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Collective adaptive systems are an emerging class of networked computational systems particularly suited

for application domains such as smart cities, complex sensor networks, and the Internet of Things.

These systems tend to feature large-scale, heterogeneity of communication model (including opportunis-

tic peer-to-peer wireless interaction) and require inherent self-adaptiveness properties to address un-

foreseen changes in operating conditions. In this context, it is extremely difficult (if not seemingly

intractable) to engineer reusable pieces of distributed behaviour to make them provably correct and smoothly

composable.

Building on the field calculus, a computational model (and associated toolchain) capturing the notion of

aggregate network-level computation, we address this problem with an engineering methodology coupling

formal theory and computer simulation. On the one hand, functional properties are addressed by identify-

ing the largest-to-date field calculus fragment generating self-stabilising behaviour, guaranteed to eventually

attain a correct and stable final state despite any transient perturbation in state or topology and including

highly reusable building blocks for information spreading, aggregation, and time evolution. On the other

hand, dynamical properties are addressed by simulation, empirically evaluating the different performances

that can be obtained by switching between implementations of building blocks with provably equivalent

functional properties. Overall, our methodology sheds light on how to identify core building blocks of col-

lective behaviour and how to select implementations that improve system performance while leaving overall

system function and resiliency properties unchanged.

CCS Concepts: • Theory of computation → Self-organization; • Software and its engineering → Spec-

ification languages; Semantics; Software design engineering; Empirical software validation; • Computing

methodologies → Model verification and validation;
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1 INTRODUCTION

Collective adaptive systems are an emerging class of networked computational systems situated
in the real world, finding extensive application in domains such as smart cities, complex sensor
networks, and the Internet of Things. The pervasive nature of these systems can potentially fulfill
the vision of a fully integrated digital and physical world. With collective adaptive systems, in the
near future one may easily envision “enhanced” living and working environments, thanks to com-
puting devices connected to every physical object that provide increasingly powerful capabilities
of computing, storage of local data, communication with neighbours, physical sensing, and actua-
tion. Such environments pave the way towards implementing any non-trivial pervasive computing
service through the inherent distributed cooperation of a large set of devices, so as to address by
self-adaptation the unforeseen changes in working conditions that necessarily happen—much in
the same way adaptivity and resilience are addressed in complex natural systems at all levels, from
molecules and cells to animals, species, and entire ecosystems [59].

A long-standing aim in computer science has indeed been to find effective engineering meth-
ods for exploiting mechanisms for adaptation and resilience in complex, large-scale applications.
Practical adoption, however, poses serious challenges, since such mechanisms need to carefully
trade efficiency for resilience and are often difficult to predictably compose to meet more complex
specifications. Despite much prior work, e.g., in macroprogramming, spatial computing, pattern
languages, and so on (as surveyed in Reference [8]), to date no such approach has provided a
comprehensive workflow for efficient engineering of complex self-organising systems.

Recently, however, among the many related works (see Section 2), two key ingredients have
been provided toward such an engineering workflow. First, the computational field calculus [21,
54] provides a language for specifying large-scale distributed computations and, critically, a func-
tional programming model for their encapsulation and safely-scoped composition. This framework
assumes that the system is composed of a discrete set of devices deployed in a space equipped
with a notion of locality: Each device works in asynchronous computational rounds, producing
a result data that is sent to local neighbours.1 Second, a set of sufficient conditions for “self-
stabilisation” have been identified [10, 19, 53], guaranteeing that a large class of programs are
all self-adaptive systems resilient to changes in their environment—more precisely, after some pe-
riod without changes in the computational environment, such a distributed computation reaches
a stable state that only depends on inputs and network topology (i.e., the converged state is in-
dependent of computational history). As an example, such conditions reveal the non-resiliency of
gossiping to find the minimum of a given value across a network: Since each node continuously
compute the minimum of all values received from neighbours, the system cannot recover from the
temporary decrease of a value below the minimum [19].

1Hence, we do not specifically deal with continuous functions and with virtual nodes that do not host computation—though

they are mechanisms that might be mimicked: e.g., approximation of continuous functions can be developed along the lines

of References [11, 12].
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This article combines these two advances with an approach to optimisation of self-organising
systems via substitution of equivalent coordination mechanisms, guaranteed to result in the same
functional behaviour though with different performance characteristics. Together, they combine
into a workflow for efficient engineering of complex self-organising systems in which, once a dis-
tributed system is framed as a computation over fields, then (i) a minimal resilient implementation
is created by composing building blocks from a library of reusable self-stabilising components
or designed ad hoc, and (ii) performance is optimised by selective substitution of building block
instances with alternate implementations, checking performance by simulation.

This workflow is backed by pairing formal modelling and simulation of complex distributed
systems. On the one hand, functional properties are addressed by a formally proved language
of self-stabilising specifications, which also establishes functional equivalence of certain building
blocks. On the other hand, dynamical properties are addressed by simulation, empirically evaluat-
ing performance differences when building blocks are selectively substituted by provably equiva-
lent implementations. In particular, empirical analysis of large-scale systems, even though it may
result in sub-optimality, is motivated by the fact that finding optimal combinations of alterna-
tive implementations easily becomes a computationally hard problem [22] that—to the best of our
knowledge—has never been addressed.

The technical contributions of this article with respect to previous work are as follows: (i) build-
ing on Reference [51], we provide the largest-to-date provably self-stabilising fragment of field
calculus, by showing inevitable reachability of a unique stable state [19], including the self-
organisation building blocks defined in Reference [10]; (ii) we provide alternative implementa-
tions of these building blocks (some new and some consolidating existing algorithms), still in the
self-stabilising fragment, and proved equivalent to the original versions; and (iii) we empirically
evaluate and compare performance of the building blocks and alternatives, characterising contexts
in which a given implementation can be favoured.

The remainder of this article is organised as follows: Section 2 reviews related work and dis-
cusses background and motivation, presenting the methodological workflow in the context of the
field calculus; Section 3 formalises syntax, semantics, and properties of the field calculus, provid-
ing building block examples showcasing its expressiveness; Section 4 presents our self-stabilisation
framework, with formal definition and methodological implications; Section 5 provides the self-
stabilising fragment, result on self-stabilisation, result on membership for the building blocks,
and several motivating examples; Section 6 defines alternative building block implementations
and empirically evaluates their performance; Section 7 presents two case studies illustrating the
methodology; and Section 8 summarises and concludes.

2 RELATED WORK, BACKGROUND, AND MOTIVATION

The approach we propose falls under the umbrella of aggregate computing [9], a framework for de-
signing resilient distributed systems based on abstracting away from individual device behaviour:
system design focusses instead on the aggregate behaviour of the collection of all (or a subset of)
devices. In other words, aggregate computing considers the whole set of devices seen as a single
“abstract computing machine.” Coupled with a formal computational model, this approach aims
at smooth composition of distributed behaviour, trading off expressiveness for control of system
outcomes.

2.1 Relationship to Prior Work

Our work builds on two well-developed areas of prior work: aggregate programming languages,
which address the challenges of programming collectives of devices, and self-stabilisation, which
formalises a useful class of resilient system behaviours.
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Aggregate Programming. Aggregate programming methods of many sorts have been developed
across a wide variety of applications and fields. A thorough review may be found in Reference [8],
which identifies four main approaches. First, “bottom-up” methods simplify aggregate program-
ming by abstracting and simplifying programming of individual networked devices. These meth-
ods include Tuples On The Air (TOTA) [39], Hood [56], the chemical models in Reference [55],
Butera’s “paintable computing” [13], and Meld [2]. In the context of parallel computing, the Bulk
Synchronous Parallel (BSP) model [50] facilitates programming with barriers allowing multiple
processors to synchronise, e.g., allowing system-wide computational rounds. Similarly, many cloud
computing models (e.g., MapReduce [24]) provide bulk programming models that abstract away
network structure.

