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Abstract
Assumptions are “compiled into” designs as a natural part of the engineering process, losing information about
the reasons particular design decisions were made. This leads to systems that are fragile in the face of failures,
changing requirements over time, and changing contexts of use. Engineered self-organization techniques can help
mitigate this by making more of the system design implicit, thereby transferring aspects of system integration from
human engineers to the system itself. This paper reviews three engineered self-organization techniques currently
being investigated: manifold abstractions of networks, stochastic coordination, and functional blueprints, illustrating
them with recent results from my work on networked sensing and control, grid-scale power management, and
electromechanical design.
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1 INTRODUCTION
As the complexity of engineered systems grows, and
as more and more of those systems operate as part
of an ecosystem of interacting systems, we are fac-
ing an increasing problem of design complexity and
maintainability. Over the lifetime of a system, it is
likely that our requirements of it will evolve, the en-
vironment in which it operates will change, and it will
need to be upgraded, serviced, and customized. For
infrastructural systems, these changes often must hap-
pen even while the system continues to operate: the
trains must run, drinking water must flow, and Google
can’t go down.
Standard engineering processes, however, are not
well suited to these challenges. As a design develops
from concept to implementation, assumptions natu-
rally become “compiled” into its structure, resulting
in sets of system elements that depend closely on
one another, but retain little information about how
and why that dependency came about. Changing
any element of such a set is likely to require corre-
lated changes in the others, and onward to elements
that those elements may be linked to, etc., yet the
knowledge about such linkages is generally not read-
ily available to the system itself. This leads to systems
that are fragile in the face of failures, changing re-
quirements over time, and changing contexts of use.
One promising approach to mitigating this problem is
by using engineered self-organization. Self-organization
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Figure 1: Self-organization mechanisms are specific
instances where the “local-to-global” problem has
been solved. Engineered self-organization builds on
these mechanisms with composition rules that are
valid in both the aggregate and local views, allowing
“global-to-local-to-global” system design.

is aggregate structure or behavior that arises from lo-
cal interactions [1, 2, 3]. Any particular self-organization
mechanism may be viewed as an instance where the
infamous “local-to-global” problem has been solved.
We may then define engineered self-organization as
design that predictably leads to a specified self-organization
of elements. This can be accomplished by identifying
equivalent global and local rules for composing and
modulating self-organization mechanisms, thereby al-
lowing the designer to work only with aggregate mod-
els while the system is implemented by a “global to
local to global” flow as illustrated in Figure 1.
Engineered self-organization approaches can help with
the problems of design by transferring aspects of sys-
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tem integration from human engineers at design time
to the system itself at runtime. Many engineered self-
organization processes can adapt to operate will across
a broad range of environments. A human engineer
building on top of such processes should then need to
fix only the aggregate behavior at design time, leav-
ing the details to be adaptively implemented by the
self-organization methods.
In some ways, this is quite similar to other self-adaptation
approaches, such as autonomic computing [4, 5], or-
ganic computing [6, 7, 8], or other similar forms of
self-reconfiguration (e.g., [9, 10, 11]). These other
approaches, however, typically require some degree
of centralization or other restrictive pre-defined struc-
ture, which is often not the case for self-organization.
Applying an engineered self-organization approach
does that the drawback that it often makes initial sys-
tem design more difficult, as it frequently forces the
designer to confront design adaptation problems that
might otherwise be postponed or overlooked. The
reward for this investment, however, is systems that
are inherently adaptable across a range of circum-
stances and that often degrade gracefully when taken
beyond their limits. Engineered self-organization is
not a silver bullet, nor is there any one overarching
technique for self-organization, any more than there
is a single technique for object orientation in program-
ming. Rather, we may expect to accumulate tech-
niques over time, each of which applies over a certain
family of design problems and broadens the scope of
adaptivity that can be made routine.
As a starting point and illustrative example, the re-
mainder of this paper reviews three engineered self-
organization techniques that are subjects of current
research, each of which addresses a different aspect
of adaptability:

• Abstracting a network as a continuous space-time
manifold forces algorithms to build in scalability, as
well as providing implicit adaptability to local and
global topology changes.

