to assign tasks in an efficient and timely manner, in order to ensure the coverage of as
many targets as possible by assigning each task to the best set of platforms available to cover it
at the earliest and best opportunities. On the other hand, reassigning tasks to different platforms
adds its own costs and inefficiencies in the form of additional network traffic, increased risk to
the mission (that opportunities will be lost during reassignment or that re-assignment will fail),
and additional cognitive load for the platform operator.

We have thus developed a stable task allocation algorithm that balances between these two
concerns.3 The basic idea behind our algorithm is that it acts as a negotiation between task agents
and platform agents, in which each tries to improve its current situation. Each platform agent
considers its set of neighboring task agents and chooses whether to send a coverage proposal
to one (possibly dropping a currently covered task in order to do so, if the potential gain is big
enough); task agents, in turn, consider their set of incoming proposals and choose which is the
best option to accept. Iterating this process eventually produces a stable allocation in which no
more proposals are being made, as we prove below.

Adaptation is done the same way as initial planning: as this agent-based algorithm is fairly fast
to execute, task allocations are adjusted simply by adjusting the situation model (e.g., updating
airborne platform positions, adding tasks, changing task position or priority), at which point the
platform agents may choose to begin making new proposals, adjusting the allocation as necessary
to match the changing situation. Inefficient reassignments are controlled by inclusion of state
projection into the proposal process: in particular, when considering whether to drop a currently
covered task in order to make a new proposal, the proposed task is compared as it would be
ranked if accepted, rather than in its current state.

Figures 6 and 7 show detailed pseudocode for our algorithm, the first for platform agents, the
second for task agents (currently in MTIP, the code is implemented in a mixture of Java and the
Protelis aggregate programming framework (Pianini et al. 2015; Beal et al. 2015)).

In this algorithm, each device tracks two state variables—one for the current assignment and
one for proposed changes—plus information on the platform or task it represents. In particular,
platform agents use variable assignment to track the set of tasks they are currently assigned and
proposal as a slot that can hold one proposal of a pair [platform, task] proposing adding a
task to its assignment. Complementarily, task agents use variable assignedBy to track the set of
platform agents (current or virtual) assigned to execute the task, and acceptedProposal as a slot
to report a proposal from a platform that the agent wishes to accept.

Agents execute in rounds: in this case, we consider synchronous execution, first all platform
agents and then all task agents, though the synchrony is not necessary. In each round, platform
agents begin by gathering information from their task agent neighbors: how many platform agents

3Our prior work in Beal et al. (2016a) and Beal et al. (2016b) used a naive algorithm that could produce unstable allocations

in certain situations.
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Fig. 6. Pseudocode for MTIP platform agents.

cover each task and whether their current proposal (if they have one) has been accepted. When
a proposal is accepted, the platform agent adds it to its assignment. The platform agent then
goes on to adjust its assignment and proposal variables, based on the updated situation. First, it
filters the set of neighboring tasks to remove any “invalid” tasks that cannot be serviced from this
platform, e.g., because they require sensors that are not available or have been rejected by the
platform’s pilot. If any tasks in its assignment are no longer valid neighbors (e.g., having been
rejected or left line-of-sight), those tasks are removed.

In order to determine which tasks should be serviced within the limited budget of sensor time
available, tasks are sorted by a metric M (CT , PT ,UT ) that ranks each task in three ways:

(1) Number of covering platforms CT : a task with less platforms covering it will always be
assigned before a task with more platforms covering it.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 6. Publication date: April 2018.
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Fig. 7. Pseudocode for MTIP sensor task agents.

(2) Task priority PT : more important tasks (indicated by smaller numerical priority) are served
before less important tasks.

(3) Arbitrary unique identifierUT : ties are broken stably with a task unique identifier so that
they will be broken the same way from round to round.

In other words, the system considers it more important to have one platform cover a low-
importance task than to put redundant coverage on a high-important task; and for tasks that have
equal redundancy and importance, the system just wants to keep a stable order on which tasks
are preferred.

