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Selecting and assessing challenge problems

Jared Freemana, Drew Leinsa, Conrad Bell IVb and The SD2 Research
Consortium1

aAptima, Inc., Arlington, VA, USA; bECS Federal LLC, Fairfax, VA, USA

ABSTRACT
Organisations conducting research programs often focus the work
of their scientists and technologists on challenge problems (CPs).
These challenges are designed to ensure that progress is measur-
able and relevant to the goals of the program sponsor.
Generating and selecting pertinent CPs is difficult, as is assessing
their value. We describe a method of generating and selecting
CPs and its application in a highly collaborative, multi-organisa-
tion research program. Thirty-eight biologists, chemists, mathema-
ticians and computer scientists across academic, commercial and
government organisations generated and ranked their top choices
from among 12 richly described candidate challenge problems. A
ranked-choice voting formula was applied. Five CPs were highly
scored; the remaining seven were distributed across a lower
range of scores. The program sponsor subsequently directed
researchers to address six CPs, including the elected five. Analysis
of the rationales that participants offered for their CP rankings
revealed four domain-independent dimensions of value: capabil-
ity, speed, impact and synergy. These dimensions of value can
help managers of interdisciplinary research programs systematic-
ally select a portfolio of CPs that will efficiently apply utilise
resources towards program goals and facilitate measurement of
scientific progress.
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Relevance to human factors/ergonomics theory

Doing so addresses the significant human factors challenge of managing complex
research teams and tasks in a manner that returns high research value for the funder's
dollar.

Introduction

We choose to go to the moon in this decade and do the other things, not because they are
easy, but because they are hard, because that goal will serve to organise and measure the
best of our energies and skills.

John F. Kennedy, President of the United States, 12 September 1962.
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Challenge propels discovery and innovation. President John F. Kennedy set the bold
challenge of a manned moon-landing in May of 1961. Success on scientific, technical
and political fronts followed an investment of eight years and $155 billion dollars
(adjusted for inflation). Today, many Federal research organisations routinely define
scientific challenge problems (CPs) to guide research. For example, one public notice
from the Intelligence Advanced Research Projects Activity (IARPA) states:

IARPA intends to measure the utility of proposed solutions [on the HECTOR program] by
trying to solve IARPA-furnished challenge problems. An example challenge problem might
be to perform various properly authorised statistical analyses on census data without
compromising privacy of any individuals…

Intelligence Advanced Research Projects Activity (2017).

CPs serve at least two major functions. First, they drive investment and progress
towards some distribution over basic research, use-inspired basic research (Pasteur’s
quadrant, per Stokes 1997) and applied research. Kennedy’s moon-landing challenge
focused primarily on achieving a single, practical mission; as a side effect, it produced
fundamental advances in geology, chemistry, medicine, material science, physics and
other sciences (National Aeronautics and Space Administration 2004). Another
applied research effort, the Manhattan Project, had a similar effect in advancing our
fundamental knowledge of physics. The program from which we report findings has
a portfolio of CPs with long-term goals of creating new scientific methods and tech-
nologies and accelerating discovery in complex areas of biology and chemistry.
However, each of these CPs will also advance understanding and generate solutions
for a more immediate, practical problem. In sum, programs define CPs to distribute
science and technology investments across multiple levels of research in a
planned way.

The second function of CPs is to support measurement of progress. CPs typically
define very few goals; for example, get a man to the moon. Therefore, the metrics of
progress can be standardised across research participants. Defined goals are often tan-
gible. Therefore, the metrics can be easily understood and communicated.
Measurements help program managers and their institutions promote and defend
funding decisions. Measurements also provide evidence of the effectiveness of
research products, evidence that can persuade operational and industrial users to
fund ‘last mile’ transition from the laboratory to the field.

If CPs drive and justify investment, then it is important to select relevant CPs and
to understand the source of their value. Doing so addresses the significant human
factors challenge of managing complex research teams and tasks in a manner that
returns high research value for the funder’s dollar. There is, however, a dearth of
research that directly provides insights on how to generate, select and value scientific
problems. Consequently, we turn for inspiration to literature in the closely-related
fields of defining problem spaces, solving problems and discovery.