• Stochastic coordination methods force control sys-
tems to deal with uncertain progress and encour-
age the use of self-stabilization.

• Functional blueprints explicitly encode the goals of
design decisions, along with instructions for incre-
mental design change when those goals are not
being satisfied, allowing integration to be maintained
automatically in response to design changes.

These techniques will be illustrated with recent re-
sults from the application domains of networked sens-
ing and control, grid-scale power demand manage-
ment, and electromechanical design, adapted primar-
ily from [12], [13], and [14] respectively, along with
other recent related publications.

2 NETWORKS AS MANIFOLDS

Figure 2: The amorphous medium abstraction allows
a message-passing network (right) to be viewed as a
discrete approximation of a manifold (left) where ev-
ery point is a computing device that can access the
recent pas state of its neighbors (Figure from [12]).

One way to bridge the gap between local and global
is by means of geometric abstractions, as described
in [15] and [12]. Many networked systems are tied
closely to the space through which the networked de-
vices are distributed. The tie may be physical, such
as for devices that can only communicate with other
devices nearby, or may arise from the purposes of
the network, such as a sensor network intended to
monitor a physical space. Such systems are known
as spatial computers, and they can be programmed
at the aggregate level by viewing the network as an
approximation of a continuous space-time manifold.
The amorphous medium abstraction [16] formalizes
this view as a Riemannian manifold1 with a computa-
tional device at every point, where every device knows
the recent past state of all other devices in its local
neighborhood (Figure 2). We may then view any spa-
tial computer as a discrete approximation of an amor-
phous medium, implementing it approximately with
message passing and local measurements.
The amorphous medium abstraction may then serve
as a rendezvous point between global and local mod-
els. In Proto [15, 17], a programmer specifies ag-
gregate behavior as a purely functional composition
of geometric and information-flow operations over a
manifold. This is compiled from global specification
to an amorphous medium program, which may then
be approximated on real hardware, e.g., by means of
scripts executed on a virtual machine. Purely func-
tional composition and a careful choice of four fami-
lies of primitives (pointwise, restriction, feedback, and
neighborhood) ensures that global and local compo-
sition are equivalent.
At the same time, this formulation makes Proto pro-
grams implicitly adaptable at two levels. First, pro-
grams written in terms of physical units such as me-
ters and seconds are resilient to changes in the dis-
crete approximation. When programs are formulated
respecting the amorphous medium abstraction—that

1A manifold is locally equivalent to Euclidean space, but may
have non-Euclidean global structure, such as the surface of a
sphere or a torus. Riemannian manifolds also support other use-
ful geometric properties such as angle, distance, integrals, and
derivatives.

2



(a) Distributed Publish/Subscribe (b) Search and Rescue (c) Simulated Maneuvers

Figure 3: Examples of complex self-organization produced by functional composition of self-organization mecha-
nisms implemented using a continuous manifold abstraction: distributed publish-subscribe (a, from [18]), search
and rescue by robot swarms (b, from [19]), and simulation of tactical maneuvers (c, from [20]).