In order to provide monotonicity in decision making and to ensure stability across the collection
of agents, only the one minimally ranked candidate task (if any) is considered for addition at any
time, and it is evaluated as though its coverage is one higher than actually observed, i.e., as it
will appear if the proposal is accepted. Evaluating a task as it will appear when accepted means
that if accepting a task causes another task currently assigned to be dropped, then an agent will
have no reason to reverse that decision. The task agent determines where this task would fall
in the current assignment and if there is sufficient time budget to include it (where the estimated
time to complete the task is determined as a function of task and sensor properties). If there is
sufficient time available in the budget, the available budget is reduced accordingly and a pair
of [platform,task] is placed into proposal to see if the task agent will accept it. Finally,
the assignment is compared against the (possibly reduced) budget, which may result in the
worst-ranked current tasks being dropped for lack of available sensor time.

Task agents run a complementary algorithm that is simpler because there is no constraint on
the number of platform agents that can redundantly cover a given task. In each round, task agents
begin by gathering information from their platform agent neighbors: which platform agents cur-
rently have the task in their assignment (updating assignedBy) and the current set of proposals
to cover this task. If there are any such proposals, the agent then sorts them by an arbitrary
unique identifier in order to stably break ties in choosing which proposal to accept.

The algorithm is executed until it converges or until a set number of rounds or timeouts have
elapsed, at which point any changes to the set of task assignments is dispatched to platform
clients to allow them to update their execution plans. When the situation is updated, the algorithm
executes again, adjusting the distribution as necessary within the constraints of the algorithm.
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Note that we are not asserting optimality for this algorithm, but rather its sufficiency to pro-
duce fast and effective task allocation by selecting one of the many reasonable points of balance
between adaptivity and stability. We prove its balance between adaptivity and stability by proving
that this algorithm is self-stabilizing (Schneider 1993; Dolev 2000), meaning that when run, start-
ing from any arbitrary initial state or perturbation, it always converges to a correct state—here,
defined as obtaining a task assignment that can be executed and that no agent wishes to change.

Theorem 1. The MTIP task allocation algorithm is self-stabilizing in within O (T · DT ) rounds,

where T is the number of tasks and DT is the maximum degree of any task agent, i.e., the maximum

number of neighbors for any task agent.

Proof. Without loss of generality, we assume a connected network of agents: in the case of
a disconnected network, each connected component will resolve independently according to the
same logic. We also assume, without loss of generality, that every task can be executed within the
planning interval, meaning it is possible to assign.

Consider starting the algorithm from an arbitrary, possibly invalid state. In the first round, all
invalid tasks are removed from platform agent assignment variables, and proposal variables be-
come either empty or filled with a potentially valid proposal. Subsequently, in the second half of the
first round, all invalid platforms are removed from task agent assignedBy variables and
acceptedProposal variables become either empty or filled with a potentially valid proposal.
Thereafter, we need only show that the algorithm converges to a stable assignment.

To show this, let us create an “assignment quality metric” Q (T1,T2, . . . ) over the whole set of
tasks based on the platform agent metric, M (CT , PT ,UT ). Tasks are sorted by PT and UT , so that
T1 is the task with the lowest [PT ,UT ],T2 the second-lowest, etc., and Q (T1,T2, . . . ) is equal to the
vector [CT1 ,CT2 , . . . ]. Any two sets of platform agent assignment values, then, can be compared
lexicographically to determine which is better, based on giving more coverage to more important
tasks.

Consider, first, the case in which all platform agents make proposals that do not cause them to
drop anything from their current assignments. Given a set of such proposals, the quality metric
Q is guaranteed to increase within one round: a task agent presented with a set of proposals will
always accept one of them, and such an accepted proposal will be added to a platform agent’s
assignment in the next round. Thus, CTi

will increase for at least one task (this minimum occurs
if all platform agents propose to the same task agent). SinceCTi

increases monotonically, there are
no more than T · DT steps of monotonic increase possible before no proposals will be made and
the algorithm stabilizes.