Al-Ghassani and colleagues (2006) proposed a rational process for defining a prob-
lem space. They suggested that the research begin with a loose characterisation of the
problem. Specific components and processes for addressing the problem are then
identified, including key theories, methods, technologies and datasets. Finally, a
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determination is made regarding how these components and processes fit together.
This survey of problem and solution information tends to define the problem space
crisply enough that the research can, consistent with P�olya’s dictum (P�olya, 1957):
understand the problem, plan a route through it, travel that route and test for suc-
cess, failure and discoveries. One implication for challenge problem designers is that
they pilot these steps to ensure that: (1) the problem can be expressed and compre-
hended; (2) the solution components – theory, science and technology – exist and are
discoverable and (3) any technical interfaces between the components exist or can be
constructed.

McComb, Cagan, and Kotovsky (2017) characterised the space of structural engin-
eering problems quantitatively in three ways. First, there must be alignment between
all objective functions (e.g. ‘achieve a design that is light and strong’) and that these
functions may influence the shape of the design space. Secondly, the local structure of
the design space indicated the sensitivity of solutions to parameter values and, thus,
the likely efficiency of local searches. Thirdly, the global structure of the design space
bounded the number of potential solutions. Accordingly, CP design should include a
careful examination of goals or objective functions by which solutions will be meas-
ured. Another implication is that CP design should construct a map of the problem
space, one that measures the domain and, if possible, partitions it into areas that are
quantitatively or qualitatively distinct.

In the rich literature concerning human problem solving, we find rationalist and
naturalist threads that provide some guidance concerning CP design. Newell and
Simon (1972) typify the rationalist approach. They proposed that problem solving is
a function of the solver’s choice of problem representation (or model) and of one or
more strategies (or programs) from a catalogue of heuristic search strategies. The
main implication for CP design is that there be multiple distinct and promising rep-
resentations of the problem (and participants willing to use them). This will increase
the variety of solution strategies and the likelihood of discovering a success-
ful solution.

Newell and Simon noted that their information processing approach did ‘not shed
much light’ on the matter of how humans select models and strategies. The naturalist
school of problem solving research attempted to reverse engineer this black box. The
theory of recognition-primed decision making (Klein 1993) asserted that domain experts
should recognise the problem at hand as an instance of a case in memory, retrieve a
solution and apply mental simulation to test and revise the solution. The implicit guid-
ance for CP design is that the problem be carefully distinguished from similar but
solved cases to ensure that researchers solve for the new, distinguishing features.

Cohen, Freeman, and Thompson (1998) described a process of metacognitive con-
trol of recognitional decision making and generation of novel solutions under uncer-
tainty, high stakes and time constraints. A training method based on this theory had
large, reliable and positive effects among relatively expert decision makers. The key
implication for CP design derives from the framework: CPs should present sufficient
uncertainty, impact and urgency to inspire deep and critical thinking.

Klein (2013) presented a theory of discovery (a phenomenon adjacent to problem
solving) to account for historic cases that seem to violate the simple model by Wallas
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(1926), in which the discoverer engages in preparation, incubation, illumination and
verification. Klein argued that discoverers attend to surprising connections and con-
tradictions and use these as cues to test and revise theories or mental models. This
guides us to design CPs in which extant theory or methods fail to explain, predict or
generate relevant data. This implication would be minor if CPs typically generated
data sufficient to produce surprise and drive progress, but many CPs do not.

In summary, the literature concerning CP design is scant or non-existent, although
related literature offers some guidance for CP designers. At least some solution compo-
nents (theory, methods, data) should populate the problem space. It should be possible
to map that space, to draw or represent it in multiple ways to ensure multiple solution
opportunities. The CP should be well-distinguished from solved cases and sufficiently
rich in uncertainty, impact and urgency to inspire focused and critical thought.1 A
view across this literature reveals the common requirement for domain expertise in CP
design. In multi-disciplinary research programs, it is generally not the case that an indi-
vidual or group from one scientific discipline can design a good CP. For example, it
might be unreasonable to expect a biologist to generate a CP of significant interest and
value to a computer scientist. In the program on which we report, researchers had
such domain expertise. Consequently, the program manager tasked them with generat-
ing a set of CPs relevant to the program’s goals. They more than obliged by generating
a set of CPs far exceeding the research program’s limited pool of resources (e.g. time,
money and labour). This raised a significant question. By what means could the set of
CPs be evaluated to identify a subset of those most worthy of investment?

Below, we describe a method for systematically selecting CPs and report an ana-
lysis that will help program managers to characterise the value of a portfolio of chal-
lenge problems.

