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Abstract. The engineering of grown systems poses fundamentally dif-
ferent system integration challenges than ordinary engineering of static
designs. On the one hand, a grown system must be capable of surviving
not only in its final form, but at every intermediate stage, despite the
fact that its subsystems may grow unevenly or be subject to different
scaling laws. On the other hand, the ability to grow offers much greater
potential for adaptation, either to changes in the environment or to in-
ternal stresses developed as the system grows. I observe that the ability
of subsystems to tolerate stress can be used to transform incremental
adaptation into the dynamic discovery of viable growth trajectories for
the system as a whole. Using this observation, I propose an engineer-
ing approach based on functional blueprints, under which a system is
specified in terms of desired performance and means of incrementally
correcting deficiencies. I demonstrate this approach by applying it to
integrate simplified models of tissue growth and vascularization, then
further demonstrate how the composed system may itself be modulated
for use as a component in a more complex design.

1 Introduction

One of the most remarkable facts about animals is that they are not generally
injured by their own growth. An animal is composed of many tightly integrated
systems, all interlocking in multiple ways. For example, bones fit together in
joints that permit a useful range of motion, muscles attach to the bones in a
pattern that allows them to work together effectively to move the body, the
circulatory system delivers oxygen and nutrients to every portion of the bones
and muscles via an intricate network of vessels, and their waste products are
carried away for removal by the kidneys. As the animal grows, from an embryo
to a mature adult, all of these systems are constantly adapting in order to remain
integrated and fully functional.

This is not generally the case for our current engineered systems. Many ar-
tifacts, such as cars and airplanes, have no real capacity for growth at all. In
engineered systems that do grow, the growth is often accompanied by signifi-
cant degradation of function as the existing balance of systems is disrupted and
painstakingly reintegrated. Adding an extension to a house means months of
dust, being unable to use existing rooms, and electrical and plumbing disrup-
tions. Expanding the road networks of a growing city requires years of detours



and traffic disruptions, not to mention economic disruption for businesses nearby
the construction. Upgrading the software of a computer often requires a reboot
and leaves a trail of incompatibilities and ongoing headaches. Beyond the obvi-
ous differences in mechanical and material properties, we simply do not know
how to describe our designs in a way that allows for disruption-free growth. We
may thus be led to consider languages for adaptable design, both to better un-
derstand animal development and also to improve engineered systems. This is
particularly pressing given the rapid progress occurring in synthetic biology (e.g.
engineered pattern formation[2] and standardized DNA assembly protocols[13]),
where the systematic engineering of DNA programs promises to soon allow us
to created engineered objects that are literally grown from living cells.

One particularly elegant example of growth and adaptivity in biological sys-
tems is the vascular system[4]. Under normal conditions, sufficient oxygen dif-
fuses through the walls of capillaries into the surrounding tissue. When cells are
not receiving enough oxygen, however, they become stressed and emit a chem-
ical signal that causes nearby capillaries to leak. The vascular system also has
an elegant program for regulating its capacity. When a capillary leaks often, a
new capillary begins to grow out of the leaky area, increasing the available blood
supply to the oxygen-starved region. Blood vessels are elastic, and when they
are frequently stretched, the cells divide, increasing the capacity of the vessel;
likewise, when frequently contracted, cells die and shrink the vessel. Thus, the
vascular system incrementally grows and shrinks to match the demand of the
tissues it serves, branching into under-served regions and adjusting the size of
vessels to match the flow through them.

In this paper, I propose an engineering approach of functional blueprints
inspired by this and other similar adaptive biological systems. If each system
is capable of operating under minor stress and of incrementally adjusting to
decrease stress, then feedback between components should allow all the subsys-
tems comprising a natural or engineered system to maintain a tight integration
as the system grows, even if the relationship and relative sizes of subsystems are
changing. Functional blueprints attempt to capture this by specifying a system in
terms of desired performance and means of incrementally correcting deficiencies.

In the remainder of those paper, I first discuss how stress tolerance can enable
integrated growth, then formalize this idea with a definition for a functional
blueprint. I next demonstrate the functional blueprint approach by applying
it to integrate simplified models of cell density maintenance and vascularization
produce synchronized tissue growth, then finally show how the composed system
may itself be modulated for use as a component in a more complex design.

1.1 Related Work

Morphogenesis in natural systems has been a subject of intensive study. In recent
years, deciphering of genetic mechanisms controlling development, such as how
the hox gene complex produces the overall body plan of animals, has lead to a
synthesis of evolution and development (EvoDevo)[5], and theories of how the
adaptivity of organisms to body plan variations may facilitate evolution[8].



