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A key problem when coordinating the behaviour of spatially situated networks, like those typically found

in the Internet of Things (IoT), is adaptation to changes impacting network topology, density, and hetero-

geneity. Computational goals for such systems, however, are often dependent on geometric properties of the

continuous environment in which the devices are situated rather than the particulars of how devices happen

to be distributed through it. In this article, we identify a new property of distributed algorithms, eventual

consistency, which guarantees that computation converges to a final state that approximates a predictable

limit, based on the continuous environment, as the density and speed of devices increases. We then identify

a large class of programs that are eventually consistent, building on prior results on the field calculus com-

putational model (Beal et al. 2015; Viroli et al. 2015a) that identify a class of self-stabilizing programs. Finally,

we confirm through simulation of IoT application scenarios that eventually consistent programs from this

class can provide resilient behavior where programs that are only converging fail badly.
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1 INTRODUCTION

The advent of the Internet of Things (IoT) is bringing us a dramatic increase of density of computa-
tional devices deployed in our cities and living and working environments. This kind of network,
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which we refer to as a (spatially)situated network, poses novel engineering challenges, particularly
in the area of distributed coordination: Interactions encompass a large-scale system and often need
to be opportunistic, context-dependent, and based on physical proximity, which implies they must
be adaptive and resilient to nearly continual faults and changes in the network. Such networks are
also highly heterogeneous in distribution, due to the underlying heterogeneity in human activity
and environmental structure that drives the deployment of network devices. For example, a city
center is likely to host a high density of cars, traffic sensors, and smart signage, while a country
road has very few by comparison. Likewise, an office plaza may host many devices by day, few at
night, and massive numbers during sporting events or festivals.

Developing applications for such environments can be extremely difficult, as conventional de-
velopment methods require that a programmer simultaneously address networking protocols, co-
ordination mechanisms, and the application itself. This tends to lead to fragile applications, par-
ticularly due to the difficulty of adequate testing for resilience. Prior work formally addressing
resilience mostly considered the notion of self-stabilization (Dolev 2000) and its application to
programming situated networks (Viroli and Damiani 2014; Viroli et al. 2015a; Damiani and Viroli
2015), guaranteeing that a program eventually reaches a correct final state independent of initial
state and hence of transient changes. However, this notion does not address the sensitivity of the
final state to details of how devices are distributed in space and time.

In this article, we thus introduce a new property, eventual consistency, which guarantees that a
computation executed by an IoT network not only eventually converges but also that its values are
a good approximation of executing the computation on the continuous environment in which the
network is situated, thereby effectively giving a notion of “independence” of computation from
the underlying network details. We additionally identify sufficient conditions for eventual consis-
tency by considering the framework of aggregate programming (Beal et al. 2015), which factors
distributed systems development into several layers: Field calculus gives a universal computational
model that maps between aggregate-level computations and local interactions between individ-
ual devices to implement those computations (Damiani et al. 2016, 2015), systems of composable
“building block” operators implemented with field calculus constructs provide resilience and scala-
bility guarantees (Beal and Viroli 2014; Viroli et al. 2015a), and domain-general and domain-specific
APIs built using building block operators provide a programatic interface for construction of com-
plex networked services and applications (Beal and Viroli 2014; Viroli et al. 2015a). We thus follow
this framework to provide eventual consistency for spatially situated networks by means a specific
set of building blocks, whose arbitrary composition is proved to ensure eventual consistency of
any application built with those building blocks.

Following a brief review of related work in Section 2, we provide a formal model of continuum
computation and use this to define eventual consistency in Section 3. Section 4 identifies a subset of
the field calculus that provides eventual consistency. Finally, Section 5 demonstrates the breadth
of this sub-language and empirically confirms the value of eventual consistency in simulation of
IoT application scenarios, and Section 6 summarizes the contributions of this article and discusses
future work. Note that this article is an extended version of Beal et al. (2016): In this extended ver-
sion, we provide an in-depth discussion on eventual consistency, generalization to a much larger
class of eventually consistent programs (including wide sets of functional operators), and a full
proof of the eventual consistency of GPI-calculus, plus an extended empirical evaluation address-
ing networks with heterogeneous density as well as networks whose density changes over time.

2 RELATED WORK

A wide range of aggregate programming methods have been developed for engineering networks
of devices physically situated in space. A thorough review may be found in Beal et al. (2013),
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which identifies four main approaches to aggregate programming. First, a number of “bottom-up”
methods implement computational fields using only the local view, including the Hood sensor net-
work abstraction (Whitehouse et al. 2004), Butera’s “paintable computing” hardware model (Butera
2002), TOTA (Mamei and Zambonelli 2009), the chemical models in Viroli et al. (2015b), and
Meld (Ashley-Rollman et al. 2007).

Complementary to these bottom-up methods are three families of “top-down” approaches,
which specify tasks for aggregates and then rely on compilers or similar software to translate from
aggregate specifications into a set of individual local actions that can implement the desired aggre-
gate behavior. All of these tend to demonstrate significant resilience to changes in the distribution
and density of devices. One of these families of approaches focuses on the creation of geometric
and topological patterns, such as the geometric patterns of Origami Shape Language (Nagpal 2001),
topological networks of Growing Point Language (Coore 1999), Yamins’ universal patterns (Yamins
2007), or the self-healing geometries in Clement and Nagpal (2003) and Kondacs (2003).

A largely disjoint family of approaches focus instead on summarizing and streaming information
over regions of space and time. Early examples of this approach are TinyDB (Madden et al. 2002)
and Cougar (Yao and Gehrke 2002), which enable querying a sensor network by expressing a
high-level declarative query that is then automatically compiled into a set of low-level sensor
activities of data collection and aggregation; these have been followed by other methods offering
more complex functionalities (e.g., Newton and Welsh (2004) and Curino et al. (2005)).

Generalizing on both of these classes are a collection of general-purpose space-time computing
models. These include explicitly spatial parallel computing models, most notably StarLisp (Lasser
et al. 1988) and systolic computing (e.g., Engstrom and Cappello (1989) and Raimbault and Lavenier
(1993)), which use parallel shifting of data on a structured network. The MGS language (Giavitto
et al. 2002, 2005) takes a notable and different approach, evolving the shape of the manifolds on
which it executes. General purpose space-time computing models, and most particularly field cal-
culus (Damiani et al. 2016, 2015), have been the basis for a layered approach to building distributed
adaptive systems as presented in our previous work (Beal et al. 2015; Viroli et al. 2015a).

More generally, identifying robust (e.g., self-adapting or self-stabilizing) algorithms for dis-
tributed systems is a long investigated problem (Dolev 2000), which is part of the general challenge
of devising sound techniques for engineering self-organising applications. Several techniques can
be used, spanning game theory (e.g., Yen et al. (2016)), SMT-based automatic synthesis (e.g., Faghih
and Bonakdarpour (2015)), and order statistics (e.g., Faghih and Bonakdarpour (2015)).

Collective adaptive behaviour involving groups of computational entities spread in an envi-
ronment (physical or virtual) has also been the subject of deep study in the multi-agent systems
literature, where a huge variety of techniques and approaches are used: coordination artifacts of
various form Omicini et al. (2008), protocols (Kalia and Singh 2015)), social/organisational norms
(Artikis et al. 2009), commitments (Mallya and Singh 2007), swarm intelligence (Parunak et al.
2005), and teamwork (Lesser et al. 2004; Taylor et al. 2011)). The work in Viroli et al. (2015c) de-
fines a notion of aggregate plan as a space-time structure of “actions”: Since it is based on aggregate
programming, it is the approach where the results of this article are most readily applicable.