A method for collaborative generation and selection of
challenge problems

The method reported here grew out of a research program with aggressive scientific
goals coupled with a high degree of collaboration. Researchers in the program con-
sisted of biologists, chemists, mathematicians and computer scientists arrayed in
more than a dozen teams. These researchers gathered together at a recent workshop,
coming from 18 geographically distributed organisations of different types from both
the academic and commercial sectors. The program sponsor asked workshop partici-
pants to generate CPs that engaged each other in significant discovery and invention
in biology, chemistry and analytics. Below, we present the methods and findings of
this effort to generate and select challenge problems, and findings from a subsequent
analysis of the value that researchers placed on these CPs. This process is illustrated
in Figure 1.

The researchers generated 24 candidate CPs independently and in small teams.
They described CPs using a template that required: the CP name; the author and col-
laborators; short- and long-term goals; automation requirements for execution of
experiments, data processing and analysis steps; alignment with sponsor objectives
and relevant scientific literature. They were well-prepared to provide this information
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because many participated in drafting a guiding document that laid out a range of
potential applications; experimental issues; data screening and analysis issues; product
components; issues of experimental reproducibility and initial concepts for chal-
lenge problems.

As an example, one researcher proposed a candidate CP to develop a detector for
a dangerous chemical agent. The CP’s first quarter goal was, ‘Design and test [prod-
ucts] that detect [chemical components of threat X] with the maximum possible
dynamic ranges’. The first year goal was, ‘Repeat workflow on up to 100 [chemical
components of threat X] in parallel’. At four years, the goal was to detect and neu-
tralise the threat. Data from this CP, noted the author, would be processed by exist-
ing software workflows as well new analysis software being developed by another
program researcher.

Researchers independently read most or all of the CPs. In a large meeting, they
collectively culled 12 CPs that were redundant of others or that were subsets of
other CPs.

Participants were then asked to rank order the five CPs they most preferred from
among the remaining 12 CPs. Thirty-six researchers completed this task, although
some ranked fewer than five CPs. We performed and informal analysis to identify
five highly ranked CPs. Problems that were most frequently among the top five selec-
tions were prioritised above all others. Conflicts in rankings (ties) were resolved by
selecting CPs that were most frequently among the top two choices. The top five
problems were reviewed by the sponsor, who recommended extending the initial list
to include a sixth highly ranked CP that closely aligned with program objectives. This
informal method was fast, but not necessarily reproducible.

A formal method was subsequently applied to verify the rankings before the spon-
sor and research team invested heavily in the selected CPs. This algorithm, reported
in Appendix A, accounted for the incompleteness of the rankings. This incomplete-
ness arose because each participant ranked only their top five (or fewer, in some
cases) of 12 CPs, not all 12.

Define 
Candidate CPS 

Cull Candidate 
CPS

Rank Candidate 
CPS

Score Ranked 
Candidates

Select CPS On 
Score

Select CPS On 
Programmatics

Ensure 
Coverage of 

CPs & 
Organizations

Execute CPS

Figure 1. A process for defining, selecting and characterising the value of challenge problems.
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Shortly thereafter, a survey was conducted to elicit information about the level of
engagement in the six selected challenge problems. This survey was presented as a
table of CPs by performers. Each participant populated cells of their row with a
score to indicate whether they: ‘(1) definitely can work the CP now; (2) probably
can; (3) cannot determine yet; (4) probably cannot; (5) definitely cannot’. The sur-
vey results were used to ensure that each researcher could engage in at least one
CP, and to identify any CP that was without a research team. The results were also
used by the sponsor as a resource management tool to avoid potential resource con-
flicts or shortages. For example, a researcher might be directed to engage in a par-
ticular challenge problem as a subject matter expert or because a required capability
was housed at their institution. Alternatively, a specific combination of researchers
might be directed to engage because they were all required to successfully complete
a challenge. Finally, the program sponsor would direct certain researchers away
from one or more challenges to avoid the possibility of resource shortages, as
would be the case if researchers distributed their resources too thinly across too
many CPs.