Finally, we generalize to the case where a platform agent makes a proposal that causes it to
drop tasks from its current assignment. In this case, Q may drop temporarily, but is guaranteed to
eventually increase again, as every execution falls into one of three cases:

—The agent’s proposal is accepted: Q must increase after acceptance because the proposal
could not be made unless accepting it would increase coverage of a better-ranked task than
the tasks that were dropped.

—The agent’s proposal is not accepted, in which case each dropped task is eventually:
—not covered by the same agent because its budget is consumed by a better-ranked task,

increasing Q .
—proposed and accepted again by the same agent: a task that was dropped is a task that

once fit in the budget, so the budget is guaranteed to be able to accommodate it unless
a better-ranked task is assigned. This neutral state still implies to an increase in Q : if
this platform agent’s proposal was not accepted by the task agent it was proposed to,
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Fig. 8. The San Francisco disaster response scenario considers eight classes of critical infrastructure: for
each class of critical infrastructure, we use a publicly available GIS dataset for survey targets and specify a
manually-planned set of UAV routes to provide coverage of all of the targets in that class.

that means the task agent accepted some other platform agent’s proposal instead, which
must lead to an increased Q .

In all cases, we are again guaranteed a monotonic increase inQ associated with each round of pro-
posals, though the time at which the increase is able to actually be observed may be deferred. �

5 SENSOR SHARING POTENTIAL

In order to validate the MTIP sensor-sharing concept and to test our system implementation, we
created a simulation of a disaster response scenario using publicly available GIS data about critical
infrastructure.4 Evaluating this scenario, we find that there is a high potential for sensor sharing
between different classes of infrastructure, providing evidence in support of the general sensor-
sharing concept. We further find that our MTIP architecture implementation produces fast and
effective task allocations in this scenario, as expected.

5.1 San Francisco Disaster Response Scenario

For evaluation of MTIP, we consider a scenario in which a major earthquake has just hit the San
Francisco Bay area and a number of different disaster response teams are attempting to assess
damage with UAVs, prefatory to preparing a response.

In particular, we consider eight classes of critical infrastructure, as listed in Figure 8. Given typ-
ical organization structures and the specialization needed to deal with managing different classes
of infrastructure, it is reasonable to assume that each class of critical infrastructure will have its
own dedicated response team or teams. Thus, for instance, a disaster response team evaluating
the integrity of dams will likely be different personnel in a different organization than one that is
attempting to ensure that the wireless infrastructure on cell towers is operational.

For our scenario to have realistic complexity and distribution of survey targets, we populate
the set of survey targets for each class of infrastructure from publicly available GIS datasets, fil-
tered to consider only locations in the range latitude 37.0° to 38.5° and longitude−123.0° to−121.0°
(roughly, North/South from Santa Cruz to Sonoma County and inland through the Sacramento and
San Joaquin Valleys). As these tasks are assumed to be for an initial assessment, all are assigned
the same priority, mode, and resolution requirements, and have no specific timing requirements.
Furthermore, since the purpose of our test is to investigate the efficacy of cooperative task alloca-
tion and not the user interface, in our experiments, we supply this survey target information as

4The validation of sensor-sharing presented in this article differs from that in Beal et al. (2016a) in that we have corrected

a minor bug in line-of-sight calculations from GIS data, making visibility slightly more strict, and UAV routes have been

adjusted slightly in compensation in order to maintain the stated preconditions.
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Fig. 9. Set of all 666 critical infrastructure survey targets in our scenario, indicated by standard emergency
management “point of interest” icons or polygonal areas.

explicit KML survey target lists, rather than implicitly through other TAK interfaces. A summary
of all eight classes of critical infrastructure survey targets is shown in Figure 9.

For each class of critical infrastructure, we assumed one of the survey targets is the operating
base for a disaster response team and manually planned a set survey route for 1-3 UAVs from that
base to cover the rest of the survey targets in the class, with the number of routes depending on the
number and geographical dispersion of targets to be surveyed. Manual planning was carried out for
each infrastructure class independently, on a map showing only survey targets and UAV routes for
that infrastructure class. The preferred altitude planned for surveys is 500 meters, but can reach as
high as a maximum of 1,500 meters as the UAVs pass over the various coastal mountain ranges. Fig-
ure 10 shows the set of all 14 UAV routes, with each color indicating a different infrastructure class,
while Figure 11 shows an example of how UAVs cover a set of infrastructure, in the form of the sin-
gle UAV route planned for surveying the 14 critical infrastructure power plants. Hereafter, when we
refer to a “set of UAVs,” it means the group of UAVs associated with a particular infrastructure class.