Three families of “top-down” approaches complement these bottom-up methods. These higher-
level approaches specify tasks for aggregates and then translate (e.g., by a compiler) from aggregate
specifications into an implementation in terms of individual local actions. These approaches also
tend to build in notions of implicit resilience, though specifics vary wildly from approach to ap-
proach. One such family focusses on spatial patterns, such as topological networks in Growing
Point Language [16], geometric patterns in Origami Shape Language [42], self-healing geometries
in References [15] and [35], or universal patterns [57]. Another family instead aims at summari-
sation and streaming of information over regions of space and time. Examples include sensor-
network query languages like TinyDB [38], Cougar [58], TinyLime [17], and Regiment [43].

The third family are general-purpose space-time computing models. Some of these are spatial
parallel computing models, such as StarLisp [36] and systolic computing (e.g., in References [28]
and [48]), that shift data in parallel on a structured network. Others, such as MGS [29, 30], are more
topological in nature. Because of their generality, this class of computing models can form the basis
of a layered approach to the construction of distributed adaptive systems, as in our previous work
on field calculus [20, 21] and the generalised framework of aggregate programming [9, 51].

Self-Stabilisation. This article aims to find sufficient conditions identifying a large class of com-
plex network computations with predictable outcomes despite transient changes in their envi-
ronment or inputs and to express this class by construction in terms of a language of resilient
programs. The notion we focus on requires a unique global state (reached in finite time) indepen-
dent of initial state, i.e., depending only on the environment (topology and sensors). We speak of
this property as self-stabilisation as it is contained within the notion of self-stabilisation to correct

states for distributed systems [26], defined in terms of a set C of correct states that the system
enters in finite time and then never escapes from: in our case, C is the single state corresponding
to the intended result obtained as a function from inputs and environment.

Several versions of self-stabilisation are found in the literature, surveyed by Reference [49], from
Reference [25] to more abstract ones [1], depending largely on the system model under study—
protocols, state machines, and so on. In our case, self-stabilisation is studied for computational
fields, considered as data structures distributed over space. However, since previous work trying
to identify general conditions for self-stabilisation (e.g., Reference [32]) only considers very specific
models (e.g., heap-like data structures in a non-distributed settings), it is difficult to make a precise
connection with those prior results.

Some variations of the definition of self-stabilisation also deal with different levels of quality
(e.g., fairness, performance). For instance, the notion of superstabilisation [27] extends the
standard self-stabilisation definition by adding a requirement on a “passage predicate” that should
hold while a system recovers from a specific topological change. Our work does not address this
particular issue, since we completely equate treatment of topological changes and changes to
inputs (e.g., sensors) and do not address specific performance requirements formally. Performance
is also affected by the fairness assumption adopted: We relied on a notion abstracting from more
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concrete ones typically used [34]—these more concrete models could be applied with our work
as well but would reduce the generality of our results. Instead, we address performance issues
in a rather different way: We allow for multiple different implementations of given building
block functions, trading off reactiveness to different kinds of changes in different ways, proved
equivalent in their final result, and selected based on empirical evaluation.

Concerning specific results on self-stabilisation, some approaches have achieved results that
more closely relate to ours. The author of Reference [26] introduced a computation of minimum
distance in hops from a source node that is known to self-stabilise and used it as a preliminary
step in creating a graph spanning tree. Other authors attempt to devise general methodologies.
The authors of Reference [5] depict a compiler turning any protocol into a self-stabilising one.
Though technically unrelated to our solution, it shares the philosophy of hiding details of how
self-stabilisation is achieved under the hood of the execution platform: In our case, designers are
intended to focus on macro-level specification, trusting that components interact to achieve the
global outcome in a self-stabilising way. Similarly, the authors of Reference [31] suggest that hi-
erarchical composition of self-stabilising programs is self-stabilising—a key idea for constructing
our functional language of self-stabilising programs.

For this work’s specific technical result in the context of the field calculus: apart from Refer-
ence [51], which we extend here, the closest prior work appears to be Reference [19], which, to
the best of our knowledge, is the first attempt at directly connecting self-stabilisation to engineer-
ing self-organisation. In that work, self-stabilisation is proved for all fields inductively obtained
by functional composition of fixed fields (sensors, values) and a spanning-tree-inspired spreading
process. Here, we consider a more liberal programming language and also address dynamical prop-
erties by simulation. Finally, Reference [37] develops an alternative approach to self-stabilisation
for computational fields, using a fix-point semantics and currently including only structures based
on spanning trees.

2.2 Computing with Fields

The basic data unit of aggregate computing is a dynamically changing computational field (or
field for short) of values held across many devices. More precisely, a field value ϕ is a function
ϕ : D→ L mapping each device δ ∈ D to a local value � ∈ L. Similarly, a field evolution is a dy-
namically changing field value, and a field computation takes field evolutions as input (e.g., from
sensors or user inputs) and produces a field evolution as output, from which field values are (dis-
tributed) snapshots. For example, given a Boolean field input mapping certain devices to True, a
distanceTo computation of an output field of estimated distances to the nearest such device can
be constructed by iterative aggregation and spreading of information, with the output changing
to track input changes. Note that while the computational field model maps most intuitively onto
spatially embedded systems, it can be used for any distributed computation (though it tends to be
best suited for sparse networks).

Critical to the approach, any field computation can be mapped to an equivalent single-device
behaviour to be iteratively executed by all devices in the network. Execution is in (per-device) com-

putation rounds: In sense-eval-broadcast iterations, in which a device collects information coming
from neighbours and local sensors, the computation is evaluated against the device’s local state,
and a result of computation is broadcast to neighbours (which collect and use that state in their
own future computation rounds).

2.3 Proposed Workflow

Our proposed workflow is based on computational field calculus [21] (or field calculus for short),
a tiny functional language, in which any distributed computation can be expressed, encapsulated,
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and safely composed. Field calculus is a general-purpose language in which it is possible to express
both resilient and non-resilient computations. For example, field calculus can express computing
the minimum value in a network by gossip or by directed aggregation: The gossip implementa-
tion is non-resilient, because it cannot track a rising minimum, while the directed aggregation
implementation is resilient and can track both rising and falling minimum values. Field calculus
can, however, be restricted to a sub-language in which all programs are guaranteed resilient in the
sense of self-stabilisation, as discussed in the following.

The succinctness of field calculus that makes formal proofs tractable, however, is not well suited
for the practical engineering of self-organising systems, especially when one needs to scale to
complex designs. This can be mitigated by reusable “building block” operators capturing common
coordination patterns [10], thus raising the abstraction level and allowing programmers to work
with general-purpose functionalities or user-friendly APIs capturing common use patterns.

These building blocks, despite desirable resilience properties, may not be particularly efficient
or have desirable dynamical properties for a given application. We thus incorporate a new in-
sight: Due to the functional composition model and modular proof used in establishing the self-
stabilising calculus, any coordination mechanism guaranteed to self-stabilise to the same result
as a building block can be substituted without affecting the overall result. This allows alterna-
tive implementations in a “library of self-stabilising blocks,” functionally equivalent but trading
off performance in different ways or with more desirable dynamics (e.g., specialised for particular
applications) [3, 4].

Together, these insights enable a two-stage engineering workflow that progressively treats com-
plex specification, resilience, and efficiency. The workflow starting point is specification of the ag-
gregate behaviour to be implemented. Following this: (i) the specification is expressed as a compo-
sition of coordination patterns (e.g., information spreading, information collection, state tracking)
that can be mapped onto building block operators, forming a “minimal resilient implementation”
guaranteed self-stabilising but possibly far from optimal; (ii) each building block is then consid-
ered for replacement with a mechanism from the substitution library expected to provide better
performance, confirming the improvement by analysis or simulation, and then iterating, until a
satisfactory level of performance is achieved. Finally, the library of building blocks can be natu-
rally extended with new blocks and alternatives, as will likely be needed when addressing some
novel application scenarios.