In this article, we are concerned in finding large sufficient conditions for resiliency, expressed in
terms of a whole language of resilient programs that can be constructively used to build systems.
To the best of our knowledge, however, the only works aiming at a proof of resilience for an en-
tire class of computational field algorithms are Damiani and Viroli (2015) and Viroli et al. (2015a),
which address self-stabilization. In particular, these works consider deterministic self-stabilization,
in which the system eventually reaches a stable state completely determined by the environment
(network topology and sensor values) whenever the environment does not change for sufficient
amount of time. As argued in Fernandez-Marquez et al. (2013), there is expected to be a whole
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catalogue of self-organization patterns susceptible to similar approaches. These prior works have
a large range of expressiveness but are unable to tie the properties they investigate to a continuous
environment or to consider similarity between networks with different topologies, more challeng-
ing properties that eventual consistency addresses.

As a starting point for addressing eventual consistency, then, a model for computation in space
is needed. There are a number of continuum computation models that might be considered, in-
cluding hybrid automata (Henzinger 1996) and continuous spatial automata (MacLennan 1990).
In this article, we follow the direction proposed in Abelson et al. (1999) and, more particularly,
its realization in Beal (2005) and Beal (2010), in which computation is seen as a field mapping of
a continuous region of space-time (namely, a manifold) to data values. This approach, we shall
see in detail later, fits naturally with the field calculus, as well as with the notion of computation
self-adapting to device distribution changes.

3 EVENTUAL CONSISTENCY

Self-stabilization is a well-established theoretical property of distributed algorithms (Dolev 2000):
Under the standard definition, a system self-stabilizes if it is guaranteed to converge from any
arbitrary initial state to some state with a defined set of “correct” properties (for technicalities of
the particular definition of self-stabilization referred to by this article, see Viroli et al. (2015a)). We
now introduce a new and closely related property, eventual consistency, that ties state to the space in
which the network is situated: Intuitively, a system is eventually consistent if the state it converges
to is set by the continuous environment rather that the particulars of how devices are distributed
through that environment. This model fits IoT scenarios well, since many computations are more
concerned with the environment in which devices are deployed rather than the particulars of
individual devices and can hence be naturally described in geometric terms, for example, distances,
regions, and information flow.

We will develop the concept of eventual consistency incrementally. First, we review how sit-
uated networks can be viewed as an approximation of a continuous environment, which then
forms a basis for both discrete and continuous models of space-time computation. We then use
these concepts to define eventual consistency and examine how this definition implies resilience
to perturbation in the density and arrangement of devices in a situated network. For additional
assistance to the reader, Figure 1 provides a table of key symbols.

3.1 Networks as Approximations of a Continuum

Many physically situated networks perform computations that can be naturally described in terms
of the physical space through which the devices comprising the network are distributed. In this
case, as observed in Beal (2005) and Beal (2010), a network can be viewed as a discrete approxima-
tion of the continuous physical space and programmed accordingly.

Under the continuous model developed in those articles, computation takes place on a Riemann-
ian manifoldM with both space and time dimensions. A manifold is a space that is locally Euclidean
but may have more complex structure over a longer range (e.g., the shape of a city’s streets or a
building’s interior). Riemannian manifolds also support familiar geometric constructs like angles,
lengths, curvature, integrals, and derivatives. This allows communication and mobility constraints
to be embedded in the manifold’s geometry, measuring distance through the manifold rather than
using absolute (e.g., latitude/longitude) coordinates. For example, the walkable spaces of a street
(e.g., Figure 2) form a Riemannian manifold in which the shortest distance between locations goes
along sidewalks, roads, and plazas rather than through the walls of buildings.

Communication in a continuous space may be modeled as a bound c on the speed at which
information can propagate. A standard set of concepts and terminology from relativistic physics
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Fig. 1. Key symbols used in the definition of eventual consistency.

Fig. 2. An IoT example in a street environment; the walkable spaces of the street form a manifold.

(e.g., Taylor and Wheeler (1992)) may then be borrowed to describe the space-time relations of a
manifold. To wit, a point m ∈ M is termed an “event,” denoting its interest as both a spatial and
temporal location, and the manifold may be partitioned with respect to m in space and time (see
Figure 3):

—events that information can go to or from at exactly c are simultaneous withm;
—the set of events that can be reached from m moving slower than c , denoted T + (m), the

time-like future ofm, while events whose information reachesm moving slower than c are
its time-like history T − (m);

—all other events, which cannot share information, because it would need to move faster
than c , have space-like separation fromm and no natural order.

Finally, we also define a spatial section SM , a distributed snapshot of state without a global notion
of time: formally, a spatial section is any set SM in which no event is in any other’s timelike future
or history, namely, such that T + (SM ) ∪T − (SM ) = M − SM .
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Fig. 3. Example of continuous space-time relations between six devices distributed along a street: Wireless

access points and meters are stationary, while the car moves steadily and the phone stops and starts twice.

In this model, a device d is represented with a one-dimensional timelike curve in the manifold,
analogous to the physics notion of a world-line. Devices thus can have a history in time but only
exist at one point in space at any given time. The mathematical analysis in this article makes the
simplifying assumptions that the manifold is finite in diameter and devices do not move, which
better fits the general framework of self-stabilization and convergence (in practice, the results we
provide typically also apply well to devices moving much more slowly than c).

Figure 3 depicts an IoT computing example of these concepts in terms of several devices dis-
tributed in one dimension along a city street. Each device is represented by a timelike trajectory
indicating its position over time: The access points and parking meters are stationary (vertical
lines) while the car moves steadily and the phone stops and starts twice. The event marked by the
phone on its trajectory (m1) is in the timelike future of the marked event on the orange meter’s
history (m2), meaning it can be affected by the meter’s state at that time. However, it is spacelike
separated from the marked event on the car’s history (m3), meaning it only has access to older
information about the car. Finally, the blue line marks one of many possible spatial section “snap-
shots” (SM ) that can separate all of space-time into a “strict future” and “strict past.”

3.2 Computations Across Space and Time

Standard event-based models of distributed computation (e.g., Lynch (1996)) cannot be applied to
continuous spaces, as any manifold contains an uncountably infinite number of events, and thus
the events of the computation cannot be placed in a countable sequence. Instead, computation on
manifolds may be defined in terms of fields, per Beal (2010), Beal et al. (2014), and Beal et al. (2013):

Definition 1 (Continuous Computational Field). A field is a function f : M → V that maps every
event m in a Riemannian manifold M to some data value in V, where V is the set of all possible
data values.

Discrete computational fields (e.g., actions taken by real devices in the execution of a distributed
algorithm) may be defined likewise, except that the domain is limited to a discrete subset of events
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Fig. 4. On the situated network in a street environment in Figure 2: A continuous computation of a temper-

ature threshold (b) is approximated by the discrete network of devices (c), producing the ϵ-approximation

shown in (d).

D ⊂ M . Note that defining discrete execution as a manifold subspace (rather than an abstract
graph) preserves the geometric relationship of network to environment.

For example, consider a situated network in a street environment such as is shown in Figure 2.
Two examples of continuous computational fields are shown in Figure 4(a): the top a real-valued
field of temperatures (shading blue to red from lowest to highest) and the bottom a Boolean-valued
field indicating where the temperature is greater than 20°C (green for true, orange for false).
Figure 4(b) shows examples of discrete fields: These fields also show temperature and compari-
son (using the same color scheme) but contain only the values located at individual devices in the
network rather than across the whole region of space.

A space-time computationC is a higher-order function mapping an input field to a correspond-
ing field of values:

Definition 2 (Space-Time Computation). Let FV be the set of fields with rangeV, a computationC
is a functionC : FV → FV, where the domain of the output field is always identical to the domain
of the input field.

In other words, a computation takes an evaluation environment field, whose domain defines
the scope over which the computation executes and whose values are all of the environmental
state that can affect its outcome (e.g., sensor readings). At every point of space and time in the
execution scope, some output value is produced. For example, Figures 4(a) and (b) show examples
of continuous and discrete computation, in which the field of temperatures is passed through a
function that compares to 20°C to compute a Boolean field that indicates the locations of higher
temperatures.