Notice that the routes are strongly affected by infrastructure class. Some of the UAV routes are
relatively smooth and simple, such as the UAV routes for airports (orange lines in Figure 10), which
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Fig. 10. Set of all 14 UAV routes, with each color indicating a different infrastructure class and air asset icons
indicating class bases.

tend to be in flat and unobstructed areas visible from far away. Others, such as the UAV routes for
dams (blue lines in Figure 10), are much more intricate, since many dams are deep in mountainous
valleys and can, thus, only be seen from certain perspectives.

For survey UAVs, we chose to consider the Boeing ScanEagle, a small high-endurance UAV with
an approximately 3-meter wingspan and 20kg mass, used by a number of military and civilian
organizations around the world. Based on its published specifications, we assume a flight speed of
40m/s, a 6,000 meter operating ceiling, and up to 24 hours endurance (though the planned survey
routes of our scenario are all less than four hours). Standard equipment options for ScanEagles in-
clude a high-resolution imager with up to 170x zoom, so we also assume an effective visual survey
range of up to 20 kilometers for initial damage assessment.

For planning purposes the survey routes are quantized into projections at intervals of 5 minutes
between projections (i.e., for UAV locations 12km apart along the planned route). Finally, each
UAV is assumed to be able to adequately survey one target every 20 seconds: with a three site per
minute sensor, this implies a maximum of 15 tasks per planning location.

All told, the set of planned survey routes spans nearly 500 planning locations, with the average
mission planned to survey approximately 50 targets over a period of approximately two and a half
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Fig. 11. UAV route example, of a route for a single UAV planned for surveying the set of 14 power plants in our
collection of critical infrastructure sites. UAV route and positions are blue, with the base position indicated
by a standard airborne asset icon and projected positions indicated by translucent icons, while survey targets
are red emergency management “point of interest” icons.

hours. Even for the densest planned route, surveying dams, the mean number of targets per plan-
ning location is only 2.81, meaning that under these conditions, most time is indeed spent in transit
rather than on mission execution, and that there is ample opportunity for sensor sharing.

This is, of course, dependent on our assumptions: slower surveys or faster platforms will re-
duce the opportunity for sharing, and differences in the number or distribution of targets will
impact sharing opportunities as well. These numbers, however, are drawn from real GIS data and
UAV specifications. Notably, we have intentionally chosen a region with a high degree of terrain
and settlement heterogeneity, including dense urban environments, suburban and exurban sprawl,
agricultural lands, coastline, and mountainous wilderness. Likewise, the infrastructure sets we
have chosen are highly heterogeneous in both density and spatial distribution. We thus argue that
it is reasonable to expect qualitatively similar sparseness to be the case for many real-world de-
ployments, and that good performance in our presented scenario indicates that we should expect
good performance in such real-world deployments as well.
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5.2 Potential for Sensor Sharing

We begin by assessing the theoretical potential for sensor sharing across different organizations,
regardless of our particular implementation of this capability in the MTIP platform. The key hy-
pothesis of MTIP is that commonalities in the physical and human geographical environment are
likely to mean that an aerial platform route planned for one set of sensor tasks will likely pass
close to other classes of sensor tasks as well. Critical infrastructure, for example, is not placed ar-
bitrarily, but tends to be highly constrained by the distribution of population and major physical
features such as rivers and mountains. In our scenario, we would thus expect that any given set
of UAVs is likely to have good visibility on many of the survey targets for other classes of infras-
tructure, despite being planned independently. This is particularly likely to be true in the case of
UAV routes that have been planned for the more numerous and pervasive classes of infrastructure:
Figure 12, for example, shows that between them, the three UAV routes planned for covering cell
phone towers also covers all airports and power plants.