3 FIELD CALCULUS

This section presents first-order field calculus [20] with a syntax inspired by recent Domain
Specific Language (DSL) implementations [14] (in place of the prior Scheme-like formulation in
References [20, 54]) and then uses it to specify the key self-stabilising building blocks for this
article.

In our model, individual devices undergo computation in (local) asynchronous rounds: In each
round, a device sleeps for some time, wakes up, gathers information about messages received from
neighbours while sleeping, performs an evaluation of the program, and, finally, emits a message
to all neighbours with information about the outcome of computation before going back to sleep.
Our formulation assumes a denumerable set of device identifiers D, ranged over by δ , such that
each device has a distinguished identifier. In the rest of the article each device is represented by
its identifier—our formalisation does not provide (and does not need) a syntax for devices.

3.1 Syntax

Figure 1 presents the syntax of field calculus. Following Reference [33], overbar notation denotes
metavariables over sequences and the empty sequence is •: e.g., for expressions, we let e range over
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Fig. 1. Syntax of field calculus.

sequences of expressions e1, e2, . . . , en (n ≥ 0). Similarly, formulas with sequences are duplicated

for each element of the sequences (assumed to be the same length): e.g., f(e) = v is a shorthand
for fi (e) = vi for i = 1 . . . |v|.

A program P consists of a sequence of function declarations and a main expression e. A function
declaration F defines a (possibly recursive) function, with d the function name, x the parameters,
and e the body. Expressions e model a whole field (i.e., e evaluates to a value on every device in the
network, thus producing a computational field). As usual, the set of free variables in an expression
e is denoted by FV(e), and we say an expression e is closed iff FV(e) is empty. An expression can be

• a variable x, either a function formal parameter or local to a let- or rep-expression;
• a value, either a local value (associating each device to a computational value—e.g., numbers,

literals—defined through data constructors c) or a neighbouring field value ϕ (associating
each device to a map from neighbours to local values—note that such values appear in
intermediate computations but not in source programs);

• a let-expression let x = e0 in e, which is evaluated by first computing the value v0 of e0

and then yelding as result the value of the expression obtained from e by replacing all the
occurrences of the variable x with the value v0;

• a function call f(e), where f can be either a declared function d or a built-in function b (such
as accessing sensors, mathematical and logical operators, or data structure operations—see
Electronic Appendix A for examples);

• a conditional if(e1){e2}{e3}, splitting computation into two isolated sub-networks: devices
evaluating e1 to True compute expression e2; the rest compute e3;

• a nbr-expression nbr{e}, modelling neighbourhood interaction and producing a neighbour-
ing field value ϕ that represents an “observation map” of neighbour’s values for expression
e, namely, associating each device to a map from neighbours to their latest evaluation of e;

• or a rep-expression rep(e1){(x)=>e2}, evolving a local state through time by evaluating an
expression e2, substituting variable x with the value calculated for the rep-expression at
the previous computational round (in the first round x is substituted with the value of e1).
Although the calculus does not model anonymous functions, (x)=>e2 can be understood as
an anonymous function with parameter x and body e2.

Values associated to data constructors c of arity zero are written by omitting the empty paren-
theses, i.e., we write c instead of c(). We assume a constructor for each literal value (e.g., False,
True, 0, 1, −1, . . .) and a built-in function bc for every data constructor c of arity n ≥ 1, i.e., such
that bc(e1, . . . , en ) evaluates to c(�1, . . . , �n ), where each �i is the value of ei . In case b is a binary
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built-in operator, we allow infix notation to enhance readability: That is, we shall sometimes write
1 + 2 for +(1, 2). To simplify notation (and following features present in concrete implementations
of field calculus [47, 52]), we shall also overload each (user-defined or built-in) function with local
arguments to accept any combination of local and neighbouring field values: The intended mean-
ing is then to apply the given function pointwise to its arguments. For example, let ϕ be the neigh-
bouring field δ1 �→ 1,δ2 �→ 2,δ3 �→ 3 andψ be δ1 �→ 10,δ2 �→ 20,δ3 �→ 30, we shall useϕ +ψ for the
pointwise sum of the two numerical fields giving the neighbouring fieldδ1 �→ 11,δ2 �→ 22,δ3 �→ 33,
or 1 + ϕ for the field obtained incrementing by 1 each value in ϕ, namely δ1 �→ 2,δ2 �→ 3,δ3 �→ 4.

In the following, we assume that the calculus is equipped with the type system defined by Ref-
erence [20], which is a variant of the Hindley–Milner-type system [18] that has two kinds of types:
local types (for local values) and field types (for neighbouring field values). This system associates
to each local value a type L, and type field(L) to a neighbouring field of elements of type L, and
correspondingly a type T to any expression.

As described in detail in Electronic Appendix B, to express more general and reusable func-
tions, we add syntactic sugar to admit functional parameters in function definitions, written

def d(x) (z){e} and called d(e) (f), where the arguments f can be either names of plain (i.e., non-
extended) functions or functional parameters—names of extended functions are not allowed to be
passed as arguments, and, by convention, we omit the second parentheses whenever no functional
parameters are present.

Example 3.1. As an example showcasing all classes of construct at work, consider the following
definition of a distanceToWithObs function, mapping each device to an estimated distance to a
source area (a numerical indicator field, holding 0 in the area and∞ outside), computed as length
of a minimum path that circumvents an obstacle area (a Boolean indicator field):

In the body of function distanceToWithObs, construct if divides the space into two regions,
where obstacle is True and where it is False: In the former, the output is infinity, and in
the latter we compute—isolated from the devices in the former area, hence “circumventing it”—
distance estimation by calling function distanceTo.

In the body of function distanceTo, we give 0 on sources through operator min on the indica-
tor field source. On other devices, we compute the estimated distance as being infinity at the
beginning and then evolving by taking the minimum value (minHood(field) is a built-in which
returns the minimum value in field or∞ if the field is empty) across neighbour estimates added
pointwise to the estimated distance to each neighbor (obtained by functional parameter metric,
to which built-in nbrRange that models a local range sensor can be passed).

3.2 Semantics

Operational semantics is formalised (in Electronic Appendix C): (i) for computation within a sin-
gle device, by judgement “δ ; Θ � emain ⇓ θ”, to be read “expression emain evaluates to θ on device δ
with respect to environment Θ” (or “device δ fires”), where θ is an ordered tree of values tracking
the results of all evaluated subexpressions of emain, and Θ is a map from each neighbour device δi

(including δ itself) to the θi produced in its last firing; (ii) for network evolution, by a transition

system
act−−→ on network configurations N = 〈Env; Ψ〉, where: Env models the environmental con-

ditions (i.e., network topology and inputs of sensors on each device), Ψ models the overall status
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of the devices in the network at a given time (as a map from device identifiers to environments Θ),
and actions act can either be firings of a device (δ ) or network configuration changes (env).

3.3 Implementation of Building Blocks

We are now able to express the main “building blocks” used in field calculus (as reported in Ref-
erence [10]), a set of highly general and guaranteed composable operators for the construction of
resilient coordination applications. Each of these building blocks captures a family of frequently
used strategies for achieving flexible and resilient decentralised behaviour, hiding the complexity
of using the low-level constructs of field calculus. Despite their small number, these operators are
so general as to cover, individually or in combination, a large number of the common coordina-
tion patterns used in design of resilient systems. The three building blocks, whose behaviour will
be thoroughly evaluated in next section along that of alternative implementations, are defined as
follows.