Inspiration from natural systems has led to investigation of how growable pat-
terns might be programmed, generally focusing on the establishment of shape,
with less attention to integration of function. Doursat, for example, has de-
veloped a hox-gene based network model for artificial evolution of animal-like
systems[7]. Similarly, the development of structure in growing plants has long
been modeled at a high level by term-rewriting systems[12], which the MGS
language extends into a general model of structure development through topo-
logical rewriting[14]. Other notable approaches include Coore’s Growing Point
Language[6], which uses a botanical metaphor to create topological structure and
Nagpal’s Origami Shape Language[11], which creates geometric forms through
folding. Most similar to this work is Werfel’s work on distributed construction,
which has been extended to use functional constraints to generate adaptive struc-
ture in response to environmental stimuli[15].

The problems of integration addressed in this paper are also related to control
theory. Standard control theory, however, has difficulty addressing systems with
large numbers of non-linearly interacting parts, which are typical of growing sys-
tems. A notable exception may be viability theory[1], a branch of mathematical
theory which is intended to address such concerns.

2 Stress Tolerance Enables Integrated Growth

The basic insight enabling this new approach is as follows: a stress-tolerant sys-
tem can exploit its tolerance to navigate dynamically through the space of viable
designs. This is rather foreign to the typical engineering approach to failure toler-
ance. Usually, an engineer designing a system treats its ability to tolerate failures
like guard rails on a highway: important for safety, changing terrible outcomes
into merely bad, but never touched under normal circumstances. Alternately,
though, we can treat the system’s robustness as a guide, the way that a blind
person, might use a guard rail to follow the twists and turns of the road.

Under this alternate view, stress within the system becomes the coordinating
signal by which independently developing subsystems are integrated. When the
system is far from the edge of its viability envelope, it can develop freely. When
it comes near the edge, however, and its viability begins to be impaired, then
the growth of the subsystems driving it to non-viability is slowed or stopped
temporarily. Other subsystems, triggered to act by the increased stress, adjust
to bring the system as a whole back within the viability envelope. The driving
subsystems are then re-enabled, and the cycle of growth and correction begins
again.

Critically, this is only possible if the system is able to determine the direction
of stress, and if stress caused by one system can be relieved by adjustment of
another. For example, if a beam has become the wrong length due to the change
of structure around it, the beam will experience tensile stress if it is too short and
compressive stress if it is too long. If only the magnitude of error is measured,
then the beam cannot know whether it should grow or shrink to reduce stress,
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Fig. 1. In this abstract example, a growing system with two attributes uses stress tol-
erance to navigate through a complex viability envelope (blue). When unconstrained,
the system grows its driving attribute (horizontal arrows). When the system’s viability
begins to be impaired (faint blue), it relieves that stress by adjusting its secondary at-
tribute (vertical arrows). By repeatedly switching between driving growth and relieving
stress, the system is able to navigate a complex viability envelope.

but if the direction of the stress is measured then the appropriate corrective
measure becomes obvious.

For example, consider an abstract system with two attributes, whose combi-
nation is viable only in the complex envelope shown in Figure 1. The horizontal
attribute drives system growth, increasing whenever the system is clearly viable
(horizontal arrows). When the system’s viability begins to be impaired (faint
blue), the secondary attribute adjusts to correct (vertical arrows). Given some
hysteresis in the switch between driving and correction, the switch in modes need
only occur a finite number of times. By repeatedly switching between driving
growth and relieving stress, a system may navigate a complex viability envelope.

Thus we see that it is possible to use systemic stress as a signal to coordinate
the growth of independently developing subsystems. This will not, of course,
work for all possible such viability spaces: if the viability space includes a “dead
end” that the driving attribute can push into, then it cannot be successfully
navigated without additional guidance. For many systems, however, such as
those where the coordination problem is rooted in the difference of scaling laws,
(e.g. bone length (linear) vs. muscle cross-section (square) vs. lung capacity
(cubic)), the viability space is guaranteed to be navigable. Note also that when
stress is localized, the process of correction can be localized as well, allowing
navigation to be parallelized when systems are not directly affecting one another.
For example, different sets of developing muscles can be sore at the same time.