To evaluate this hypothesis, we ran two experiments in which we ran the MTIP system with
no constraints on the number of targets that could be covered for a given route segment. In this
configuration, every survey target is assigned to every route segment from which it is visible and
within sensor range, thereby showing the maximum potential for sensor sharing.

For the first test, we ran the planned UAV routes for each class of infrastructure individually
against the survey targets of each class of infrastructure. Figure 13(a) shows the fraction of sur-
vey targets in each infrastructure class that can be observed for each of the 64 pairings. On the
diagonal, of course, every set of UAVs perfectly covers the infrastructure class for which its routes
were planned. UAVs planned to cover highly dispersed classes of infrastructure, such as cell phone
towers and fire departments, cover most other infrastructure classes quite well. Even the most
small and geographically constrained classes of infrastructure, however, such as power plants and
military installations, turn out to provide coverage of a fairly high proportion of most other classes
of infrastructure.

Complementarily, for the second test we ran a “leave one out” scenario in which we ran the
survey targets for each infrastructure class against the set of planned UAV routes for all other
classes of infrastructure, showing how well an infrastructure class might potentially be covered
by relying entirely on sensor sharing from the UAVs of other teams. Figure 13(b) shows the fraction
of survey targets in each infrastructure class that can be observed by the UAV routes planned for
the other classes. Here we find that 98% of all targets are covered, with every class of survey targets
better than 90% covered, and, in fact, only three not 100% covered. The targets that are not covered
are one cell tower, nine dams, and four fire stations, nearly all of which are in isolated mountain
or coastal valleys.

These experiments, thus, indicate that the MTIP sensor sharing concept is indeed likely to be
valid and of significant use in real-world tasks such as disaster response, in which there is signifi-
cant geographical correlation in the likely interests of different sensor users.

6 EFFICACY AND ADAPTATION OF MTIP SENSOR SHARING

Having established that most targets can potentially be covered by multiple sets of UAVs, we now
evaluate the efficacy of our MTIP implementation in allocating survey targets to UAVs with con-
strained time resources and in adapting that allocation over time.5 First, we evaluate the efficacy
of MTIP when platforms follow their planned flight paths, thus requiring no adaptation over the

5The experimental results presented in this article differ from those in Beal et al. (2016a) and Beal et al. (2016b) in three

ways: line-of-sight calculations and UAV routes are adjusted as described in the previous section, we use the algorithm

presented in Section 4.2, and we gather additional data and perform additional analyses.
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Fig. 12. A shared geographical environment makes it likely that UAVs planned for one task will provide good
coverage for others, as well: for example, UAVs tasked to survey cell towers in the San Francisco area also
cover all of the airports and power plants. The planned UAV path is shown as a blue line with blue air-asset
tactical symbols for UAV positions (solid for current position, translucent for projected future positions),
survey targets are red, and magenta lines show line-of-sight relations between UAV positions and survey
targets.

course of a mission. Following this, we evaluate the ability of MTIP to use sensor-sharing to ef-
fectively adapt to changing circumstances by having simulated platforms execute missions in real
time against the running system, with various degrees of unpredicted divergence from each plat-
form’s initial planned flight route.

6.1 Sensor Sharing with Predictable Flight Paths

For our first set of experiments, we run the full MTIP system in an emulated network environment,
in which each UAV is represented by a dummy process implementing a simplified version of a Marti
platform client, and with the previously stated limit of 15 survey targets per UAV planning location.
Each simulated UAV launches a server that receives and responds to task allocation messages
following the MTIP protocol, with each UAV accepting all tasks that it is sent by MTIP.
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Fig. 13. Unconstrained task assignment shows sensor sharing potential (a) for individual sets of UAVs and
classes of survey targets, and (b) for a class of targets to be covered by some UAV from any other class.