3.3.1 Block G. G(source,initial)(metric,accumulate) is a “spreading” operation general-
ising distance measurement, broadcast, and projection, which takes two fields and two functions
as inputs: source (a float indicator field, which is 0 for sources and∞ for other devices), initial
(initial values for the output field), metric (a function providing a map from each neighbour to
a distance), and accumulate (a commutative and associative two-input function over values). It
may be thought of as executing two tasks: (i) computing a field of shortest-path distances from
the source region according to the supplied function metric and (ii) propagating values up the
gradient of the distance field away from source, beginning with value initial and accumulat-
ing along the gradient with accumulate. This is accomplished through built-in minHoodLoc(ϕ, �),
which selects the minimum of the neighbours’ values in ϕ and the local value � according to the
lexicographical order on pairs.

As an example, G_distanceTo function (equivalent to the function distanceTo shown in Sec-
tion 3.1 with metric equal to nbrRange), and a G_broadcast function to spread values from a
source, can be simply implemented with G as

3.3.2 Block C. C(potential,local,null)(accumulate) is an operation that is complemen-
tary to G: It accumulates information down the gradient of a supplied potential field. This operator
takes three fields and a function as inputs: potential (a numerical field), local (values to be
accumulated), null (an idempotent value for accumulate), and accumulate (a commutative and
associative two-input function over values). At each device, the idempotent null is combined with
the local value and any values from neighbours with higher values of the potential field, using
function accumulate to produce a cumulative value at each device. For instance, if potential is
a distance gradient computing with G in a given region R, accumulate is addition, and null is 0,
then C collects the sum of values of local in region R.
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As an example, a C_sum function summing all the values of a field down a potential, and a C_any
function checking if any value of a Boolean field is true and reporting the result down a potential,
can be simply implemented with C as

3.3.3 Block T. T(initial,zero)(decay) deals with time, whereas G and C deal with space.
Since time is one-dimensional, however, there is no distinction between spreading and collecting
and thus only a single operator. This operator takes two fields and a function as inputs: initial
(initial values for the resulting field), zero (corresponding final values), and decay (a one-input
strictly decreasing function over values). Starting with initial at each node, that value gets de-
creased by function decay until eventually reaching the zero value, thus implementing a flexible
countdown, where the rate of the countdown may change over time. For instance, if initial is a
pair of a value v and a timeout t , zero is a pair of the blank value null and 0, and decay takes a
pair, removing the elapsed time since previous computation from the second component of the pair
and turning the first component to null if the second reached 0, then T implements a limited-time
memory of v.

As an example, a T_track function simply tracking an input value over time, and a T_memory
function holding a value for a given amount of time (and then showing a null value), can be simply
implemented with T as

with the built-in operator (sensor) sns_interval returning the time elapsed since the last execu-
tion round.

4 SELF-STABILISATION AND EVENTUAL BEHAVIOUR

In the dynamic environments typically considered by self-organising systems, a key resilience
property is self-stabilisation: the ability of a system to recover from arbitrary changes in state.
In particular, of the various notions of self-stabilisation (see the survey in Reference [49]), we
use the definition from Reference [26] as further restricted by Reference [19]: a self-stabilising
computation is one that, from any initial state, after some period without changes in the com-
putational environment, reaches a single “correct” final configuration, intended as the output of
computation.
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Self-stabilisation (formalised in Section 4.1) focusses on a computation’s eventual behaviour
(formalised in Section 4.2) rather than its transient behaviour, which also enables optimisation
by substitution of alternate coordination mechanisms (cf. Section 2.3). As we will see, this defini-
tion covers a broad and useful class of self-organisation mechanisms, though some are excluded,
such as continuously changing fields like self-synchronising pulse-coupled oscillators [40] and
computations that converge only in the limit like Laplacian-based approximate consensus [44].
Incorporating such mechanisms into a framework such as we present here will require bound-
ing the dynamical behaviours of computations (e.g., by identification of an appropriate Lyapunov
function [23]). Preliminary investigations in this area have produced positive results (e.g., Refer-
ences [23, 41]), but integration with the framework presented in this article is a major project that
remains as future work.

4.1 Self-Stabilisation

Our notion of self-stabilisation considers resilience to changes in the computational system’s state
or external environment. Hence, assume a program P and fixed environmental conditions Env (i.e.,
fixed network topology and inputs of sensors). According to the operational semantics outlined
in Section 3.2, for each network configuration N with environment Env that is reachable from the

empty network configuration, we can define a transition system 〈S, act−−→〉, where

• the only possible action labels act are device identifiers δ representing firings of an individ-
ual device of the network; and

• the set of the states S is the smallest set of the network configurations such that: (1) N ∈ S,

and (2) for each N ′ ∈ S and δ in the network there is an N ′′ ∈ S such that N ′
δ−→ N ′′.

We say that a configuration N is stable iff it is not changed by firings, i.e., N
δ−→ N for each δ .

Let N0
δ0−−→ N1

δ1−−→ . . . be an infinite sequence of transitions in S. We say that the sequence is fair

iff each configuration Nt is followed by firings of every possible device, i.e., for each t ≥ 0 and δ
there exists a t ′ > t such that δt ′ = δ . We say that the sequence stabilises to state N iff Ni = N for
each i after a certain t ≥ 0.

Given a program P and fixed environmental conditions, a transition system like the one con-
sidered above can be defined for any closed expression e that may call the user-defined functions
defined in P: Just consider e as the main expression of P. In the following, for convenience of the
presentation, we focus on computations associated to such an expression e.

Definition 1 (Stabilisation and Self-Stabilisation). A closed expression e is (i) stabilising iff every
fair sequence stabilises given fixed environmental conditions Env and (ii) self-stabilising to state
N iff every fair sequence stabilises to the same state N given fixed environmental conditions Env.

A function f(x) is self-stabilising iff given any self-stabilising expressions e of the type of the
inputs of f the expression f(e) is self-stabilising.

Note that if an expression e self-stabilises, then it does so to a state that is unequivocally deter-
mined by the environmental conditions Env (i.e., it does not depend on the initial configuration
N0) and can hence be interpreted as the output of a computation on Env. Furthermore, this final
state N must be stable. Note that this definition implies that field computations recover from any
change on environmental conditions, since they react to them by forgetting their current state and
reaching the stable state implied by such a change. Complementarily, computation can generally
reach a stable state only when environmental changes are transitory.
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4.2 Eventual Behaviour

An environment Env is a pair 〈τ , Σ〉, where τ models network topology as a map from device iden-
tifiers to set of identifiers (representing a directed neighbouring graph) and Σ models sensor (dis-

tributed) state as a map from device identifiers to (local) sensors (i.e., sensor name/value maps

denoted as σ ). Define a computational field Φ as a map δ �→ v,2 such that if v have field type their
domains are coherent with the environment Env = 〈τ , Σ〉, that is, dom(Φ(δ )) = τ (δ ) ∩ dom(Φ). Let
V�T� be the set of values of type T and T �T� = D �→ V�T� be3 the set of all computational
fields Φ of the same type. Each such Φ is computable by at least one self-stabilising expression e
(defined by cases, and executed in the restricted environment corresponding to dom(Φ))—we say
that e is a self-stabilising expression for Φ.

Note that a network status Ψ (see Section 3.2) induces uniquely a computational field Φ by
defining Φ(δ ) as the root of the tree of values Ψ(δ ) (δ ), while, conversely, each Φ is coherent with
multiple network statuses Ψ. Thus a computational field is not sufficient to capture the whole
status of a computation of a program P. However, for self-stabilising programs P and self-stabilising

functions f, it suffices to define the eventual output of a computation: given computational fields Φ,

letN0
δ0−−→ N1

δ1−−→ . . . be any fair evolution of a network computing f(e), where e are self-stabilising

expressions for Φ. Since f is self-stabilising, the fair evolution eventually stabilises to a uniquely
determined state N = 〈Env; Ψ〉, independently from the chosen evolution and initial state. This
final status field Ψ in turn determines a unique computational field Φ, which we can think of as
the eventual output of the computation.4

Definition 2 (Eventual Behaviour). Let e be a self-stabilising closed expression. We write �e� for
the computational field Φ eventually produced by the computation of e. Let f be a self-stabilising

function of type T → T ′, where T = T1 × · · · × Tn (n ≥ 0). We write �f� for the mathematical

function in (T �T1� × · · · × T �Tn�) → T �T ′�,5 such that �f�(Φ) = �f(e)�, where e are self-

stabilising expressions for Φ.