Such space-time computations can be specified by functional composition of a basis set of
operators:

Definition 3 (Space-Time Program). A space-time operator is a function o : FV × Fk
V
→ FV taking

an evaluation environment and zero or more additional fields as inputs and producing a field
as output. A space-time program is any functional composition of operator instances to form a
computation, such that the domains and ranges of the output are well defined for all possible
values of the inputs.

This is much like the definition of a computation, except that the domains of the fields may differ.
Note also that this includes recursive composition, for example, via lambda calculus, so programs
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are potentially universal, per Beal et al. (2014). Some further notes on technicalities: First, any
well-defined composition of operators is itself an operator; second, complete programs have no
inputs except the environment. Note, however, that any composition of operators that requires
inputs (e.g., function definitions) may be transformed into an equivalent program with no inputs,
in which these values are instead supplied by the environment and a special “no value” value is
adjoined for events in the domain of the environment but not the input.

For example, the space-time computation depicted in Figure 4 can be defined as a composi-
tion of three operators: one returning the field of environment temperatures, another returning a
constant-valued field of 20, and a third comparing its two inputs pointwise to find at which events
the value of the first input is greater than the value of the second.

Note that for clarity in describing programs, we will abuse terminology; in the context of a
program, a “field” is not actually the mathematical object itself, but the input or output of an
operator instance, which takes on a field value when evaluated in the context of an environment.

3.3 Relating Continuous and Discrete Computing

We can now consider what it means for the results of a situated network computation to be deter-
mined by its continuous environment. Our basic approach will be to define the “ideal” outcome of
a space-time program as its results when applied to a continuous environment and then compare
this with the results for a discrete network of devices situated in that same environment.

Note that we consider only causal computations, that is, those whose results only depend on
information from the past and present. This is not a significant restriction, since acausal compu-
tations, while well-defined, cannot generally be implemented, because they use information from
the future and so are not generally of interest when considering real-world systems. To be precise,
a computation C is causal when for any two fields f and f ′ with the same domain M , it is the

case that for every m ∈ M , if f and f ′ are equal on the closure of their time-like history T − (m),
then the outputs C ( f ) and C ( f ′) are also equal at m. See Beal (2010) for more information on the
subject of causal computations.

We can compare a continuous field to a corresponding discrete field by mapping the domain of
the continuous field to the values of the nearest points in the discrete field:

Definition 4 (ϵ-approximation). Let Dϵ ⊂ M be a discrete set such that every event m ∈ M is
within distance ϵ of some event in Dϵ . The ϵ-approximation of field f : Dϵ → V is a field mapping
every point in M to the value of f at the nearest point in Dϵ (choosing arbitrarily for equidistant
points).

An example is shown in Figure 4(c), which illustrates an ϵ-approximation of the fields of the
discrete computation in Figure 4(b) on the manifold of the environment illustrated in Figure 2.
Notice that this is a coarse approximation of the continuous computation in Figure 4(a). For this
example, it is readily apparent that the more devices there are, the more the ϵ-approximation would
look like the ideal continuous computation. This is the notion of field approximation:

Definition 5 (Field Approximation). A field f : M → V is approximated by a countable sequence
of ϵi -approximations fi over manifolds Mi , as ϵi → 0, if both the following hold:

lim
i→∞
|(M ∪Mi ) − (M ∩Mi ) | = 0

lim
i→∞

∫
M∩Mi

μV ( f , fi ) = 0,

where μV is a metric function over V.
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In other words, a sequence of increasingly fine discrete sets approximates a continuous field
if both the manifolds and the values assigned over them by the fields tend toward identical. The
reason to use a sequence of potentially different manifolds Mi is because program branches can
create subspaces dynamically, and these necessarily depend on the details of approximation.

Two important technical notes about field approximation: First, note that the integral in the
second function is a Lebesgue integral (see, for example, Kestelman (1960)), since the more familiar
Riemann integral is not well suited for use on manifolds and is ill defined on many discontinuous
fields; for those unfamiliar with Lebesgue integrals, however, the intuitions of Riemann integration
should generally serve. Note also that any metric function may be used for μV, since the properties
of metric functions guarantee that the limit of the function can only go to zero when field values
become infinitesimally close or identical almost everywhere.

With this definition in hand, we can define a consistent program as one where field approxima-
tion of inputs implies field approximation of outputs:

Definition 6 (Consistent Program). Let P be a space-time program, e be an evaluation environ-
ment with domain M , and ei a countable sequence of ϵi -approximations that approximate field e .
Program P is consistent if P(ei ) approximates P(e ) for every ei and e .

For most programs involving communication, however, consistency cannot be guaranteed with-
out further specification of the communication model. This is because in many communication
models, even minor shifts in device position can lead to information moving at significantly dif-
ferent speeds. Regardless of the specifics of communication, however, a program that converges
to a steady state may be consistent after it converges:

Definition 7 (Eventually Consistent Program). Consider a causal program P evaluated on domain
M . Program P is eventually consistent if, for any evaluation environment e with a spatial section
SM such that the values of e do not change at any device in the timelike future T + (SM ), there is
always some spatial section S ′

M
such that P is consistent on the timelike future T + (S ′

M
).

In other words, if the inputs ever converge, then the outputs eventually converge as well and
are consistent thereafter. For example, the temperature program in Figure 4 is both consistent and
eventually consistent. A “gossip” algorithm that uses its output to compute whether any location
had seen a high temperature, however, would only be eventually consistent, since the speed that
gossip can propagate information can be affected by the particulars of discretization.

The value of eventual consistency is that it implies certain types of resilience. First, eventual
consistency implies that a computation is not particularly sensitive to precise locations of devices,
since the values must converge for all ei sequences. Second, results can only improve (asymptot-
ically) as the number of devices in the network increases. Third, combining location insensitivity
and improvement with density, eventually consistent computations should also typically be quite
tolerant of network heterogeneity. Furthermore, when a computation is not eventually consistent,
the manner in which it is not consistent is likely to reveal system vulnerabilities that need to be
considered even when a situated network is not expected to be particularly dense or fast changing.

For contrast, here is the a definition of self-stabilization, as adapted from Viroli et al. (2015a)
into this model:

Definition 8 (Self-Stabilizing Program). Consider a causal program P evaluated on domain M .
Program P is self-stabilizing if there is a function R : FV → FV from fields on spatial sections to
fields on spatial sections, such that for any evaluation environment e with a spatial section SM

where the values of e do not change at any device in the time-like future T + (SM ), there is always
some spatial section S ′

M
such that P is equal to R (e |SM ) on every spatial section in the timelike

future T + (S ′
M

)—where e |SM means the field e with its domain restricted to SM .
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In other words, if the inputs ever converge, then the outputs eventually converge to values
fixed by the final set of input values. This is different from eventual consistency in two ways:
First, self-stabilization is “memoryless,” considering only the final set of input values, and, second,
self-stabilization implies nothing about consistency across network structures.

In particular, note that eventual consistency does not necessarily imply self-stabilization, as the
value to which an eventually consistent system converges is still allowed to depend on the history
of values in its environment. The example just given of a gossip algorithm that computes whether
any location has ever seen a high temperature is one such program that is eventually consistent
but not self-stabilizing. The approach that we present in the next section for obtaining eventual
consistency, however, will ensure self-stabilization as well.

4 EVENTUALLY CONSISTENT LANGUAGE

Having established eventual consistency as a desirable property, we now provide a methodology
for the construction of systems with this property by identifying an expressive system of program-
ming constructs, such that any program comprised solely of such constructs is guaranteed to be
eventually consistent. Following a brief review of field calculus (the basis of our approach), we
analyze how field calculus programs that are not eventually consistent can have behavior that is
extremely sensitive to small changes in the arrangement of devices in space. Using this analysis,
we then identify a highly expressive restriction of the self-stabilizing sub-language of field calculus
that contains only eventually consistent programs, called GPI-calculus.