3 Functional Blueprints

Having made the observation that stress tolerance can allow a system to dynam-
ically discover trajectories through its viability space, we can now take the next
step and propose an engineering framework for predictably constructing such



systems. Let us thus define a functional blueprint for some system X to consist
of four elements:

1. A system behavior that degrades gracefully across some range of viability.
Formally, if CX is a manifold of possible configurations of system X, then
it must be possible to establish a concave viability function vX mapping
CX → [0,∞) such that for any configuration cX , only viable configurations
have vX(cX) > 0,1 and for any such configuration there exists a ball B ∈ CX

centered on cX such that vX(B) > 0.
2. A stress metric quantifying the degree and direction of stress on the system.

Formally, let the stress metric sX be a vector field on CX such that sX is
the gradient of some legal viability function for CX .

3. An incremental program that relieves stress through growth (or possibly
shrinking). Formally, let this be a parametrized map iX,ε,d : CX → CX that
shifts a configuration by ε distance in the direction d.

4. A program to construct an initial minimal system. This initial minimal sys-
tem, which we label X0, must be viable (vX(X0) > 0).

Graceful degradation of system behavior asserts that the core functionality
of the system must not have a sharp transition between viable and non-viable.
The stress metric and incremental program combine to shift a degraded system’s
configuration back toward viability. Finally, the minimal system makes sure there
is some viable place to start.

To transfer these properties to a composite system, it is necessary only to
ensure that the subsystems are coupled such that the side effects of subsystems
on one another are incremental. Formally, the action of each subsystem X’s
incremental program on each other subsystem Y forms a continuous map, πX,Y .
Given such a coupling of functional blueprints, it is always the case that it
is possible to adjust any given subsystem by some small increment without
knocking any other subsystem out of its range of viability. This can be proved
by construction:

Theorem 1. Consider a system S, for which every subsystem has a functional
blueprint, and let X and Y be subsystems of S. For any given configuration cS, if
vX(cX) > 0, then there exists a δ > 0 such that c′S = iY,ε,d(cS) has vX(c′X) > 0
for every d and ε ≤ δ.

Proof. By graceful degradation, we know that there exists a ball B centered
on cX such that every point b ∈ B also has vX(b) > 0. By the continuity of
the coupling map πX,Y , we know that the preimage of π−1

X,Y (B) is an open set.
Being an open set, the preimage must contain some ball B′ of radius δ around the
configuration cY . By the definition of an incremental program, any configuration
c′S accessible via subsystem Y ’s incremental program iY,ε,d(cS) is within the ball
B′ for ε ≤ δ. Since B′ is a subset of π−1

X,Y (B), c′X must be within B and must
therefore have vX(c′X) > 0. ut
1 Note that not all viable configurations need have vX(cX) > 0: the point is for the

viability function to serve as a conservative guide for system growth, not to capture
the precise boundary at which the system fails.
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Fig. 2. Density maintenance and growth: (a) shows an expanding sheet of cells, where
blue cells are reproducing and green are dying. (b) shows system behavior with respect
to the growth rate parameter pd. At low pd, the number of cells after 200s of growth
(blue) is small, but at high pd the fraction of cells surviving (red) begins to drop.

A simple growing composite system, such as the one illustrated in Figure 1,
can thus be constructed simply by taking the composite stress to be the max-
imum stress of any subsystem and executing the incremental program of the
maximally stressed subsystem. The system can then be navigated toward a de-
sired mature form by driving any subsystem or collection of subsystems whenever
the composite stress is low enough.

4 Example Application: Tissue Growth

Having proposed a framework for the design of grown systems, let us now demon-
strate its feasibility by developing a simplified model of tissue growth, in which
the growth of a sheet of cells is synchronized with the growth of the blood vessels
that supply them with oxygen. This example system should not be regarded as
a serious model of tissue growth, but as a cartoon to demonstrate the feasibility
of the engineering approach under discussion.

This simplified model consists of two subsystems, each specified with a func-
tional blueprint. The cell density subsystem attempts to keep cells packed at
a moderate density via motion, reproduction, and apoptosis. A consequence of
this density maintenance is tissue growth at an approximately constant rate of
expansion: cells at the surface of the tissue generally have a low average density,
since there are no cells to one side of them, so unless they are regulated other-
wise, they will tend to reproduce. The vascularization subsystem, on the other
hand, attempts to ensure that no cell is too distant from a network conveying
oxygenated blood outward from a source.2 These two systems are linked together
2 In this simplified system, venous return is not modeled, but could be implemented

using a complementary mechanism.