Table 1 lists, for each CP, (1) the formally computed score and (2) the rank gener-
ated from summary ranking statistics. The analysis largely confirmed the informal
findings with the exception that one CP (ID¼ v) was not among the five best ranked,
but was roughly equivalent in its middling rankings to five others. In addition, the
sponsor identified one CP (ID¼ c) to pursue that was not among those identified
informally but that later emerged in formal analysis as the fifth highest ranked CP.
The survey of engagement opportunities revealed a reasonable distribution of scien-
tists across CPs. The program manager made modest adjustments to their self-assign-
ments based on these data and other information.

Analysis of the dimensions of CP value

An analysis was conducted to identify the dimensions of value on which workshop
participants ranked the candidate CPs.

Table 1. Quantitative analysis of CP rankings, ordered
by a score that incorporates rank and frequency data,
and compensates for rankings of a subset of all can-
didates by all participants.
CP ID Formal score (rank) Informal rank findings

h� 0 (1) 2
x� 5 (2) 4
a� 19 (3) 1
u� 36 (4) 3
c� 58 (5) 6
M 80 (6) n.a.
K 88 (7) n.a.
v� 93 (8) 5
b 97 (9) n.a.
j 98 (10) n.a.
d 106 (11) n.a.
g 107 (12) n.a.

CPs marked with “�” were selected for execution.
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Method

In addition to ranking CPs, the scientists submitted rationales for their selection of
each CP they ranked (in the task, above). These rationales varied in depth. A striking
example of a compelling rationale was the following:

This project has a good chance of yielding a high impact publication by broadly
advancing the state-of-the-art in [component] design… There are good opportunities
here to combine biophysical models and [machine learning] to improve [component]
function predictions, which can broadly utilise [other teams’] capabilities. Once the
data tables are created for this effort (could be a Q2 milestone), the [computer scien-
tists] will be able to dive deep with [machine learning] to identify patterns of interest.

Two of the authors independently coded a random sample of 20 of the 169 ration-
ales that the 36 program members submitted with their CP rankings.2 These authors
then negotiated four codes that expressed most of the dimensions each had independ-
ently observed in the data, and jointly applied those codes to the same 20 rationales.
One researcher coded the remaining rationales. Each CP rationale was coded as
belonging to from zero to four dimensions.3

Results

We identified four dimensions of value4 in CPs:

� Capability¼The CP creates a tool or technique that enables new methods of ana-
lysing, designing, or producing parts, components or systems (50 instances in CP
ranking rationales).

� Speed¼The CP enables the program to demonstrate success quickly
(22 instances).

� Impact¼Discovery, design, technology, techniques and applications arising from
this CP will be significant (e.g. publishable, award-worthy) (56 instances).

� Synergy¼The CP builds on extant products of the program, resources of the per-
forming organisations, commercial products, or open sources tools and data
(52 instances).

These four dimensions were independent of one another. An analysis (see Table 2)
over the 112 rationales in which at least one dimension was present found only weak
correlations (r< j0.33j) between the dimensions. Thus, coders who use these dimen-
sions in the future can do so with some confidence that they will not conflate the
dimensions one for another.

Table 2. Four dimensions of CP value rarely
co-occurred.

Capability Speed Impact Synergy

Capability 1 – – –
Speed �0.12755 1 – –
Impact �0.32329 �0.04495 1 –
Synergy �0.15177 0.035406 0.035806 1

Thus, they were weakly correlated and relatively independent of
one another.
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Discussion

A procedure for generating and down-selecting CPs was developed and applied. It
was sufficient to enable program scientists to specify CPs, to eliminate redundant or
low-value CPs and to down-select among CPs using rank-based voting. A survey of
participant capability to engage in each CP was also conducted to confirm that no
researchers or CPs were ‘orphaned’. The method drove investment decisions by the
sponsor and engagement of the program team. The method did not fully capture sci-
entific or programmatic concerns that led the sponsor to amend the results with one
additional CP, as noted above. Thus, we advise users of this method to ensure sys-
tematic review and revision of CP selections by program leadership.

An analysis was conducted on the rationales that the scientists offered for their CP
rankings. That analysis revealed four independent dimensions of CP value: capability,
speed, impact and synergy. These dimensions have useful applications. First, a program
sponsor might build a portfolio of CPs whose distribution over dimensions matches
their investment strategy. For example, a portfolio whose CPs maximise speed and syn-
ergy would execute quickly and potentially at low cost. To build a ‘biggest bang for the
buck’ portfolio, the sponsor would select CPs that maximise impact and synergy. An
investment in scientific techniques and technology might involve CPs that score highly
on capability development. In sum, different sponsors will likely want to use mixtures
of CPs based on the overall program goals and funding.