4.1 Field Calculus

Field calculus (Damiani et al. 2016, 2015) is a minimal universal language in which every expres-
sion specifies a space-time program, as defined in Section 3.2. That is, a field calculus program
takes a field specifying the evaluation environment as input and outputs a field of results. Impor-
tantly, field calculus is universal (meaning it can express any physically realizable computation),
small enough to be tractable to analyze formally, and can be applied to both continuous and dis-
crete fields (Beal et al. 2014), which means that it is a good framework for investigating eventual
consistency.

Field calculus programs are specified using the syntax in Figure 5(a): Each program is either a
literal l, defining a field that maps to the same data value everywhere (e.g., 3 is a field whose value
at every point is 3) or a composition of the following constructs:

—Built-in operators: A built-in operator (b e1 . . . en ) determines the value of its output field
at event m only from the values of the environment e and input fields e1, e2, . . . at m.
The built-in operators can range over any such functions, including addition, comparison,
sensors, actuators, and so on.

—Function definition and call: New functions can be defined Lisp-style with expressions of
the form (def f(x1 . . . xn ) e) and called with expressions of the form (f e1 . . . en ).

—Time evolution: Program state is initialized and changed over time by a “repeat” construct
(rep x w e), initializing x to a value w (supplied either by a variable or by a literal) and
updating (non-synchronously) by computing e against its prior value.

—Neighborhood values: At each event, expression (nbr e) constructs a sub-field mapping
neighboring devices to their most recent value of e. These sub-fields can then be manip-
ulated and summarized with built-in operators. For example, (min-hood (nbr e)) maps
each device to the minimum value of e amongst its neighbors (excluding itself) and to
infinity if there are no neighbors.
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Fig. 5. Field calculus (Damiani et al. 2016) is a minimal computational calculus that does not ensure eventual

consistency. GPI-calculus is a restriction to a sub-language of eventually consistent (and self-stabilizing)

programs.

—Domain restriction: (if e0 e1 e2) computes expressions in subspaces, preventing interfer-
ence between the two sub-computations: e1 is computed where Boolean e0 is true and e2

where it is false.

A field calculus program is then a set of function definitions followed by an expression to be
evaluated. Thus the example in Section 3.3 of an eventually consistent “gossip” algorithm that
computes whether any location has ever experienced a high temperature can be implemented:

Here, the gossip process is defined using def, with a combination of time evolution and neigh-
borhood value constructs. The program remembers if there has ever been a high value with the
Boolean field ever. This switches to true at an event in two cases, joined with built-in or: either
the input field value is true or else information arrives that some neighbor has switched to true:
(nbr ever) collects values from neighbors and any-hood returns true if its input has a true value
for any neighbor and false if all neighbors hold false or if there are no neighbors.

Because field calculus is universal, it can express any program, including non-resilient programs.
A sub-language was identified in Viroli et al. (2015a), however, where self-stabilization can be
guaranteed by using nbr and rep constructs only in three patterns, which may be thought of
roughly as spreading, folding, and bounded monotonic change and that cover a large number of
self-stabilizing algorithms. The consistent calculus we identify below further restricts this self-
stabilizing sub-language.
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4.2 From Consistency Failures to Fragility

Even if a function is self-stabilizing, it may not be eventually consistent. Let us then examine how
consistency failures emerge in field calculus. Three modes of consistency failure arise directly
from constructs that, while useful, can also be readily used to create programs that can never
converge to a well-defined behavior. First, recursion can create consistency failures, since there are
many ways to arrange a recursion that grows in depth with density and thus does not converge.
Second, interactions between neighboring devices can lead to consistency problems due to implicit
dependence on the distribution of devices: For example, a measurement that counts hops will
not converge if increasing density of devices leads to paths consisting of more small hops. State
constructs can also create programs that implicitly rely on the time between events, but the self-
stabilizing sublanguage in Viroli et al. (2015a) prevents this by means of the restricted patterns it
allows for use of state constructs. Following a similar strategy to ensure eventual consistency, we
will thus prohibit recursion and restrict use of neighbor and state constructs to a pattern that can
be guaranteed safe.

More subtlely, many computations converge but are extremely sensitive to individual devices.
A good example is one of the most widely used self-stabilizing distributed algorithms, finding the
distance to a source region:

This finds distance by incremental application of the triangle inequality, using built-in func-
tions +, for pointwise addition, and mux, which multiplexes between its second and third inputs,
returning the second where the first is true and the third elsewhere.

Although distance-to always converges to an approximable output, programs incorporating
it may not be eventually consistent, because the value of the output may be greatly affected by
individual points in the source field. Consider, for example, a source field where only one point
is true: an ϵ-approximation containing that point has only finite values, while one without that
point has infinity everywhere. Thus, it is possible to construct sequences that do not converge,
because they alternate between including and not including the critical point.

Although this example may seem extreme, it is easy to accidentally create such critical depen-
dencies. For example, a simple bisecting boundary computation:

creates a field that is false except at an infinitely thin boundary of true values (Figure 6). Fed to
a program sensitive to such sets, such as distance-to, this can result in arbitrarily unpredictable
behavior from a distributed algorithm.

This is not a special case related to distance-to, but a deeper conflict for situated distributed
algorithms, between the discrete values commonly used in algorithms (e.g., Booleans, branches,
state machines) and the continuous space-time environment in which devices are embedded. In
particular, any non-trivial field with a discrete range cannot be continuous, meaning that it either
is itself not approximable or else contains some measure-zero boundary region that, if handled
badly, can generate unpredictable behavior (as in the bisector example). To handle such problems
without giving up either useful discrete constructs or the connection to continuous environments,
we must develop some means of dealing with the problems posed by boundaries.
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Fig. 6. Finding a bisector is fragile, because it is sensitive to device positions. For example, the set of bisecting

locations (green line) for two cars (blue stars) might or might not actually include any devices.

4.3 Restriction of Field Calculus: GPI-Calculus

We now further restrict field calculus to a sub-language of eventually consistent programs, which
we call GPI-calculus, whose syntax is shown in Figure 5(b). This sub-language is also self-
stabilizing, as it is also a restriction of the self-stabilizing sub-language of field calculus presented
in Viroli et al. (2015a). As we find eliminating every problematic program element to be too lim-
iting, this sub-language accepts boundary elements but dynamically marks them to contain their
effects. In particular:

—The possible literal data values are restricted to BooleansB (the prototypical discrete value
space) and real numbers R (the prototypical approximable continuous value space), plus
a unique value B denoting a possibly problematic boundary between value regions.1

—Built-in operators are restricted to the classes cf (continuous), df (discrete), s (selection),
d (discretization), and sense (sensing)—all described in detail below.

—if allows B as an additional value for its first input other than Boolean true and and false;
for those points mapping to B, the output also maps to B. Note that this does not actually
change semantics from field calculus, as it can be implemented via syntactic sugar on two
nested field calculus if statements.

—State and communication are only available indirectly through a new operator, GPI (de-
scribed below), which is a restriction of the spreading pattern in Viroli et al. (2015a).

—Recursion in any form is prohibited by the simple expedient of having the body of func-
tion definition Fi in the sequence of function definitions prohibited from referencing any
function Fj≥i .

Boundary-Aware Built-In Functions. The built-in operators in GPI-calculus are close relatives of
standard mathematical and sensor functions; the only difference is that they also interact with the
boundary value:

—cf is any strictly continuous mathematical function, extended to have output B if any
input is B. Examples include addition, multiplication, logarithm, and sine, as well as con-
struction of tuples and extraction of tuple values from a fixed index, which can be used to

1Note that a wide range of other types of literals, including integers, tuples, and lists, can be generated from these literals

and the built-in operators defined below. Note also that the issues of fragility would not be solved if we were to replace R

with more computationally tractable alternatives like rationals or finite-precision floating point numbers.
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implement data structures. Some simple functions are excluded, however, such as division,
which is discontinuous when the denominator is zero.

—df is any discrete mathematical function, that is, any function that takes only integers or
Booleans for inputs and returns integers or Booleans as output, extended to have output
B if any input is B. Examples include integer arithmetic and Boolean logic operations.