is, in terms of a continuum of devices with a neighbor-
hood of unknown diameter, most changes in the set
of devices only affect the local quality of the contin-
uous approximation. This allows programs to adapt
implicitly to a large class of networks and network
changes, so long as the approximation can be main-
tained and remains at a fine enough quality for the
program’s requirements. Second, the use of geomet-
ric and information-flow operations over a manifold
means that program behavior is derived adaptively
from the gross structure of the network. For example,
the shortest path between two locations depends on
the shape of the manifold between them. Thus, cor-
rect value for a geometric property such as shortest
path changes along with the network, implicitly caus-
ing any self-repairing computation to adapt to the new
configuration.
The continuous space abstraction is not itself self-
organizing except in the very loose sense of local net-
work approximations collectively representing a con-
tinuous manifold. A number of self-organization mech-
anisms have been implemented on it, however, such
as fast self-stabilizing gradients [21, 22], gradient-based
broadcast [19] and flocking [19]. Once such self-
organizing mechanisms are implemented in Proto, its
continuous manifold model of functional composition
ensures that such mechanisms have a predictable
behavior under any feed-forward composition: as each
element converges, it provides a stable environment
in which mechanisms downstream of it may also con-
verge.
Thus, abstracting a network as a continuous manifold
is one way to achieve the “global-to-local-to-global”
flow of Figure 1. This has allowed the construction of
many complex composite self-organizing behaviors
from the functional composition of self-organization
mechanisms. Figure 3 shows several examples from
network and swarm control, each of which is a com-
position of some mixture of gradient, broadcast, and
flocking self-organization mechanisms.

3 STOCHASTIC COORDINATION

The gap between global and local can also be bridged
by a stochastic approach to coordination. Under this
approach, the global model is of distributions, with a
specification of the goal distribution to be achieved
and one or more models of the current distribution of
states over the aggregate of local devices. We can
then view the global problem as a control problem to
bring these two distributions into alignment, comput-
ing a distribution over control actions from the differ-
ence between goal and current distributions.
Correspondingly, in the local view, each device is a
sample of these distributions. The current distribu-
tion is computed as a distributed aggregation over
devices, thereby summarizing the state of the all de-
vices in a much simpler global model. Each device
can then compare its view of the current distribution
with the target, and randomly choose an action from
the distribution over control actions or from any other
distribution with the same expected effect on the global
model. The aggregate of local actions thus accumu-
late to produce a global action with expected behav-
ior equal to the desired global distribution over control
actions.
For example, Berman et al. [23] design controllers
for a large swarm of aerial robots by abstracting the
swarm as a chemical concentration function over space.
The desired motion of the swarm is then specified
as a partial differential equation, which can be solved
using numerical approximation methods. This global
continuous model can then mapped to its particle model
equivalent, where the random movement of the indi-
vidual robots is specified by the diffusion term of the
particle equations. A similar partial differential equa-
tion model is set forth in [24].
Adopting a stochastic coordination approach has the
consequence that the progress of a system towards
any particular goal is never certain. This is particu-
larly true when the distribution is sparse, such that
the law of large numbers cannot apply, such as in the
case of leader election. This approach does, how-
ever, have the advantage of encouraging a view of
the system in terms of control, or more generally of
self-stabilization, rather than distinct modes such as
initial construction and repair of errors.
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Figure 4: Example from [13] of priority-based com-
position of stochastic coordination, applied to control
energy demand in a simulated network of 10,000 de-
vices. When the target changes, applying the distri-
bution to satisfy this highest priority constraint may
cause violations in the others, which are later re-
paired in order of priority.

Complex self-organizing systems can then be con-
structed by composing distributions together. For ex-
ample, the algorithm presented in [13] matches en-
ergy demand to a moving target in a highly constrained
system of energy-consuming devices, each marked
with a qualitative flexibility class. These devices be-
come temporarily uncontrollable when they are switched
on or off, and their control is subject to a set of con-
straints (target following, flexibility rank, and cycling)
that often cannot be simultaneously satisfied. In this
case, the controller is constructed by composing dis-
tributions for controlling each constraint in a strict pri-
ority order. This mean that first the target following
distribution is applied. If any expected controllability
remains in the system, the priority order distribution
is applied to the remaining controllability, and any re-
mainder from that to the cycling distribution.
Figure 4 shows an example of demand control in this
system, where the stochastic approach initially satis-
fies the first constraint (target following) by violating
the other two, then repairs each of the others in prior-
ity order. In Figure 4, demand is showed as a stacked
graph of cumulative power demand in order of flexi-
bility from least flexible (red) to most flexible (green),
with saturated colors for devices that are currently
on, faded colors for devices that are off, and cross-
hatching for devices that cannot be controlled since
they have recently switched states. When the target
demand drops (blue dashes), first the target-following
distribution adjusts the total power draw to follow (ma-
genta line), but in this case that causes the system
to violate both of the other constraints. As devices
become controllable again, first the flexibility rank is
restored (trading green devices for red) and then the
cycling constraint (balancing controllable and uncon-
trollable red devices).
Thus stochastic control is another approach for de-
signing self-organizing systems, where the local ac-
tions are samples of a global distribution, and co-