Eventual behaviour provides a convenient viewpoint for compositional programming since,
as shown by the next proposition (proved in Electronic Appendix D) it is preserved under
substitutions.

Proposition 1 (Eventual Behaviour Preserving Eqivalences). (1) Let e1, e2 be self-

stabilising expressions with the same eventual behaviour. Then, given a self-stabilising expression

e, swapping e1 for e2 in e does not change the eventual outcome of its computation. (2) Let f1, f2 be

self-stabilising functions with the same eventual behaviour. Then given a self-stabilising expression

e, swapping f1 for f2 in e does not change the eventual outcome of its computation. (3) Let e be a

self-stabilising expression calling a user-defined self-stabilising function d such that in body (f) no

x ∈ args(f) occurs in the branch of an if. Let e′ be the expression obtained from e by substituting

each function application of the kind f(e) with body (f) [args(f) := e]. Then e′ is self-stabilising and

has the same eventual behaviour as e (i.e., �e� = �e′�).

2Even though the definition resembles that of a neighbouring field value, it differs both in purpose and in content, since v

is allowed to be a neighbouring field value itself, and δ spans the whole network and not just a device’s neighbourhood.
3By A �→ B we denote the set of all partial functions from A to B .
4Note this eventual state is reached independently of the fair sequence of firing that occurs; hence, it would be the same

also with firings following fully synchronous concurrency models like BSP [50].
5Here we assume that all input computational fields share the same domain, which is to be intended as the domain of the

overall computation.
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5 SELF-STABILISING FRAGMENT

By exploiting the definition of self-stabilisation given in previous section, and its implication in
considering eventual behaviour as a valid characterisation of the functional property of a field com-
putation, it is possible to identify sufficient conditions for self-stabilisation in terms of a fragment
of the field calculus, inductively defined by (i) identifying a “base” fragment of the field calculus
that contains only self-stabilising programs, (ii) identifying a set of eventual behaviours preserv-
ing equivalences (cf. Proposition 1), and (iii) relying on the fact that the least fragment of the field
calculus that contains the base fragment and is closed under the eventual behaviour preserving
equivalences is self-stabilising.

Accordingly, in this section we first present some motivating examples of non-self-stabilising
field calculus programs (in Section 5.1), present the syntax of the identified “base” self-stabilising
fragment (in Section 5.2), state the self-stabilisation result for the fragment along with equivalence
results further extending the fragment (in Section 5.3), and, finally, discuss its expressiveness (in
Section 5.4). The following examples will be discussed throughout this section:

5.1 Examples of Non-Self-Stabilising Programs

Let us begin by considering some examples of field calculus programs that are not self-stabilising,
illustrating key classes of program behavior that need to be excluded from our self-stabilising
fragment—namely, oscillation, state preservation, and divergence.

Example 5.1. First, consider function fcWrong; it does not self-stabilise, since given a fixed input
v its output loops through a series of different values. For example, if v is constantly equal to 1,
then the outputs are 0, 1, 0, 1, . . . Thus in this case self-stabilisation is prevented by an oscillating

behaviour.
Second, consider function faWrong (a classical gossip implementation): It does not self-stabilise,

since its output depends on the whole history of values v given to it in the network. For example, if
at some point a highest value k was given in some device, then the eventual output of the function
on a fixed input v < k is k , and thus it is not a function of the constant input v. Thus, in this case,
self-stabilisation is prevented by an indefinite “state preservation.”

Finally, consider function fmWrong, with input v of an unbounded integer type (big integer):
It does not self-stabilise, since, given any fixed input v and at least one neighbour, its output
keeps decreasing without a bound. Thus, in this case, self-stabilisation is prevented by a divergent

behaviour.

5.2 Syntax

The “base” self-stabilising fragment of field calculus is obtained by replacing each occurrence of
the expression token e in the first two lines of Figure 1 (i.e., in the productions for P and F) with the
self-stabilising expression token s, defined in Figure 2. This fragment includes (i) all expressions
not containing a rep construct, hence comprising built-in functions, which are therefore assumed
to be self-stabilising, and (ii) three special forms of rep-constructs, defined with a specific syntax
coupled with semantic restrictions on relevant functional parameters.
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Fig. 2. Syntax of a self-stabilising fragment of field calculus expressions, where self-stabilising expressions

s occurring inside a rep statement cannot contain free occurrences of the rep-bound variable x.

5.2.1 The C,M,P,R Function Properties. The properties that these functional parameters are
required to satisfy are among the following, visually annotated in the figure through superscripts
on function names. Notice that properties M, P, and R require some of their argument types to be
equipped with a partial order relation, while property C requires its argument types to be equipped
with a metric. To obtain the self-stabilisation property for the fragment, we shall also need some
further assumptions, discussed later in the description of each pattern.

C (Converging). A function f(ϕ,ψ , v) is said converging iff, for every device δ , its return value is
closer toψ (δ ) than the maximal distance of ϕ toψ . To be precise, given any environment Θ, device
δ ∈ dom(Θ), values ϕ,ψ , v coherent with the domain of Θ, and assuming that δ ; Θ � f(ϕ,ψ , v) ⇓
�〈θ〉:

dist (�,ψ (δ )) = 0 or dist (�,ψ (δ )) < max
{
dist(ϕ (δ ′),ψ (δ ′)) : δ ′ ∈ dom(Θ)

}
,

where dist is any metric.

Example 5.2. Function f1 (ϕ,ψ ) = pickHood(ψ − ϕ) = (ψ − ϕ) (δ ) is not converging, for example,
when ϕ,ψ are constant fields equal to 2, 3, respectively, so that � = 1 (pickHood selects the value
on the current device from a field). On the other hand, functions f2 (ϕ,ψ ) = pickHood((ψ + ϕ)/2)
and f3 (ϕ,ψ ) = pickHood(ψ ) + meanHood(ϕ −ψ )/2 are converging.

M (Monotonic Non-decreasing). A stateless6 function f(x, x) with arguments of local type is

monotonic non-decreasing in its first argument iff whenever �1 ≤ �2, also f(�1, �) ≤ f(�2, �).

Example 5.3. Function f1 (�) = � − 1 is monotonic non-decreasing, while function f2 (�) = �2 is
not.

P (Progressive). A stateless function f(x, x) with local arguments is progressive in its first argu-

ment iff f(�, �) > � or f(�, �) = � (where � denotes the unique maximal element of the relevant
type).

Example 5.4. Function f1 (�) = � + 1 is progressive, while functions f2 (�) = � − 1, f3 (�) = �2 are
not.

R (Raising). A function f(�1, �2, v) is raising with respect to partial orders <, � iff: (i) f(�, �, v) =
�; (ii) f(�1, �2, v) ≥ min(�1, �2); (iii) either f(�1, �2, v) � �2 or f(�1, �2, v) = �1.

Example 5.5. Function f1 (�1, �2) = �1 is raising with respect to any partial orders. Function
f2 (�1, �2) = �1 − �2 is not raising since it violates both the first two clauses. Function f3 (�1, �2) =
(�1 + �2)/2 respects the first two clauses for �=<, but it violates the last one whenever �2 > �1.

6A function f(x) is stateless iff given fixed inputs v always produces the same output, independently from the environment

or specific firing event. In other words, its behaviour corresponds to that of a mathematical function.
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5.2.2 The Three rep Patterns. We are now able to analyse the three rep patterns.