—s is any “selection” function that takes an integer or Boolean as its first argument and uses
its value to select between the values of other inputs, returningB when the first argument
is B. An example of s is the piecewise multiplexer function mux: where its first input is
true, it returns the second input; where it is false, it returns the third input; where it is B,
it returns B.

—d is any single-input “discretization” function that maps non-intersecting open intervals
of the real numbers to constant integers or Boolean values (each open interval may map
to a different constant) and maps every value not included in those open sets to B. An
example of d is the sign function, which maps all positive numbers to true, all negative
numbers to false, and zero and B to B (note that this sign function can be composed with
subtraction to create comparators). Another example is rounding, with the “halves” (1/2,
3/2, 5/2, etc.) mapping to B, which can turn real numbers into integers.

—(sensek ) returns the kth value in the environment state (assumed to be a tuple or B),
where k is the positive integer literal given as its input, or else B for any point where the
environment state is B.

The GPI Operator. Key to distributed computation in the restricted language is the new operator
GPI, a “gradient-following path integral,” which we define as a field calculus function similar to
operator G in Viroli et al. (2015a):

Here, in addition to the previously discussed built-in operators, we also use tuple, which creates
a k-tuple of its inputs, 2nd, which accesses the second value of a tuple, and mean, which finds the
average of its inputs. We also use a slightly modified version of the usual field-calculus min-hood
operator, designated as min-hood’, which returns B if the minimal value for the first tuple element
is held by more than one device and those devices are not all members of the same ray centered
on the current device. In other words, if there is more than one shortest path from the source to a
device, that device must be on a boundary in the space (where the integral may be discontinuous)
and is marked accordingly.

The GPI operator thus performs two tasks simultaneously. First GPI computes a field of shortest-
path distances to a source region. This distance is “stretched” proportional to a scalar field density
(representing e.g., crowd density slowing movements, hazards increasing danger of movement),
and all points whose values might be ambiguous (due to the existence of more than one shortest
path) are B. Second, GPI computes a path integral of the scalar field integrand following the
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gradient of the distance field upward away from the source, starting at the scalar value initial
in the source region. The function definition binds these together via a tuple and lexicographic
minimization, such that the value added to the line integral at each device is taken from a neighbor
on the (sole) minimal path to the source.

Importantly, just as with G in Viroli et al. (2015a), the GPI operation subsumes a number of useful
and frequently used computations. For example, an eventually consistent version of distance-to
can be implemented as:

GPI-calculus Is Eventually Consistent. With these restrictions, well-written programs will ensure
eventual consistency by effectively excluding a minuscule (often empty) set of devices from certain
computations. Poorly written programs (e.g., (= (sqrt 2) (sqrt 2))) may contaminate large
areas with B values but will still converge—just not to a particularly useful result.

Theorem 1 (Eventual Consistency of GPI-calculus). GPI-calculus programs are eventually

consistent for all environments e that are continuous on e−1 (V − B).

The full proof of this theorem is given in Appendix A. In sketch form: We first consider any set
of operators that are eventually consistent and are eventually continuity preserving, in the sense
that there is always a spatial section SM such that if environment e and inputs fi are continu-
ous on e−1 (V − B) ∩T + (SM ) and f −1

i (V − B) ∩T + (SM ), then their output fo is also continuous

on f −1
o (V − B) ∩T + (S ′

M
). All finite compositions of such operators can be shown by induction

to have the same properties of eventual consistency and eventual continuity preservation. Each
operator in GPI-calculus can then be shown to be at least eventually consistent and eventually
continuity preserving, in a lengthy but not particularly complicated set of reasoning, the most
complex of which is for GPI. Finally, we show that all GPI-calculus programs are equivalent to
finite compositions of operators, which implies that all such programs are eventually consistent.

Thus, if a program is evaluated in a “well-behaved” environment, its results are predictable and
resilient to scale and positioning of devices. Having proved this, in the next section we explore
the breadth of applications that can be addressed by GPI-calculus and demonstrate its consistency
properties empirically in simulation.

5 VALIDATION AND APPLICATIONS

We now validate the predictions of eventual consistency and demonstrate some of the breadth of
IoT applications that can be expressed to our sub-language of eventually consistent programs. As
the GPI operation is a restricted version of the G information spreading operator from Viroli et al.
(2015a), GPI-calculus applications are those based on information spreading and local computation.
We present several such common self-organization patterns, along with accompanying application
scenarios in wireless sensor networks and urban traffic steering. Simulations of these scenarios
have a twofold goal:

(1) comparing GPI-calculus algorithms with similar ones that lack eventual consistency, to
demonstrate the perils of fragility and our ability to overcome these problems, and

(2) demonstrating the anticipated resilience of GPI-calculus to differences in devices density
over both space and time.

Together, these experiments confirm the consistency result and its value for constructing coordi-
nation behaviors resilient to changes in network density and scale. Note that we do not attempt to
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cover the breadth of possible alternatives; rather, these comparisons show the sorts of difficulties
that can often arise if eventual consistency is left to programmers rather than being guaranteed
by the framework.

5.1 Distance-Based Patterns

As previously noted, distributed distance calculation can be implemented with a simple GPI call.
Another common pattern is broadcast from a source, which can be defined as follows:

Here, GPI shifts the initial value outward by integrating 0 along the path, so the value remains
unchanged, thus producing a broadcast (or, more generally, a map from each device to the nearest
source device’s value).

These functions can then be composed into higher-level patterns. For example, a channel, useful
for tasks like corridor routing, can be implemented:

Here distance from source fields a and b creates a Boolean field holding true only in those devices
whose distance to a and b is less than “width” w greater than the shortest path. Such higher-level
patterns can themselves be further modulated and combined, for example, restricting a channel
with if to circumvent an area considered to be an obstacle:

Expressing these programs in GPI-calculus ensures less fragility of the channel to device po-
sition: A near-identical naive program using = instead of < produces fragile channels that can
disconnect or re-route due to minuscule perturbations. In GPI-calculus, however, this fragility is
extinguished, because= can never return true, only false andB, rendering naive channel obviously
unable to produce any sort of channel, fragile or otherwise.

5.1.1 Application Scenario: Wireless Sensor Network. Consider a wireless sensor network in
which some devices must exchange a large amount of information, for example, relaying video to a
mobile monitoring station. The set of devices to relay is identified using channel-with-obstacle,
balancing limited spreading of information (e.g., to save battery energy) with replication along the
transmission path (e.g., to increase reliability) and avoiding devices that do not wish to participate
(e.g., due to low battery or faults). A broadcast restricted to this channel with if can then relay
data with replication to prevent data loss but much less resource consumption than unrestricted
broadcast.

We confirm our GPI-calculus results using simulation with Alchemist (Pianini et al. 2013) and
Protelis (Pianini et al. 2015). We first compare channel-with-obstacle and the naive non-GPI-
calculus variant on nine logarithmically scaled densities, from 100 to 5,000 devices, with 10 runs
per condition, distributing devices randomly. Devices are connected with a unit disc network,
using a range of 15% of environment width at lowest density and reducing proportional to square
root of density to ensure a consistent expected number of neighbors. Devices run unsynchronized
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but with the same clock speed, frequency rising inversely proportional to communication range
to keep information speed consistent.

Our second set of tests then investigates how the GPI-calculus version of the pro-
gram reacts to heterogeneity in space and time. To evaluate space heterogeneity, we run
channel-with-obstacle, ranging the overall number of devices within the same range of val-
ues of the previous experiment, using four different network configurations:

(1) devices spread uniformly randomly through the space;
(2) same as above but with three randomly chosen high-density regions;
(3) devices spread uniformly randomly along the Y-axis and exponentially randomly (λ =

0.25) along the X-axis;
(4) devices spread uniformly randomly in three vertical “bands” whose average density was

determined by the same λ = 0.25 exponential random function.