ordination between devices is enabled by updating
shared summary models of the global distribution.
Complex /self-organizing systems can then be de-
fined by composing distributions together.

4 FUNCTIONAL BLUEPRINTS
The previous two techniques that we have discussed
each address the problems of design and maintain-
ability indirectly, by using abstractions that encour-
age flexibility and adaptiveness in design. The final
technique that we consider, functional blueprints [14],
directly addresses the question of design adaptation
using ideas derived from the study of natural morpho-
genesis.
Natural biological organisms are remarkable in their
ability to adapt to changes in their structure or envi-
ronment, both within the development of an individual
and also on an evolutionary time scale. This self-
adaptation to produce a viable organism, known as
canalization [25], creates a close link between mor-
phogenesis (the development of shape in an individ-
ual) and evolution, which has been much studied in
recent years [26, 27].
Functional blueprints aim to replicate this flexibility
with a representation based on results from the study
of natural morphogenesis. The enabling insight for
this approach is that in engineered systems, the ma-
jority of the parameters describing a design are im-
plicit in the geometric and topological relations be-
tween system components. Typically, there are a rel-
atively small number of key parameters that are linked
tightly to the functional goals of the design, and the
remainder may be derived from geometric, topologi-
cal, or functional relationships between key parame-
ters.
Functional blueprints exploit this insight regarding key
parameters with two levels of specification. First, there
are the functional blueprints themselves, which spec-
ify how key parameters should be adapted in order to
preserve system functionality in the face of changes
to the specification or environment. A functional blueprint,
as defined in [14], consists of four elements:

• a system behavior that degrades gracefully across
some range of viability,

• a stress metric quantifying the degree and di-
rection of stress on the system when its behav-
ior is degraded,

• an incremental program that relieves this stress
by small changes to key parameters, and

• a program to construct an initial viable minimal
system.

A collection of functional blueprints is then integrated
by means of a developmental program that encodes
geometric and topological relations between key pa-
rameters [28]. This effectively provides a reference
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Figure 5: Design loop for iterative adaptation based
on functional blueprints (from [29]): (1) evaluation
of system behavior, (2) stress in evaluation leads
to functional blueprint adjustment of key parameters,
and (3) execution of developmental program to pro-
duce an incrementally modified model.

architecture for the system, with the ordering and link-
ages between elements capturing design decisions
that would ordinarily be lost when the system blueprints
are fully specified and all implicit parameters become
explicit.
Functional blueprints can be applied to the problem of
design adaptation using an incremental update loop
such as that developed for electromechanical sys-
tems in [29] (Figure 5). First, the functionality of the
current design is assessed by a collection of eval-
uators, whose outputs are combined to produce a
stress on each of the system’s functional blueprints.
Stressed functional blueprints produce incremental up-
dates for the key parameters they control, which are
combined to produce the actual update for each key
parameter and damped based on overall system stress.
Finally, the design’s developmental program is run
with the new key parameter values, producing an in-
crementally adapted design ready for evaluation.
To see how this approach can work, let us consider
the set of robots in the iRobot PackBot family, some of
which are shown in Figure 6. This family of robots all
share a common body plan despite vast differences
in scale and capabilities, indicating that this family of
designs is likely a good target for further adaptation
via functional blueprints.
One of the salient elements of the body plan is a pair
of flippers, which are attached coaxially with one of
the pairs of wheels allow maneuvers such as climb-
ing over obstacles. To climb over a bigger obstacle,
the robot needs longer flippers. The length of a flip-
per is thus a key parameter, regulated by a functional
blueprint for climbing obstacles. When climbing be-
gins to be difficult, as measured by the angle of the
robot during a critical phase of the climbing maneu-
ver, the flipper increases in length.