(a)

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Growth rate

# 
of

 c
el

ls

Unregulated vascularization behavior

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fr
ac

tio
n 

of
 v

es
se

l c
el

ls

(b)

Fig. 3. Vascularization: (a) shows an expanding network (green dots, blue lines) ex-
panding the area of oxygenation (red). The area of a dot is proportionally to the size of
the network descending from it. (b) shows system behavior with respect to the growth
rate parameter pv. At low pv, the oxygenated area (blue solid line) expands slowly, but
at high pv a large fraction of cells (red dashed line) are incorporated into vessels.

by adding a regulatory input to the cell density subsystem, such that cells will
not attempt to reproduce if they are oxygen-starved. The resulting composite
system produces smoothly synchronized tissue growth, and can be modulated
to produce shaped tissue by external regulation of either subsystem.

These models are developed and simulated using the Proto spatial comput-
ing language[3], a functional language that allows the programmer to specify
aggregate behaviors using scalable geometric descriptions. Aggregate behavior
descriptions are then compiled into a program to execute on each cell (every cell
is given the same program) and an interaction protocol by which cells cooperate
to approximate the desired aggregate behavior. Details of Proto can be found in
[3] in the MIT Proto distribution[10].

4.1 Cell Density

In this simplified model, the base structure and expansion of a sheet of cells is
produced by a system that attempts to keep cells packed at a moderate density.
We can implement such a system as follows:

(def cell-density (grow shrink p_d)

(let ((packing (num-nbrs)))

(clone (and grow (and (< packing 8) (< (rnd 0 1) p_d)))))

(die (or (and (> packing 15) (< (rnd 0 1) p_d))

(and shrink (< (rnd 0 1) p_d)))))))

(disperse 0.6))

Here the desired system behavior is to maintain a moderate spacing between
cells, which exhibits graceful degradation if the cells have some tolerance for
overcrowding or underpopulation. The system is thus stressed when there are



Fig. 4. Synchronized growth of a tissue: growth from cell density maintenance is en-
abled only for cells served by vascularization.

too many neighbors (here defined as more than 15), too few neighbors (here
defined as less than 8), or if the neighbors aren’t at a desired separation (here
defined as 0.6 communication radii).

The incremental program relieves stress in a straightforward manner: when
there are too many neighbors, the cell apoptoses (dies) with probability pd,
and when there are too few neighbors, the cell reproduces with probability pd

(the grow enabling input and shrink forcing input allows these actions to be
modulated by an enclosing system). When the neighbors are not at a desired
separation, they move towards it using spring forces:

(def disperse (packing)

(* (/ 1 (int-hood 1))

(int-hood (* (let ((dr (- (nbr-range) packing)))

(mux (< dr 0) dr (* 0.1 dr)))

(normalize (nbr-vec))))))

in which attractive forces are weaker than repulsive forces such that the far-
ther neighbors do not exert too much influence and collapse the diameter of
communicating clusters.

Note that since cells at the surface of the sheet have an expected density half
that of cells in the interior of the sheet, their density will be considered too low
(except in temporary high-density pockets) and they will reproduce. This has
the desirable consequence of continually expanding the sheet of cells such that
the edge moves outward at an expected constant rate.

Figure 2 shows this cell density system in experiments where the growth pa-
rameter pd ranges from 0.01 to 0.5. For each parameter value, 10 trials were run,
beginning with 10 cells distributed in a volume 10 units square and continuing
for 200 simulated seconds. As the growth rate pd rises, the final number of cells
in the system (blue solid line) rises sharply, but the fraction of cells that die
rises as well (red dashed line shows surviving cells). An intermediate level in the
range 0.1 to 0.3 appears to offer the best trade-off, with graceful degradation as
the parameter moves away from that level.
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Fig. 5. Linking density maintenance and vascularization results in synchronized tissue
growth, with either subsystem able the regulate the behavior of the composite system.

4.2 Vascularization

Oxygen delivery by a vascular system requires that there be a capillary vessel
relatively close to every cell. When this is not the case, the cell becomes stressed
by lack of sufficient oxygen—a graceful degradation situation since the cell does
not die. The simple vascularization system here measures stress by distance to
the nearest vessel:

(def vascularize (source service-range p_v)

(rep (tup vessel served parent)

(tup source source (if source (mid) -1))

(mux source

(tup 1 1 -1)

(let ((service (< (gradient vessel) service-range))

(server (gradcast vessel (mid)))

(children (sum-hood (= (mid) (nbr parent))))

(total-children (tree-children parent)))

;; adjust radius, for visualization

(radius-set (mux vessel (* 0.5 (sqrt (+ 1 total-children))) 2))

;; grow/shrink vessel network

(mux vessel

(mux (or (muxand

(any-hood (and (= (nbr (mid)) parent)

(> (nbr children) (mux (nbr source) 6 3))))

(not (any-hood (< (nbr total-children) total-children))))

(not (any-hood (and (nbr vessel) (= (nbr (mid)) parent)))))

(tup 0 1 -1) ; vessel is discarded

(tup 1 1 parent)) ; vessels stay fixed

(mux (muxand (muxand (any-hood (nbr vessel))

(dilate (not served) service-range))

(< (rnd 0 1) p_v)))

(tup 1 1 server)

(tup 0 service -1)))))))
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Fig. 6. The tissue growth system can be modulated to produce complex patterns, such
as the letter “F”, by modulating growth of either the cell density (a) or vascularization
subsystems (b). In both cases shown, the letter grows from a seed near its center.