We evaluate both the efficacy and scalability of the system through two tests with randomly
selected subsets of the system. For the first test, we randomly select u sets of UAVs and execute
MTIP to plan for surveying all eight sets of critical infrastructure, rangingu from 1 to 8 and running
10 trials for each condition. The second test fixes the number of randomly selected sets of UAVs to
u = 3 and executes MTIP to plan for surveying t randomly selected sets of survey targets, ranging
t from 1 to 8 and running 10 trials for each condition. The UAVs are then assumed to faithfully
execute the plans they have been assigned, and the result analyzed to determine how well MTIP
can realize the theoretical potential for sensor sharing under ideal conditions.
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Fig. 14. Performance of MTIP sensor sharing with respect to variable numbers of UAVs (u) or survey targets
(t ): (a) even with few UAVs and many targets, the vast majority of targets are covered by at least one UAV, and
(b) most targets receive coverage from multiple UAVs. All graphs show the mean over 10 trials, ±1 standard
deviation.

Figure 14 summarizes the results of these two experiments. Figure 14(a) shows that MTIP effec-
tively implements sensor sharing even with many consumers and few airborne resources: just two
sets of UAVs is enough to reliably cover the vast majority of survey targets and five UAV sets are
enough to reliably cover all but a few particularly difficult to see survey targets. Complementarily,
with a fixed number of sets of UAVs, performance degrades by only a small amount as the most
densely populated areas begin to saturate UAV sensor sharing capacity. Indeed, as Figure 14(b)
shows, there is enough excess sensor capacity to allow most targets to be surveyed by multiple
UAVs. This indicates that one of the ways that we can expect mission resilience to be improved
is by “backing up” UAVs with spare sensor capacity on other UAVs that fly nearby routes. This
conclusion is reinforced by examining the distribution of multiple coverage with respect to the
number of UAVs, as shown in Figure 15: here, we find that the number of UAVs covering each tar-
get is distributed in a remarkably smooth and balanced manner, indicating that the mean UAVs per
target does indeed indicate a high potential for covering most individual targets multiple times.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 6. Publication date: April 2018.



6:22 J. Beal et al.

Fig. 15. The mean distribution of the number of UAVs covering each target over 10 trials with varying number
of UAVs u. The color indicates the number of sets of UAVs u, ranging in hue from 1 (yellow) to 8 (red).

The time required for our agent-based system to achieve these results is reasonable. Figure 16
shows the time required for MTIP to make and dispatch allocation plans for these complex scenar-
ios on a small portable COTS machine (MacBook Air with 1.7GHz Intel Core i7 and 8GB RAM).
We find that time scales approximately linearly with both the number of UAVs and the number of
targets, remaining quite reasonable, even for cases comprising more than 1,000 interacting agents.
Note also that in the current prototype implementation, a significant majority of this time is spent
in computation of terrain intersections via a fairly simple and unoptimized method and in dis-
patching thousands of assignments of survey targets to UAVs using a separate HTTP session for
each assignment. There is, thus, much room for improvement to enable even larger-scale sensor
sharing.

6.2 Adaptation During Mission Execution

In order to test the behavior of MTIP in a dynamically evolving mission environment, we simulated
each UAV as an independent process, running in real-time with its own set of threads independent
of the operation of the MTIP system. Since the UAV imagers are assumed to take 20 seconds to
effectively survey a site, UAV operations are simulated in 20 second steps. At each step the UAV
moves 20 seconds (800 meters) along its flight path, sends its new position to MTIP (as a standard
Cursor on Target (CoT) packet), and attempts to select a task site for imaging. From its list of
assigned tasks, the UAV finds the set of tasks that are both close enough for imaging (less than
20km from the UAV) and within line of sight (i.e., not blocked by terrain). If any of these task
sites has not yet been imaged, one of the non-imaged task sites is selected arbitrarily for imaging.
Otherwise, the task site that has been imaged the fewest times is selected for additional imaging
(again breaking ties arbitrarily), and if no task sites are nearby and visible, then the sensor is idle
for that timestep.
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Fig. 16. The time required for MTIP to make and dispatch allocation plans scales approximately linearly
with both the number of UAVs and the number of targets.