Second, a program sponsor might analyse the relationships of dimensions,
researchers and CPs to understand and manage the complex socio-technical system
spawned by a multi-million dollar research investment. A correlational, cluster or
principal components analysis of scientists by their use of CP dimensions in ration-
ales should reveal their preferences for building new capability, publishing at speed,
attaining high impact or building research networks. An analysis of researchers by
CPs will shed light on their perceptions of their technical capabilities. Analysis of CPs
by CP dimensions should reveal the perceived potential of each CP to develop new
methods or technologies, demonstrate progress quickly, discover new scientific or
technical phenomena, or build the research community.

In future research, we plan to pursue the applications and analyses, above. This
will require a more fine-grained dataset, either historical or newly created. We plan
to have each scientist rate each CP (e.g. from 1 to 7) on each of the four dimensions,
as well as rank their preferred CPs. The correlation between value ratings and CP
rankings will provide some validation of the dimensions, indicate which dimension(s)
drive rankings of CPs,5 and enable the correlational and dimensionality reductions
described above.

The financial cost of CPs is, of course, a factor in calculating return on investment.
This method did not directly capture such costs. It does give some indirect guidance:
the survey of potential researcher engagement with CPs can help a program manager
to manage redundant investments, and the synergy dimension may help the sponsor
and scientists distribute tasks to those who can execute them most cost effectively. In
the CP assessment exercise, above, neither the sponsor nor the scientists could assess
the cost of the CPs, given the nascent state of the problem descriptions. Precise cost
estimates require investment in deep design of research studies and, potentially, pilot
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testing. The program at hand is developing automated cost estimation technologies
(e.g. for laboratory costs) that will partially address this aspect of RoI.

Finally, we note that the CPs referenced here have, as of this writing, been selected
but not executed. Once the CPs have been executed, a post-assessment will provide
data to determine whether the program participants selected CPs that met their
claims for timely execution, synergy, creation of new capabilities and impact.

Notes

1. A range of interesting research bears on the design of organizations for solving CPs, such
as teams of researchers. Narayanamurti and Odumosu (2016) studied successful research
institutions to define aspects of culture, policy, management, and investment. The
National Research Council (2015) recommended that collaborative research programs
apply lessons from the rich literature concerning teamwork. CPs, particularly
interdisciplinary ones, should be designed with some expectation of the need for and cost
of these practices.

2. Some scientists submitted fewer than the requested five ranked CPs, and some scientists
omitted rationales for some rankings. Thus, the number of rationales is lower than
expected from 36 individuals ranking five CPs.

3. A rationale was coded as having zero dimensions when the text could not reasonably be
considered a rationale, or was blank.

4. Note that the name of a dimension indicates only that the rationale addressed the issue
(e.g. impact) but not whether the rationale was positive or negative (e.g. high or low
impact) on that dimension.

5. The dichotomous dimension data developed here did not support this type of analysis.
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Appendix A

The ranked-choice voting formula developed in this work computes an interval score for each
of many candidate CPs from ordinal rankings by multiple rankers who may rank only a subset
of candidates, may rank a unique subset of candidates, and may award some candidates the
same rank (i.e., a tie).

The parameters are:

� n denotes the number of rankers,
� k denotes the number of candidates to be ranked,
� m denotes the maximum rank assigned over all candidates and rankers.

We will let Cj denote candidate j for j ¼ 1; :::; k. The ordering of rankers and candidates
is fixed and identified with the sets 1; :::; nf g and C1; :::; Ckf g.

For each of the n rankers, we define a ranking function:

ri : Candidatesf g ! Ranksf g [ mþ 1f g
C1; :::; Ckf g ! 1; :::; m;mþ 1f g

Above, mþ 1 corresponds to a candidate that a ranker does not rank. This score represents
a worst case, in which the ranker considered all candidates not ranked as equal in priority and
minimally less desirable than the lowest ranked of the ranked candidates. We define a pre-
weight as follows:

~w Cjð Þ ¼
Xn

i¼1

ri Cjð Þ

We define the weight function wðCjÞ using the following normalisation, in which Ci is the
candidate with the lowest pre-weight:

w Cjð Þ ¼ ~w Cjð Þ � min
i2 1;:::;kf g

~w Cið Þ
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