Every cell tracks whether it is part of a vessel and, if not, whether it has service
from a vessel within the service-range, In the beginning, only the source cell(s)
are part of a vessel. Later, the incremental program adds or removes cells from
vessels to incrementally adjust the network. Cells join a vessel at a growth rate
pv when adjacent to a vessel and in range of an unserved cell. Vessel cells undif-
ferentiate when they lose their connection to the source or when too many other
vessel cells share the same junction.

Figure 3 shows the vascularization system in experiments where the growth
parameter pv ranges from 0.001 to 0.05. For each parameter value, 10 trials were
run, where the network is grown for 200 simulated seconds from a seed point in
the middle of a network of 2000 devices and devices are distributed on a square
300 by 300 units with a vascularization service range of 50 units. The higher the
growth rate pv, the faster that vascularization proceeds and therefore the larger
an area that is served (blue solid line). The faster that vascularization proceeds,
however, the more redundancy in the system, as reflected by the fraction of cells
designated as vessels (red dashed line).

4.3 Composite Behavior

These two subsystems can be linked together into a simplified model of tissue
growth by the simple expedient of enabling growth in the cell density system
only for those cells served by vascularization:

(def tissue (src pd pv)

(let ((v (vascularize src 50 pv)))

(if (not src) (mov (cell-density (2nd v) 0 pd)) (tup 0 0 0))

(drawvasc v)))

Having implementing these two subsystems using functional blueprints, this sim-
ple coupling suffices for them to regulate one another into synchronized growth.
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Fig. 7. A functional blueprint separates the result of modulated tissue growth from the
details of its execution, as shown by equivalent constructions of the letter “F” when
grown from a seed in the lower right (a), upper left (b) or center (Figure 6(a)).

Figure 5 compares regulated behavior (blue line) with unregulated subsys-
tems (red dashes), showing a smooth shift in regulatory dominance of the coupled
system as pd and pv are varied. For each set of parameter values, 10 trials were
run, beginning with 10 cells distributed in a volume 10 units square and con-
tinuing for 200 simulated seconds. In Figure 5(a), pd is varied from 0.01 to 0.5
as above, while pv is held constant at 0.02. At low values of pd, growth from
density maintenance dominates, but as pd rises, cells spread outward faster and
their growth begins to be checked by the rate of vascularization instead. In Fig-
ure 5(b), pv is varied from 0.001 to 0.05 as above, while pd is held constant at
0.1. At low values of pv, vascularization is the limiting factor, but by pv = 0.02
the limiting factory has shifted to the rate of growth from density maintenance.

This composite system may itself be viewed in terms of a functional blueprint,
as these results illustrate, where both density and vascularization are being main-
tained in the face of stress, and the failure of either checks the other’s progress.
Moreover, just as the cell density subsystem was modulated to form a grow-
ing tissue, so may the tissue be modulated to grow complex shapes. This can
be done by modulating either the cell density subsystem or the vascularization
subsystem. For example, Figure 6 shows the result of constructing a letter “F”
through regulating cell density (Figure 6(a)) and through regulating vascular-
ization (Figure 6(b)).3 Moreover, the functional blueprint separates the result of
modulated tissue growth from the details of its execution, as illustrated by the
equivalent constructions in Figure 6(a) and Figure 7.

3 For simplicity in this demonstration, the “F” bounds are set by external localization,
though it could be self-organized with variety methods (see [7], [9]).



5 Contributions

We have demonstrated that a functional blueprint approach can be used to cre-
ate grown system that are dynamically integrated, smoothly transfer regulatory
control across regimes, and can be interconnected to form composite systems
with the same properties. While this is early work, the simplicity of creating
and integrating the models discussed in this paper indicates good potential for
further development. The decoupling of ultimate structure from developmental
program might lead to more adaptivity in engineered systems as well as stronger
biological models for evolvability and phenotypic adaptation.
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