In order both to further stress the system in our experiments and to make their running time
tractable, however, we actually run most of each mission at a greatly accelerated rate. For each
simulation, we first run the system for 120 seconds in real time in order to allow for MTIP initial-
ization, the first round of planning, and assignment dispatch. Thereafter, we shift the simulated
platforms to run at a 100:1 rate, taking a 20-second simulated step every 200 milliseconds of real
time.

A dynamic environment of adaptation challenges is created by random deletion of waypoints
from each UAV’s planned route: the route to be flown is created by taking the planned route and
giving each waypoint an independent probability of being deleted d (except the first and last way-
points at the base where the UAV takes off and lands). An example of random waypoint deletion
is shown in Figure 17: note that the change of flight plan leaves a number of tasks unable to be
completed. Random waypoint deletions thus create a situation similar to what might happen if
UAV operators are receiving emergency requests that lead them to skip planned survey sites and
instead send their UAVs directly to sites that had been scheduled for later observation.

We evaluate the adaptivity of the MTIP system by means of two experiments. In the first ex-
periment, we evaluate the impact of various levels of dynamism by varying the rate of deletion
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Fig. 17. An example of planned path vs. adaptation challenge path generated by random waypoint deletion:
here, a planned UAV path (light blue) to survey hospital infrastructure (red) is subjected to 50% random
waypoint deletion. In this case, the route loses 5 of its 8 non-terminal waypoints, causing both of its Eastward
excursions to be replaced with the truncated path segments shown in dark blue and leaving 11 of 28 survey
tasks without coverage.

d from 0.0 to 0.7 in steps of 0.1, comparing the full scenario of eight infrastructure classes under
MTIP to the situation without MTIP, in which UAVs do not share their sensors but only image
their own originally assigned tasks. The second experiment evaluates the degree to which each
available sensor increases resilience by running MTIP with a fixed high rate of deletion d = 0.5
and selecting a random subset of n infrastructure classes (adding both UAVs and targets for each
class), varying n incrementally from 1 to 8. We run 20 trials for each condition in each experiment.

As anticipated, the results of these experiments show that MTIP greatly increases the resilience
of sensing missions. Figure 18 shows the effect of varying the fraction of waypoints deleted on the
fraction of tasks that are able to be successfully surveyed. With MTIP’s dynamic sensor sharing, the
fraction of tasks surveyed degrades much more slowly than when UAVs do not share their sensors.
Not until more than 30% of waypoints are deleted does the fraction surveyed show any significant
decrease, and even at the extreme value of 70% waypoint deletion, the system is consistently able
to survey around 90% of tasks. Performance is much less variable as well, another indicator of
reduced fragility.

Analysis of individual tests shows that this increased resilience comes from two different
sources: first, the fact that MTIP “backs up” the survey plan for each task with the spare capacity
of other UAVs whenever possible; and second, the fact that the fast agent-based planning system
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Fig. 18. MTIP dynamic sensor sharing allows coverage to be sustained well even when UAVs diverge greatly
from their anticipated routes.

Fig. 19. Ability to adapt in coverage of sensor tasks is significantly improved by sensor sharing, even between
a small number of UAVs. Results show adaptation to 50% deletion.

can rapidly reallocate when unexpected, UAV movements cause tasks to become unassigned or
create new observation opportunities, almost as soon as those movements are observed.

The results of our second experiment show that even a small amount of sensor sharing can
greatly improve resilience. Figure 19 shows that sharing between even just two sets of UAVs
eliminates approximately half of the observed degradation in task completion, as well as greatly
decreasing variability of performance. More sets of UAVs continue to incrementally improve the
situation, up until five sets of UAVs, at which point nearly all survey targets are covered and
additional sets of UAVs necessarily provide diminishing returns.