(a) iRobot Warrior (b) iRobot PackBot

(c) iRobot miniDroid (d) iRobot LANdroid

Figure 6: iRobot PackBot family of robots, which all
share a base body plan, including symmetric two-
wheel treads, flippers coaxial with one wheel, and a
top-mounted sensor/manipulator package.
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Figure 7: Approximate developmental stages of a
miniDroid (or other PackBot family member) body
plan (from [28]).

When a flipper is lengthened, however, should it be
lengthened from the center, from one of the two sides,
or from some combination of that? This ambiguity is
resolved by the developmental model. The develop-
mental model begins with a homogeneous “egg” and
executes a program of manifold operations to develop
the structure of the design. For example, under the
developmental model for the body plan of a PackBot-
family robot shown in Figure 7 (from [28]), the differ-
entiation and growth of the flipper in stages 5-8 con-
strains the flipper attachment point to be coaxial with
the rear wheel and sets the key parameter of flipper
length to be measured away from that coaxial point.
Together, the developmental program and the func-
tional blueprints form a network of locally adapting
elements that interact to produce the desired global
functionalities under changed conditions. As in our
prior discussion of stochastic coordination, there is
a simple summary model that provides a coordina-
tion signal for all of these local elements—in this case
the global stress level. As the global stress level in-
creases, the size of adjustments made by the func-
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Figure 8: Specifying a developmental program us-
ing manifold operators allows implicit adaptation to
changes in the space where portions of the program
execute, as shown by these particle simulations of the
developmental program in Figure 7 executed through
Stage 5 on a flat egg, an ovoid egg, and twisted co-
ordinates (from [28]).

tional blueprints is damped, in order to make it less
likely that the system will produce a non-viable de-
sign (though determining good relative damping rates
is still an open problem). When increments are suffi-
ciently conservative, stress can diffuse rapidly through
the network of functional blueprints and key parame-
ters, allowing rapid adaptation, as shown in [29].
Likewise, as we have seen previously in the discus-
sion of networks abstracted as manifolds, specifying
the developmental program using manifold operators
allows subprograms to adapt implicitly to changes in
the space on which they are executed, as shown in
[28]. For example, Figure 8 shows the developmental
program from Figure 7 executed through Stage 5 with
a particle simulation on variously distorted spaces: in
all cases, the design produced is an equivalently dis-
torted version of the original body plan.
Functional blueprints thus appear to offer a high po-
tential for directly addressing the problem of design
adaptation. This technique is less mature than the
others discussed, however, with many open ques-
tions still to be resolved.

5 SUMMARY
Self-organization is a powerful tool for transforming
explicit design elements that must be fixed at design
time into implicit elements that can be determined dy-
namically as they are needed, thereby providing an
engineered system with increased flexibility. This re-
view has illustrated this point by discussing three self-
organization techniques—manifold abstraction of net-
works, stochastic coordination, and functional blueprints—
along with recent results from their use in a number
of areas.
These three techniques are merely the tip of the ice-
berg for potentially useful self-organization techniques,
with many others possible. For example, [30] identi-
fies a taxonomy of other frequently used biologically-
inspired self-organization primitives and begins sys-
tematizing them with the aim of expanding the toolkit
of reliable engineering techniques. Looking to the fu-
ture, there are three main strands in the continued
development of this area of research:

• Discovery or adaptation of additional self-organization

phenomena that provide additional useful global
behaviors.

• Refinement of self-organization phenomena into
engineering techniques suitable for routine use.

• Application of self-organization techniques to real-
world problems of systems design and mainte-
nance.

The challenges of this research area are great, but
so is the potential reward: a major increase of relia-
bility and efficacy in our ability to build, maintain, and
manage complex engineered systems.
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