Converging rep. In this pattern, variable x is repeatedly updated through function fC and a
self-stabilising value s. The function fC may also have additional (not necessarily self-stabilising)
inputs e. If the range of the metric granting convergence is a well-founded set7 of real numbers,
then the pattern self-stabilises, since it gradually approaches the value given by s.

Example 5.6. Function fcWrong does not respect the converging rep pattern, as shown in Ex-
ample 5.2. However, if we change fcWrong to fc and assume that its input and output are finite-
precision numeric values (e.g., Java’s double), then we obtain a low-pass filter that is self-stabilising
and complies with the converging rep pattern.

Acyclic rep. In this pattern, the neighbourhood’s values for x are first filtered through a self-
stabilising partially ordered “potential,” keeping only values held in devices with lower potential
(thus in particular discarding the device’s own value of x). This is accomplished by the built-in
function nbrlt, which returns a field of Booleans selecting the neighbours with lower argument
values and could be defined as def nbrlt(x) {nbr{x} < x}.

The filtered values are then combined by a function f (possibly together with other values ob-
tained from self-stabilising expressions) to form the new value for x. No semantic restrictions
are posed in this pattern, and, intuitively, it self-stabilises since there are no cyclic dependencies
between devices.

Example 5.7. Function faWrong does not respect the acyclic rep pattern, since it aggregates all
neighbours without any “acyclic filtering.” However, if we change faWrong to fa, then we obtain a
particular usage of the C block, which is self-stabilising and complies with the acyclic rep pattern.

Minimising rep. In this pattern, the neighbourhood’s values for x are first increased by a mono-
tonic progressive function fMP (possibly depending also on other self-stabilising inputs). As speci-
fied above, fMP needs to operate on local values: In this pattern, it is therefore implicitly promoted
to operate (pointwise) on fields.

Afterwards, the minimum among those values and a local self-stabilising value is then selected
by function minHoodLoc(ϕ, �) (which selects the “minimum” in ϕ[δ �→ �]). To be able to define
such a minimum, we thus require the partial order ≤ to constitute a lower semilattice.8

Finally, this minimum is fed to the raising function fR together with the old value for x (and pos-
sibly any other inputs e), obtaining a result that is higher than at least one of the two parameters.
We assume that the second partial order � is noetherian,9 so that the raising function is required
to eventually conform to the given minimum.

Intuitively, this pattern self-stabilises since it computes the minimum among the local values �
after being increased by fMP along every possible path (and the effect of the raising function can
be proved to be negligible).

Example 5.8. Function fmWrong does not respect the minimising rep pattern, since its internal
function is monotonic (see Example 5.3) but not progressive (see Example 5.4). However, if we
change fmWrong to fm, then we obtain a hop-count distance, a particular instance of the G block
that is self-stabilising and complies with the minimising rep pattern.

7An ordered set is well-founded iff it does not contain any infinite descending chain.
8A lower semilattice is a partial order such that greatest lower bounds are defined for any finite set of values in the partial

order. In the examples used in this article, we shall treat greatest lower bounds as minima, since the only examples of such

partial orders we consider are in fact total orders.
9A partial order is noetherian iff it does not contain any infinite ascending chains.
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Note that the well-foundedness and noetherianity properties are trivially verified whenever the
underlying data set is finite.

5.3 Self-Stabilisation and Equivalence

Under reasonable conditions, we are able to prove that the proposed fragment is indeed self-
stabilising. The proofs of all the results in this section are given in the Electronic Appendix E,
while here we only report the full statements.

Theorem 1 (Fragment Stabilisation). Let s be a closed expression in the self-stabilising frag-

ment, and assume that every built-in operator is self-stabilising.10 Then s is self-stabilising.

Since the fragment is closed under function application, the result is immediately extended to
whole programs.

In Section 4.2, we introduced a notion of equivalence for self-stabilising programs. Therefore,
although the rep patterns are defined through functions with certain properties, we are allowed
to inline them (which is a transformation preserving self-stabilisation, as shown in Proposition 1).
Moreover, a few noteworthy equivalence properties hold for the given patterns, as shown by the
following theorem.

Theorem 2 (Substitutability). The following three equivalences hold: (i) each rep in a self-

stabilising fragment self-stabilises to the same value under arbitrary substitution of the initial con-

dition, (ii) the converging rep pattern self-stabilises to the same value as the single expression s
occurring in it, and (iii) the minimising rep pattern self-stabilises to the same value as the analogous

pattern where fR is the identity on its first argument.

In other words, the function fR does not influence the eventual behaviour of a function and can
instead be used to fine-tune the transient behaviour of an algorithm. The same holds for the initial
conditions of all patterns and function fC in the converging rep pattern (which in fact is only
meant to fine-tune the transient behaviour of the given expression s). No relevant equivalences
can be stated for the acyclic rep pattern, since it is parametrised by a single aggregating function
that in general heavily influences the final outcome of the computation.

5.4 Expressiveness

5.4.1 Programs Captured by the Fragment. Even though at a first glance the fragment could
seem rather specific, it encompasses (equivalent versions of) many relevant algorithms. In partic-
ular, all of the three building blocks introduced in Section 3.3 are easily shown to belong to the
fragment. This effectively constitutes a new and simpler proof of self-stabilisation for them.

Operator G is the following instance of the minimising rep pattern:

Function fr is trivially raising (with respect to any pair of partial orders), and function fmp is
monotonic progressive provided that pairs are ordered lexicographically (since dist is a positive
field).

10Most built-in operators are stateless, and thus trivially self-stabilising in one round.
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Operator C is the following instance of the acyclic rep pattern:

Operator T is the following instance of the converging rep pattern:

Function fc is converging since decay(pickHood(cur)) is granted to be closer to zero than its
argument, hence:

��fc(ϕ, nbr{zero}, v) − zero�� < ��ϕ (δ ) − zero�� ≤ max(��ϕ − nbr{zero}��).
Furthermore, the present fragment strictly includes the one defined in Reference [51]. Both

fragments include all expressions without the rep construct. The first and third rep patterns in
Reference [51] are special cases of converging rep (the first converges to v0 in the bounded condition
and the third to � in the double bounded condition). The second pattern is almost exactly equivalent
to the acyclic rep.

In Section 6, we shall show further examples of algorithms still belonging to the fragment, which
are alternative implementations of G, C, and T.

5.4.2 Programs Not Captured by the Fragment. Unfortunately, many self-stabilising programs
are not captured by the fragment. In most cases this is due to syntactical reasons, so that the critical
program P can in fact be rewritten into an equivalent program P ′, which instead belongs to the
fragment. An example of this issue is given by the three building blocks G, C , and T , which we
needed to rewrite to make them fit inside the self-stabilising fragment (see Section 5.4.1).

Furthermore, self-stabilising programs exist that cannot be rewritten to fit inside the fragment.
As an example, one such program is the replicated gossip [45] algorithm, which does not fit inside
the fragment. In particular, replicated gossip is “self-stabilising” provided that a certain parameterp
(refresh period) is set to a large-enough value with respect to certain network characteristics—and
as such, it would require a slight modification of our definition of self-stabilisation as well.

6 ALTERNATIVE BUILDING BLOCKS

Even though the G, C, and T building blocks define a useful and versatile base of operators, in
practice better performing alternatives are often preferred in some specific conditions (see, for ex-
ample, the work in Reference [51]). We can also use the fragment itself to get inspiration for new
alternatives or interesting variations of existing ones. Importantly, the self-stabilisation framework
allows alternatives to be assessed on empirical grounds even when the dynamics of their opera-
tion are imperfectly understood, allowing engineering decisions to be made even when analytical
solutions are not available.