Figure 7 shows snapshots of channel-with-obstacle simulations executed on such configura-
tions: note how changes in density affect only the precision of the channel’s boundaries.

For time heterogeneity, we run our experiments with 5,000 devices scattered uniformly ran-
domly in the space and perturb the overall number of active devices between 5,000 and 1,000
active devices using three different drivers: a square wave, a sine wave, and a triangle wave. Due
to the sometimes extreme differences in density, we used a different connection rule for these ex-
periments to prevent network segmentation: We dynamically linked device d1 and d2 if both were
active and either one belonged to the set of the 10 devices closest to the other. In this setup, we
do not attempt to keep information speed consistent and simply run all devices unsynchronized
at 1Hz frequency.

By the results in Section 4, it should be the case that for GPI-calculus device values will self-
stabilize to a fixed set of values, and that as the number of devices increases, the values converged
to will themselves converge as the network more closely approximates continuous space. We test
this by measuring a key application property, the fraction of devices in the channel. Figure 8 shows
that, as expected, the GPI-calculus program converges with respect to both time and number of
devices, confirming our predictions. The GPI-calculus version of the algorithm also proves to be
significantly resilient to heterogeneity in both spatial and temporal device distribution. The naive
channel, however, shows a low and decreasing fraction of participating devices: Even the minus-
cule imprecisions of floating point addition are enough to disturb the fragile equality relation.

5.2 Context-Sensitive Distance

For a second application example, we begin by considering the fact that the effective shortest path
between a node and the source of a GPI is not necessarily the physically shortest path. Rather,
effective distance may be influenced by other properties of the environment, either negatively
(e.g., obstacles, congestion, pollution, tolls) or positively (e.g., safety, dedicated lanes, beauty). The
density argument of GPI allows such factors to be taken into consideration as a multiplicative
“stretching” of the base physical distance metric. Assuming there are penalising areas (cons) and
favourable areas (pros), both expressed as scalar fields with values between 0 (least significant)
and 1 (most significant), then one form of context sensitive distance is

Since GPI accumulates values using a path-integral, the context-sensitive stretching is guaran-
teed to be resilient to distribution changes. A naive alternate counting “pros” and “cons” visited
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Fig. 7. Simulation snapshots of channel-with-obstacle exemplifying the four different device distributions

used for the spatial heterogeneity tests. The obstacle is green, regions a and b are red and orange, and the

computed channel is blue.

rather than integrating creates a density-sensitive distance function whose value could be radically
changed by changes in device location or network density.

5.2.1 Application Scenario: Urban Traffic Steering. Consider guiding pedestrian or vehicle traffic
in a complex urban environment. Devices are deployed along and around the streets, some with
environmental sensors (e.g, for crowding, traffic, pollution), and other parameters are drawn from
distributed or cloud databases (e.g., for events, attractions, comments on an area). From these,
devices can compute contextual pro and con fields for people navigating through the city, reflecting
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Fig. 8. Simulation of a wireless sensor network scenario confirms our analytical results for GPI-calculus,

showing convergence with respect to both number of devices (a) and time (b). Different patterns of hetero-

geneity in space (c) and time (d) have a moderate impact on the result, but the differences decrease at higher

densities and over periods of relative stability. Number of devices and spatial heterogeneity show mean and

±1 standard deviation for, respectively, the GPI (blue) and non-GPI (red) versions, and for the GPI version

in the different spatial configurations. Time graphs show mean of GPI version only; a comparison with non-

GPI that includes ±1 standard deviation is available in Appendix B. In (b), colors indicate different number

of devices, shading from deep blue (100) to dark red (5,000). In (d), different colors are associated to different

perturbing drivers (thin lines, measured as probability for a node to be enabled). Results are the average of

10 simulation runs.

perceived distance toward a location by taking path desirability into account. Figure 9 shows an
example simulated in the center of London, in which context-sensitive distance chooses a more
favored path over alternatives that are shorter but less favored.

We validate the predictions of GPI-calculus in this scenario using the same simulation environ-
ment as for the wireless sensor network scenario, except that devices are distributed on a street
map of London and the property measured is the average contextual distance value. As expected,
Figure 10 shows convergence with respect to both time and number of devices for the GPI-calculus
program. Similarly to the previous scenario, the GPI version is also resilient to heterogeneity in
space and time, again confirming our predictions. The naive context-sensitive distance measure,
on the other hand, does not stabilize but instead grows as the number of hops through modulated
space increases.

6 CONTRIBUTIONS

We have presented a sub-language of field calculus containing only programs resilient against
changes in the distribution (density, heterogeneity, topology) of devices in a network. This is a
step towards a more general framework for supporting open ecosystems of pervasive wireless
devices for the IoT, which need to provide safe and resilient services despite running a shifting set
of interacting services from many unrelated software suppliers. If it is possible to implicitly ensure
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Fig. 9. Context-sensitive distance computation navigating the streets of London: Warmer colored devices

have a closer effective distance to the destination (black dots at bottom center). Dashed outlines are un-

favourable (blue) and favourable (red) areas for travel. An example path is shown (black line), originating

near Charing Cross (black dot in upper left).

Fig. 10. Simulation of urban traffic steering scenario confirms the analytical results for GPI-calculus, show-

ing convergence with respect to both number of devices (a) and time (b); and resilience to spatial (c) and

temporal (d) heterogeneity. Number of devices and spatial heterogeneity show mean and ±1 standard devia-

tion for, respectively, the GPI (blue) and non-GPI (red) versions and for the GPI version in the different spatial

configurations. Time graphs show mean of GPI version only; a comparison with non-GPI that includes ±1

standard deviation is available in Appendix B. In (b), colors indicate different number of devices, shading

from deep blue (100) to dark red (5,000). In (d), different colors are associated to different perturbing drivers

(thin lines, measured as probability for a node to be enabled). Results are the average of 10 simulation runs.
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all programs are resilient and composable, then it will greatly reduce the cost of providing reliable
services in such environments.

In future work, we aim to extend the breadth of the results in this article. Most importantly, the
theory we present does not cover mobile devices. In practice, however, the mechanisms used often
perform well on mobile devices, so there appears to be good prospect for extension. Similarly, the
theory currently directly addresses only the limit of approximation, but these properties tend to
indicate that an algorithm also behaves well in lower-density networks and before it has finished
converging (as illustrated by our heterogeneity results), so it should be possible to identify prop-
erties directly pertinent to lower density performance. Also, as we here focus only on eventuality
of consistency, future works will also devoted to study performance issues to guarantee prompt
reactiveness to classes of changes, either by creating alternative, optimized versions of building
blocks (Viroli et al. 2015a) or by meta-techniques for optimization along the lines of Pianini et al.
(2016). Finally, GPI only addresses one of the three key self-stabilizing patterns identified in Viroli
et al. (2015a), and a clear area for extension is to deal with additional “building block” algorithms
and, complementarily, to consider how static analysis, testing, and model-checking techniques can
be used to eliminate program faults before runtime.

APPENDIX

A EVENTUAL CONSISTENCY OF GPI-CALCULUS

We prove eventual consistency of GPI-calculus in three stages: First, we prove that any finite com-
position of eventually consistent and continuity-preserving operators is also eventually consis-
tent and continuity preserving. We then show that each operator in GPI-calculus is individually at
least eventually consistent and continuity preserving. Finally, we show that all GPI-calculus pro-
grams are finite compositions of operators, which implies that all such programs are eventually
consistent.

Let us begin with a formal definition of what we need from operators in terms of preservation
of continuity:

Definition 9 (Continuity-Preserving). A space-time operator o : e × f k
i → fo is continuity pre-

serving if it is the case that when environment e and inputs fi are continuous on e−1 (V − B) and
f −1
i (V − B), then it is the case that the output fo is also continuous on f −1

o (V − B).

Intuitively, what this means is that the output is a collection of continuous regions, “stitched
together” on by regions of the boundary value B. Note that we can turn any operator into a
continuity-preserving operator simply by mapping every potential area of discontinuity in the
output to the boundary value B.