Rapid adaptation to changing circumstances, however, may come at a cost. Whenever a survey
task is allocated to a UAV or cancelled on that UAV, it must be informed of the change, adding
network traffic. Worse, if MTIP is in interactive mode, which queries platform operators to accept
or reject each task, every new allocation produces an operator query, which can be a significant
burden on the scarce resource of operator attention. Of particular concern is the possibility of
adaptation resulting in a “thrashing” condition, a well-known problem of replanning (e.g., Nebel
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Fig. 20. The number of cancellations per task is fairly low, but highest with no waypoint deletion, indicating
that some degree of thrashing in task allocation is still occurring.

and Koehler (1995) and Fox et al. (2006)) in which a system shifts rapidly between plans with
significantly different content but nearly equivalent utility (e.g., target coverage).

As noted in Section 4.2, however, the state projection included in the allocation algorithm is
intended to prevent such thrashing. To validate its performance, we quantify the adaptation cost
for MTIP by measuring two statistics: how frequently a survey task assignment is cancelled (which
is also linked to the rate at which tasks are reassigned), and the number of communication packets
per platform per simulated second (either assigning or canceling; both are typically less than
1KB). Cancellation rates for our two experiments are shown in Figure 20, while communication
rates are shown in Figure 21. As can be seen, cancellations and communications are both fairly
low, indicating that MTIP is unlikely to pose a significant burden on either network capacity or
operator attention.

Note, however, that the number of cancellations per task is highest when there is no waypoint
deletion: this indicates that there is some degree of thrashing still occurring in task allocation.
Inspection of individual cases indicates that this is primarily due to the quantization of planning
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Fig. 21. The rate of communication required per platform is fairly low, indicating that MTIP is unlikely to
pose a significant burden on either network capacity or operator attention.

projections: as platforms move along their routes, line-of-sight projections are affected for survey
targets that are either at the extremes of sensor range or in complex terrain such as mountain
valleys, causing these targets to switch back and forth between allocatable and not allocatable for
a particular platform. Thus, while plans are indeed stable for nearly all targets, a small population
of targets are being repeatedly allocated and cancelled. This does not appear, however, to reflect
any inherent problem with the current approach, only a shortcoming of the current implementa-
tion’s handling of line-of-sight relations; preliminary tests indicate it can be mitigated by adding
a short-term memory for line-of-sight relations to smooth out this side effect of quantization.

7 CONTRIBUTIONS

As we have demonstrated, there are significant opportunities to improve the overall efficacy of
airborne sensor platforms by making their sensors available for opportunistic use by other infor-
mation consumers. Our prototype MTIP system provides an implementation of such a framework,
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in the context of a publish-subscribe IMS, and we have validated both this system and the over-
all sensor sharing concept using an emulated scenario of disaster response in the San Francisco
area, demonstrating that we can produce effective plans for sensor sharing and quickly and effec-
tively adapt those plans on the fly in response to changing circumstances. While the present work
tests only this region, the region tested is highly heterogeneous, including the flat, rural lands of
the Sacramento and San Joaquin Valleys, extremely high population density urban areas near San
Francisco, and largely unpopulated regions of high topographic relief. Furthermore, spot inspec-
tion of some infrastructure classes in other areas indicates the observed patterns of overlap are
likely to hold elsewhere as well.

In future work, we aim to improve the performance of the MTIP allocation system by adding
short-term memory for line-of-sight calculations to mitigate for the quantization of planning, as
well as by optimizations in the handling of GIS data and redundant agent executions to improve
efficiency and scalability. Future work will also address generalizations of the core allocation sys-
tem, such as support for multi-sensor platforms, and repeating tasks. The agent-based architecture
can also be leveraged to decentralize MTIP, allowing nearby platforms to communicate and replan
even when their communication with the central dispatcher is limited or unavailable. We also aim
to transition MTIP toward deployment on various fielded airborne platforms (including validation
against other types of dynamism, such as changing tasks and platform loss), where its ability to
improve situational awareness through sensor-sharing can be put to real use and be validated in
the field. Finally, the MTIP approach of lightweight agent-based planning may be applicable to
other complex and dynamical environments as well, such as smart transportation systems or ser-
vices for mass public events, and these results may form a foundation on which to investigate such
further expansions. It may also be of interest to consider adaptation of the MTIP approach to other
architectures, such as incentive-driven sensing or non-publish-subscribe IMS.
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