In the exploration to follow, we compare the performance of each operator and an alternative via
simulation. We evaluate each proposed alternative by simulating a network of 100 devices placed
uniformly randomly in a 200m × 20m rectangular arena, with a 30m communication radius. The
dynamics of self-stabilisation are studied by introducing perturbations in “space” or “time.” In the
space perturbation experiments, devices run asynchronously at 1Hz frequency, moving at 1m/s in
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a direction randomly chosen at every round. We shall consider “small spatial perturbation” where
this is the entirety of the perturbation and “large spatial perturbation” where the source for the
spreading/aggregation of the information also switches from the original device to an alternate
device every 200s. On the other hand, in the “time perturbation,” devices remain still, but their
operating frequency is randomly chosen between 0.9Hz and 1.1Hz (small perturbation) or 0.5Hz
and 2Hz (large perturbation). We performed 200 simulations per configuration, letting both the
control and alternate building blocks run at the same time. Experiments are performed using the
Alchemist simulator [46].11

6.1 Alternative G

The G operator can be understood as the computation of a distance measure w.r.t. a given metric,
while also propagating values according to an accumulating function. However, naive computation
of distance suffers from the rising value problem: The rising rate of distance values is bounded
by the shortest distance in the network, possibly enforcing a very slow convergence rate. Some
algorithms avoiding this problem have been developed, such as the Constraint and Restoring Force
(CRF)-gradient algorithm [7]. It is possible to rewrite a CRF-gradient distance calculuation to fit the
present fragment, as in the following (adapted from the code implemented in the Protelis library
[47]):

where nbrLag returns a field of communication lags from neighbours.
It is easy to see that raise is raising with respect to the two identical partial orders ≤, ≤ (the

output either increases the old value or conforms to the new value). Notice that this rewriting
effectively constitutes an alternative proof of self-stabilisation for the algorithm.

If it is acceptable to lose some degree of accuracy, then another possibility for avoiding the
rising value problem is to introduce a distortion into the metric. This is the approach chosen by the
Flex-Gradient algorithm [6] (which we will abbreviate FLEX). This algorithm allows for a better
response to transitory changes while reducing the amount of communication needed between
devices. In this case also, we can equivalently rewrite the algorithm to make it fit into the self-
stabilising fragment.

11For the sake of reproducibility, the actual experiments are made available at https://bitbucket.org/danysk/

experiment-2017-tomacs.
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Fig. 3. Evaluation of G building blocks: plain G (blue), CRF (green), and FLEX (red). We measure the average

error across all devices (first and last rows) and the stability of the value, namely the average value change

between subsequent rounds (middle row). With small spatial perturbations, G provides the lowest average

error, while FLEX provides the highest local value stability. With large spatial changes, CRF is the quickest

to adapt but stabilises with a higher error than FLEX. The classic G suffers from the rising value problem. All

the algorithms stabilise in time with little sensitivity to device asynchrony.

In this case, raise is raising with respect to the two partial orders ≤1 (ordering w.r.t. the first
component of the pair) and ≤2 (ordering w.r.t. the second component).

We evaluate these new building blocks when applied to distance estimation, using the two fol-
lowing variations of G_distance (parameter r in the body of G’_flex_distance stands for the
communication radius of devices):

Figure 3 shows the evaluation of G and its proposed replacements: FLEX has a good performance
all around, while CRF suffers poor performance with small spatial disruptions and G suffers poor
performance with large spatial disruptions.

6.2 Alternative C

The C operator aggregates a computational field of local values with the function accumulate
towards the device with highest potential, each device feeding its value to the neighbour with
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highest potential. This process, however, is fragile since the “neighbour with highest potential”
changes often and abruptly over time. To overcome this shortcoming, it is sometimes possible to
use a multipath C.

Assume that the aggregating operator defines an Abelian monoid12 on its domain. Assume in
addition that each � in the domain has an nth root �n , that is, an element that aggregated with
itself n times produces the original value �. Then the value computed by a device can be “split”
and sent to every neighbour device with higher potential than the current device by taking its nth
root where n is the number of devices with higher potential.

We evaluate the multi-path alternative of C when used to sum values of a field, using the C’_sum
variation of C_sum:13 Specifically, we compare C_sum and C’_sum used to aggregate the summation
of “1” along the gradient of a distance estimate produced by the FLEX algorithm. As a consequence,
we expect to get the count of devices participating to the system in the source of the distance
estimate. Since the source switches in case of large perturbation, the counting device switches
as well. Figure 4 shows the evaluation of C and its proposed replacement: the multi-path version
performs better with small spatial changes but may return higher errors during transients that
require a whole network reconfiguration.

6.3 Alternative T

Both the T operator and the whole converging rep pattern are meant to smooth out the outcome
of another computation, which at the limit is returned unaltered. However, it is sometimes useful
to introduce a spatial coordination among different devices to smooth out the converging process
also spatially. This can be accomplished by the following alternative building block, which decays

towards a value with a speed obtained by averaging on how close each neighbour is to its goal
value.

We evaluate the use of T’ in tracking a noisy signal, using T’_track variation of T_track,
where meanHood computes the mean value of the provided field and a is the smoothing parameter.
In the comparison of T_track and T’_track, every device perceives the original signal (either
a sine or a square wave) summed with a locally generated noise in [−1, 1]10 (s). In particular,
T’_track provides a sort of spatial low-pass filter that trades a delay in tracking the signal for a
smoother response. Figure 5 aggregates the results. T’ takes advantage of the spatial smoothing and

12A structure 〈X , ◦〉 is an Abelian monoid if ◦ is an associative and commutative operator with identity.
13Operator / is used as root for C’, since a value gets equally divided by n and spread in the n neighbour nodes ascending

potential.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 2, Article 16. Publication date: March 2018.



Engineering Resilient Collective Adaptive Systems by Self-Stabilisation 16:21

Fig. 4. Evaluation of C building blocks: classic C (blue) and multi-path alternative (green). Expected values

are depicted in red. We measure the aggregated value in the source node (first row) and the error (last two

rows). With small spatial perturbations, the multipath alternative outperforms the spanning-tree-building

default implementation; however, it may provide worse estimations at the beginning of transients that re-

quire a large reconfiguration. Both algorithms stabilise regardless of devices’ asynchrony.

performs better overall in case of noisy input. This comes, however, at the price of lower reactivity
to changes, which becomes evident with large-enough values of the smoothing parameter.

7 APPLICATION EXAMPLES

We now illustrate, with two application examples, how distributed applications can be imple-
mented on top of the proposed building blocks (hiding the low-level coordination mechanisms rep
and nbr) and then quickly adjusted and optimised toward specific performance goals by switching
the specific building block implementation that is used, using the variants presented in previous
section. Both of the scenarios that we consider are in a pervasive computing environment and
focus on a network of personal devices (e.g., phones, smart watches) spread through an urban
environment. In these scenarios, devices move with the person carrying them along the walkable
areas of the city and can only indirectly influence movement (e.g., by presenting a message to their
user).

For the first scenario, we consider a community festival, with acts performing in various venues,
and wish to track the number of people watching each act over time. Here, we will consider a
person to be watching an act if they are part of a continuous region of crowd that is closer to that
act than to any other act. This computation can be implemented by using G to partition the space
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Fig. 5. Evaluation of T (blue) and T’ building blocks with different smoothing parameter values (a = 0.02 in

green and a = 0.5 in red). The driver signal (plotted in black for reference) is locally summed with a random

noise in [−1, 1]10 and fed to the algorithm for tracking. We measure the root mean squared error in the

devices’ response for small (left column) or large (right column) perturbations in either space (first and third

row) or time (second and last row). T’ outperforms T in every scenario but the square wave transient: the

smoothing with the neighbouring devices, in fact, greatly mitigates the local introduction of noise at the

price of a lower reactivity to signal changes. The smoothing parameter can be interpreted as controlling

a tradeoff between such reactivity and the smoothness of the response. In our testbed, T’ shows minimal

sensibility to any kind of perturbation.

into zones of influence by means of a potential field of which each act is a source (as in function
distanceTo). We then use C to sum a field counting the number of people closely surrounded by
others and thus forming a crowd (as in function summarise). Finally, T is used for smoothing both
the crowd estimates and the results over time. The resulting code, expressed using the functions
described in previous section, is as follows:
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Fig. 6. Screenshots from simulation of crowd size estimation scenario: Acts are indicated as red dots, pedes-

trians are black, and pedestrians who are part of a contiguous crowd are orange. From their initial position,

people walk towards an act of interest following the pedestrian roads, becoming counted as part of a crowd

once they have clumped up close to an act.