We may not, however, be able to guarantee continuity preservation immediately but only after
some time for convergence:

Definition 10 (Eventually Continuity Preserving). A space-time operator o : e × f k
i → fo is even-

tually continuity preserving if there is always a spatial section SM such that o is continuity preserv-
ing on T + (SM ).

In addition to these two, we note that, by the definitions of space-time operators and programs
in Section 3, consistency and eventually consistency (Definitions 6 and 7) can be extended to apply
to operators simply by extending the approximability condition for consistency to apply to inputs
as well as the environment.

With these definitions in hand, we now begin our proof of the eventual consistency of GPI-
calculus by showing that sense operators, which merely access the environment, are trivially both
consistent and continuity preserving:
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Lemma 2. Built-in operator sense is consistent and continuity preserving.

Proof. The environment is assumed to be a field mapping to a tuple of values at each point or
toB, and sense outputs a field created by indexing into said tuples by a literal integer, or returning
B for points that are B in the environment. By the definition of consistency (Definition 6), we are
only concerned with cases in which the environment is approximable, and a field of tuples cannot
be approximable unless a field of each of the elements is also approximable. Likewise, a field of
tuples cannot be continuous unless a field of each of the elements is also continuous. Thus, copying
an element out of the environment for all non-B values must result in an output field that is also
consistent and continuous on all non-B values. �

We next show that eventual consistency and eventual continuity are both preserved by
composition:

Lemma 3. Any program defined as a finite composition of eventually consistent and eventually

continuity-preserving operators is also eventually consistent and eventually continuity preserving.

Proof. Consider a well-defined program comprised of a finite sequence of operator instances,
meaning that every operator instance input is defined as an output from some other operator
instance and there are no cycles. Because the sequence is finite and the program is well defined,
it must be the case that the operator instances can be ordered, such that the ith operator instance
depends only on the environment and the output fields of prior operators in the sequence.

For the ith operator instance in this sequence, it is possible to construct an equivalent program
comprising only that operator instance, an environment ei containing its inputs, and sense op-
erator instances mapping the environment values to its inputs. By Lemma 2, the sense operators
are consistent and continuity preserving, so the ith operator instance has the input conditions for
continuity preservation satisfied. Thus, we also have that this miniature program is eventually
consistent and eventually continuity preserving.

The output of the ith operator instance can then be added to the environment for the i + 1st op-
erator instance, ensuring that if the preconditions are satisfied for the ith operator instance, they
will be satisfied for the i + 1st operator instance as well. The base case of i = 1, of course, is true
by assumption, since each operator is individually eventually consistent and eventually continu-
ity preserving. Thus any finite composition of operators is eventually consistent and eventually
continuity preserving if these properties hold for all of the individual operators. �

Note that if the program were not guaranteed finite evaluation, then this result would not hold:
The eventual consistency of the ith instance evaluated would still hold, but no i would be high
enough to cover the entire sequence, and it would be possible to construct sequences that do not
converge.

We now move on to proving that all of the rest of the operators in GPI-calculus are sufficiently
consistent and continuity preserving, beginning with the trivial case of literals:

Lemma 4. Literals l are consistent and continuity preserving.

Proof. Trivially true, since the output field of a literal l is equal to l at every point in its domain,
and constant functions are continuous. �

Lemma 5. Any built-in operator cf is consistent and continuity preserving.

Proof. Recall that cf is defined to be any strictly continuous mathematical function, extended
to have output B if any input is B. The output of any cf operator at any event m is affected only
by the values of its inputs at m. cf is also continuous by definition and (by the semantics of field
calculus) requires all inputs to have the same domain. Thus, since the composition of continuous
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functions is continuous, when each input fi is continuous on f −1
i (V − B), it must be the case that

the output fo is continuous on
⋂

i f
−1

i (V − B). The complementary space,
⋃

i f
−1

i (B) covers only
points where at least one input has value B, and thus by the definition of cf, fo maps all events in
this space to B.

Only consistency remains to be shown. All ϵ-approximation sequences must approximate fo
on subspace f −1

o (V − B), because it is continuous on this space. For the complementary space⋃
i f
−1

i (B), fo must also always be approximable, because it holds the constant value B on a finite
union of subspaces of approximable fields. �

Lemma 6. Any built-in operator df is consistent and continuity preserving.

Proof. Recall that df is defined to be any mathematical function from discrete inputs to discrete
outputs, extended to have output B if any input is B. By the semantics of field calculus, its inputs
are all required to have the same domain. By the precondition that the input fields are continuous
on all non-B values, yet have discrete values, this means every input field consists of a union of
open sets mapping to constant values, plus a complementary space mapping to B. Since a finite
intersection of open sets is open, the intersections of these open sets is also a collection of open
sets, with a complementary space of all points where at least one input field maps to B. Since the
output of any df operator at any eventm is affected only by the values of its inputs atm, this means
that each open set of constant-valued inputs maps to an open set of constant-valued outputs, plus
a complementary space mapping to B, satisfying continuity preservation.

Consistency is shown the same way as in Lemma 5. All ϵ-approximation sequences must approx-
imate fo on subspace f −1

o (V − B), because it is continuous on this space. For the complementary
space

⋃
i f
−1

i (B), fo must also always be approximable, because it holds the constant value B on
a finite union of subspaces of approximable fields. �

Lemma 7. Any built-in operator s is consistent and continuity preserving.

Proof. As with df in Lemma 6, if s is continuous on the non-boundary portions of its first
input f −1

1 (V − B), then it must consist of a union of open sets mapping to constant values, plus a
complementary space mapping to B. Recall also that by the semantics of field calculus, all inputs
of s are all required to have the same domain. Since the output of any s operator at any event m
is affected only by the values of its inputs at m, this means that the output for each such open set
must obtain its values from an open set of some other input field fi , where i > 1. Since fi must be
continuous on f −1

i (V − B), so must its intersection with an open set. Every other point outside
of this set must be mapped to B, either due to having B in the first input or else having B in the
selected input, thus satisfying continuity preservation.

Consistency is shown the same way as in Lemma 5. All ϵ-approximation sequences must approx-
imate fo on subspace f −1

o (V − B), because it is continuous on this space. For the complementary
space f −1

o (B), fo must also always be approximable, because it holds the constant value B on a
finite intersection and union of subspaces of approximable fields. �

Lemma 8. Any built-in operator d is consistent and continuity preserving.

Proof. By definition, a d operator maps a collection of non-intersecting open intervals from the
reals to constant values. Let us designate this collection C and members of the collection c ∈ C .

Consider any point m ∈ M . If f1 (m) ∈ c for some c ∈ C , then the continuity precondition on f1
implies that there is also some ϵ such that f1 (m′) ∈ c for every point m′ in an ϵ-ball around m.
This, in turn, implies that fo is also continuous at that point, because every point in the ϵ-ball will
map to the same constant value. Complementarily, any pointm such that f1 (m) � C maps to B in
fo and is excluded from requirement for continuity. Thus, continuity preservation is satisfied.
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For every c ∈ C , all ϵ-approximation sequences must approximate fo on subspace f −1
1 (c ), be-

cause the continuity precondition on f1 implies that f −1
1 (c ) is an open set, and fo has a constant

value on that space. Consistency thus holds for fo for the union of such subspace, subspace f −1
1 (C ).

Likewise, by the precondition of approximability on f1, consistency holds for subspace f −1
1 (B).

This leaves only subspace f ield−1
1 (R −C ), which all map to B, and since it is constant valued and

the complement of an approximable subspace, consistency is satisfied overall. �

Lemma 9. Branch operator if is consistent and continuity preserving.

Proof. The if operator is equivalent to an s built-in except that its branch expressions are eval-
uated with respect to the subspaces f −1

1 (true) and f −1
1 (false), respectively (i.e., the domain of the

evaluation environment is reduced). Since these are open subspaces of the environment’s domain
M , the approximability and continuity properties of e are not affected by the domain reduction.
Thus, if the branch expressions would have conformed with the preconditions for M they will
also conform with the preconditions for the branch subspaces. The output field is then assembled
piecewise identically to an s operation and is consistent and continuity preserving on f −1

o (V − B)
by the same reasoning. �

Lemma 10. Function call operator f is eventually consistent and eventually continuity preserving.

Proof. Consider a function definition f; either f contains other function calls or it does not.
If it does not, then evaluating f is equivalent to evaluating a composition of operators satisfying
Lemma 3 (adjoining the function arguments to the environment and substituting sense functions
for variable references). Thus the desired consistency and continuity properties hold.

If f does contain function calls, then the properties hold if they hold for all of the function
calls within f (meaning that once again Lemma 3 can apply). Since GPI-calculus does not allow
recursion, it must be the case that these dependencies between function definitions can be arranged
in a finite directed acyclic graph. The nodes of such a graph may then be ordered, such that each
subsequent node only depends on nodes before it in the order. Since the set is finite, there must be
at least one node that has no dependencies and thus forms a base case for induction showing that
the properties hold for all function calls. �

Lemma 11. Operator GPI is eventually consistent and eventually continuity preserving.

Proof. Following the semantics of field calculus to interpret the GPI algorithm given in Sec-
tion 3 of the main text, the first element of the tuple computed in the rep statement implements a
computation of distance via the triangle inequality (nbr-range is a metric, and a metric multiplied
by a continuous positive scalar function is still a metric).

Thus, if there is a spatial section SM such that the values of all of the inputs do not change
at any device on T + (SM ), then since we assume that manifolds have finite diameter, it must be
the case that all the distance estimates (first values of the distance-integral tuple) eventually
converge to a continuous field of distance estimates. The values of the integral are co-computed
with the values of the distance estimates, so they, too, will stop changing once the inputs have
stopped changing. Thus it must be possible to choose a spatial section S ′

M
on which values of

distance-integral do not change at any device.
Note also that due to the use of min-hood’ in computing the triangle inequality, any point in

the field of distances with more than one shortest path leading to it will be replaced by a B. This
eliminates only a set of measure zero: Because the distance function is continuous, its gradient
cannot be discontinuous on a space of more than measure zero. The set eliminated is, however,
precisely the set of points for which the gradient of the distance field is not continuous.

This is important, because this is also the set of points on which the integral calculated in the
second element of the distance-integral tuple might not be continuous. Consider, for example,
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Fig. 11. The field of path integral values created by GPI can be discontinuous at points reached by two

different shortest paths, as in this example where the left path around the hole goes through a region where

the integrand is much higher than on the right path, resulting in discontinuity between a value of 10 from

the left and 1 from the right.

the case shown in Figure 11, in which a hole causes there to be two very different shortest paths to a
point. The integrals computed along such paths may be very different indeed, necessarily creating
a discontinuity in the value of the integral and hence the output of GPI. This type of problem can
also come from other sources besides topological complexity: similar patterns (and failures) can be
caused by if statements, distortions in the distance measure, or the shape of the source—anything
that can cause a discontinuity in the gradient.

Since min-hood’ ensures that such points are B; however, they are eliminated from the region
on which we must establish continuity. If we instead consider any m with precisely one shortest
path to the source region, then because both integrand and the gradient of the computed distance
field are continuous on this path, it must be the case that for any given ϵ , there must be a δ such
that the open set of events within distance δ have integral values that are less than ϵ different,
and thus the field of integrals output by GPI is continuous on f −1

o (V − B) ∩T + (SM ). Because it is
continuous on this space, it must also be approximable; the complementary space ofB values must
also be approximable, as it is a union of the B values of the inputs (which must be approximable)
plus the measure zero set of B events added from computation of the distance function. �

Theorem 1 (Eventual Consistency of GPI-calculus). GPI-calculus programs are eventually

consistent for all environments e that are continuous on e−1 (V − B).

Proof. By Lemmas 2 and 4–11, we know that every operator in GPI-calculus is eventually
consistent and eventually continuity preserving. Because recursion is prohibited, it must be the
case that the number of operators evaluated in the evaluation of a GPI-calculus program must
be finite for any given ϵ-approximation. Furthermore, since if is the only method of branching
evaluations, it must thus be the case that in any approximation sequence there is some i , after
which no ϵj>i -approximation evaluates an operator instance that is not also evaluated in some
prior ϵ-approximation, considering any instance in which an operator instance is not evaluated to
be an evaluation with null domain.
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Fig. 12. Additional details of experimental data on wireless sensor network scenario confirming our predic-

tions for GPI-calculus. Panel (a) compares GPI performance of Figure 8(c) with the non-GPI version (trian-

gles). Panels (b)–(d) compare GPI performance of Figure 8(d) (blue) with the non-GPI version (red) for each

of the three density driver waves (black). All graphs show mean and ±1 standard deviation for both GPI and

non-GPI versions. As in the other tests in Figure 8, the non-GPI is disrupted by the fragility of floating point

equality operations in every experiment. Results are the average of 10 simulation runs.

Given the precondition of an environment continuous on e−1 (V − B), we thus satisfy the con-
ditions of Lemma 3 and have that any GPI-calculus program must be eventually consistent. �

B ADDITIONAL DETAILS ON RESILIENCE TO HETEROGENEITY RESULTS

This supplementary section presents further details on the application results presented in Sec-
tion 5. In particular, we show a detailed comparison between the behavior of the GPI-calculus and
non-GPI-calculus versions of the algorithms for the space and time heterogeneity experiments,
along with variation information elided from temporal heterogeneity graphs.

B.1 Distance-Based Patterns in a Wireless Sensor Network

Figure 12 shows additional result details for the distance-based pattern in a wireless sensor net-
work, conforming with those presented in Section 5. The GPI-calculus algorithm stabilizes regard-
less the exact distribution of devices in spaces. The differences between the configurations that can
be seen in Figure 12(a) are due to the chosen metric: Since the channel has a precise location in
space, configurations where more nodes are located in such an area (see, e.g., Figure 7(b)) may
return a higher probability value, though in both cases the pattern has stabilized correctly. The
GPI-calculus version of the algorithm is also resilient to dynamic changes in device density. For
any tested driver, after a transient, the algorithm recovers to the expected values. The square wave
causes the widest shift from the expected value immediately after many new devices join the sys-
tem, but this effect is quickly mitigated. In all cases, however, the non-GPI version is disrupted by
the fragility of floating point equality operations and fails to reliably build a connection between
source and destination, as reflected in the extremely low P (channel ) values.
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Fig. 13. Additional details of experimental data on urban traffic steering scenario confirming our predictions

for GPI-calculus. Panel (a) compares GPI performance of Figure 10(c) with the non-GPI version (triangles).

Panels (b)–(d) compare GPI performance of Figure 10(d) (blue) with the non-GPI version (red) for each of the

three density driver waves (black). All graphs show mean and ±1 standard deviation for GPI and non-GPI
versions. As in the other tests in Figure 10, the non-GPI version is strongly affected by the number of devices

populating the scenario and also fails to effectively stabilize. Results are the average of 10 simulation runs.

B.2 Context-Sensitive Distance in Urban Traffic Steering

Figure 13 shows additional result details for the context-sensitive distance in an urban traffic steer-
ing scenario, conforming with those presented in Section 5. The GPI-calculus version of the algo-
rithm is extremely stable when compared to the naive non-GPI alternative, which exhibits behav-
ior that is extremely erratic and sensitive to changes in density and distribution of devices both in
space and time if compared to the GPI-calculus version. The variation is so high, in fact, that we
have chosen to use logarithmic plots in Figure 13 to allow changes to be visible across the whole
scale of behaviors. As can be readily seen, the fluctuations in time of the values of the GPI-calculus
version of the algorithm, which can be observed in Figure 10, are dwarfed by the wider changes
of the non-GPI naive alternative.
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