To test this example application in simulation, we distributed a network of 300 devices randomly
across the city centre of the Italian city of Cesena. In this simulation, pedestrians walk at 1.4m per
second from their initial position towards an act randomly chosen between the two located in
distinct large spaces of the city (Piazza del Popolo and Giardini Savelli), as depicted in Figure 6.
Devices run asynchronously, performing a round of computation and communication every 5s
and communicating by broadcast within a radius of 150m (ignoring buildings and other physical
obstacles). Our implementation is realised in Protelis [47] and simulations were performed using
Alchemist [46]. We note that Alchemist is a generalised GIS framework for multi-agent simula-
tions, not a specialised crowd simulator, but higher-fidelity crowd simulations are not necessary
for studying the adaptation dynamics of the information system.

In this scenario, we execute eight variants of the crowdSize algorithm, all combinations of
the building blocks and alternates developed in the previous section: G or G’ (FLEX), C or C’
(multipath), and T or T’. We measure the error for each combination as the absolute value of the
difference between estimated and true counts for people watching each act, namely,

1

|A|
∑
a∈A
|P̂a − Pa |,

where A is the set of acts a, |A| is the number of acts, P̂a is the estimated count of people watching
act a as computed by the algorithm, and Pa is the true count of people watching an act.

Figure 7 presents key results, averaged over 51 simulation runs. In these simulations, adopting
G’ instead of G produces a slight improvement in performance. On the other hand, it turns out
that C’ fails badly, always making the results much worse, likely due to the combination of both
the high volatility of the network and the sparsity induced by city streets. This failure, however,
can be mitigated by applying G’, which produces a potential function that is much more stable
in response to large perturbations. The choice of T versus T’ has much less impact: T’ performs
slightly worse than T in combination with C’ and does not mitigate the failure of C’.

The second example considers signaling an evacuation alert signal to a pre-defined zone, along
with the proposal of a suggested evacuation path. This is implemented using T to track whether
any device in the zone is currently alerted (using G to create a potential field to a static device
selected as coordinator, and C to perform a logical or as in function any), then using G to broadcast
that value from the coordinator throughout the zone and again to compute paths to the non-alerted
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Fig. 7. Key results for the crowd size estimation scenario: (a) Use of G’ slightly improves performance over

G, while T performs slightly better than T’. (b) The C’ algorithm fails badly due to the network being both

sparse and volatile, mandating preference of C in this case. The problems with C’ can be largely mitigated

by substitution of G’ instead of G, though the choice of T versus T’ does not have any significant effect.

Fig. 8. Screenshots from simulation of evacuation alert scenario: Devices are initially randomly scattered

through the city centre (black dots). After alert (translucent red circle) is enabled, devices in the evacuation

zone are signaled (orange) by the action of the coordinator (blue) and begin trying to leave the zone.

areas outside of the zone. Finally, the mux operator is used to differentiate computations on devices
inside and outside of the alert zone.

Simulations for this experiment used the same environment of 300 devices spread through the
center of Cesena, with the same model of asynchronous execution and communication, the only
difference being that devices perform a round of computation and communication every 2s rather
than every 5s. In this simulation, devices are initially stationary, and the alert signal is enabled
starting at time t = 20s of simulated time from the start of the simulation. Since devices are unable
to directly affect the movement of the people holding them, however, we simulate the people
acting on the alert not by following the direction provided by any of the simulated algorithms but
walking toward the closest waypoint outside of the evacuation zone. Such behaviour is depicted
in Figure 8.

As before, we execute eight variants, covering all combinations of the three building blocks and
their alternates. We measure the error for each algorithm as the mean of the minimum mean square
error between the angles of the suggested evacuation vector and the optimal one for each node,
normalised in [0, 1], with the special rule that devices that are in alert zone when they shouldn’t
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Fig. 9. Evacuation alert scenario results: G’ and C’ each improve performance significantly over G and C,

respectively, and using both improves it incrementally further. Choice of T versus T’ has no significant effect.

be or not in the alert zone when they should be get the maximum error, namely

error =
1

N

∑
d ∈D

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

0 not in zone and not alerted(
min( |αd− ˆαd |,2π−|αd− ˆαd |)

π

)2
in zone and alerted

1 otherwise (alert/zone mis-match)

,

where N is the number of devices initially inside the zone, D is the collection of all devices, α̂d

is the computed direction (angle) for device d , and αd is its actual ideal direction. The minimum
function is used to always pick the smallest angle between the two separating the optimal vector
and the suggested one (namely, the difference of the two and 2π minus that value). This outputs
an error in the [0,π ] range that we normalise linearly into [0, 1].

In this scenario, we find that two of the proposed alternative implementations of the self-
stabilising building blocks significantly improve performance. Figure 9 shows the results, averaged
over 51 simulation runs. G’, in particular, performs from equivalently to much better than G along
the whole simulated time span. The behaviour of C’ is more complex: It has a longer reaction time
as compared to C, as it is more sensitive to large perturbations. As soon as the initial transient
phase is over, however, C’ provides a consistent improvement over the performance of the origi-
nal C implementation. Using C’ and G’ together provides a further (though smaller) performance
increment. The choice of T’ versus T, however, has no significant impact on performance.

Together, these results illustrate how our approach enables fast, lightweight implementation
and optimisation of distributed applications. Different applications are best served by different
combinations and tradeoffs in the dynamics of building block implementations: For example, G’
improved over G in both scenarios, while C’ help the second but not the first, and neither had
noisy enough changes for T’ to significantly improve on T. The approach we have implemented
allows such combinations to be rapidly and safely explored, enabling optimisation of distributed
systems without their re-design.

8 CONCLUSIONS

Using computational field calculus as “lingua franca” for an abstract, uniform description of self-
organising computations, we have identified a large class of self-stabilising distributed algorithms,
including general “building block” operators that simplify the specification of programs within this
class. The class is formalised as a fragment of the field calculus, closed under composition, and flexi-
ble enough to also include various alternative building block implementations, allowing dynamical
performance optimisation with guaranteed convergence to the same values. This self-stabilising
fragment is at the core of a methodology for efficient engineering of self-organising systems, rooted
in modelling and simulation: (i) a system specification is constructed using formally proved self-
stabilising building blocks, and (ii) alternative implementations of building blocks are switched
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in selected points of the specification to improve performance, with performance improvement
detected by empirical means such as simulations.

An important future direction is to find a more detailed characterisation for the dynamic trade-
space to enable more systematic optimisation via mechanism substitution. In addition to making
human engineering easier, this may also enable automated optimisation, both during engineer-
ing and dynamically at runtime. Alternative definitions of self-stabilisation may allow capture and
description of wider classes of resilient program behaviours (e.g., replicated gossip [45]) or better
modelling of important aspects of spatial computations (e.g., space-time information), as well as in-
tegration with dynamical response models such as those in References [23, 41]. Other potential im-
provements include expansion of the library of building blocks (including to non-spatial systems),
identification of more substitution relationships between building blocks and high-performance
resilient coordination mechanisms, and development and deployment of applications based on this
approach.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library
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