
FIELD-BASED COORDINATION WITH THE SHARE OPERATOR

GIORGIO AUDRITO, JACOB BEAL, FERRUCCIO DAMIANI, DANILO PIANINI,
AND MIRKO VIROLI

Dipartimento di Informatica, University of Torino, Torino, Italy
e-mail address: giorgio.audrito@unito.it

Raytheon BBN Technologies, Cambridge (MA), USA
e-mail address: jakebeal@ieee.org

Dipartimento di Informatica, University of Torino, Torino, Italy
e-mail address: ferruccio.damiani@unito.it

Alma Mater Studiorum–Università di Bologna, Italy
e-mail address: danilo.pianini@unibo.it

Alma Mater Studiorum–Università di Bologna, Italy
e-mail address: mirko.viroli@unibo.it

Abstract. Field-based coordination has been proposed as a model for coordinating col-
lective adaptive systems, promoting a view of distributed computations as functions ma-
nipulating data structures spread over space and evolving over time, called computational
fields. The field calculus is a formal foundation for field computations, providing specific
constructs for evolution (time) and neighbor interaction (space), which are handled by sep-
arate operators (called rep and nbr, respectively). This approach, however, intrinsically
limits the speed of information propagation that can be achieved by their combined use.
In this paper, we propose a new field-based coordination operator called share, which
captures the space-time nature of field computations in a single operator that declara-
tively achieves: (i) observation of neighbors’ values; (ii) reduction to a single local value;
and (iii) update and converse sharing to neighbors of a local variable. We show that for
an important class of self-stabilising computations, share can replace all occurrences of
rep and nbr constructs. In addition to conceptual economy, use of the share operator
also allows many prior field calculus algorithms to be greatly accelerated, which we val-
idate empirically with simulations of frequently used network propagation and collection
algorithms.

Key words and phrases: Aggregate computing, field calculus, information propagation.
This work has been partially supported by Ateneo/CSP project “AP: Aggregate Programming” (http:

//ap-project.di.unito.it/) and by Italian PRIN 2017 project “Fluidware”. This document does not
contain technology or technical data controlled under either U.S. International Traffic in Arms Regulation
or U.S. Export Administration Regulations.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli
Creative Commons

1

ar
X

iv
:1

91
0.

02
87

4v
1

 [
cs

.D
C

]
 7

 O
ct

 2
01

9

http://ap-project.di.unito.it/
http://ap-project.di.unito.it/

2 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

1. Introduction

The number and density of networking computing devices distributed throughout our envi-
ronment is continuing to increase rapidly. In order to manage and make effective use of such
systems, there is likewise an increasing need for software engineering paradigms that simplify
the engineering of resilient distributed systems. Aggregate programming [BPV15, VBD+18]
is one such promising approach, providing a layered architecture in which programmers can
describe computations in terms of resilient operations on “aggregate” data structures with
values spread over space and evolving in time.

The foundation of this approach is field computation, formalized by the field calcu-
lus [VAB+18], a terse mathematical model of distributed computation that simultaneously
describes both collective system behavior and the independent, unsynchronized actions of
individual devices that will produce that collective behavior [AVD+19]. In this approach
each construct and reusable component is a pure function from fields to fields—a field is
a map from a set of space-time computational events to a set of values. In prior formula-
tions, each primitive construct has also handled just one key aspect of computation: hence,
one construct deals with time (i.e, rep, providing field evolution, in the form of periodic
state updates) and one with space (i.e., nbr, handling neighbor interaction, in the form of
reciprocal state sharing).

However, in recent work on the universality of the field calculus, we have identified that
the combination of time evolution and neighbor interaction operators in the original field
calculus induces a delay, limiting the speed of information propagation that can be achieved
efficiently [ABDV18]. This limit is caused by the separation of state sharing (nbr) and state
updates (rep), which means that any information received with a nbr operation has to be
remembered with a rep before it can be shared onward during the next execution of the
nbr operation, as illustrated in Figure 1.

In this paper, we address this limitation by extending the field calculus with the share

construct, combining time evolution and neighbor interaction into a single new atomic
coordination operator that simultaneously implements: (i) observation of neighbors’ values;
(ii) reduction to a single local value; and (iii) update of a local variable and sharing of the
updated value with neighbors. The share construct thus allows the effects of information
received from neighbors to be shared immediately after it is incorporated into state, rather
than having to wait for the next round of computation.

The remainder of this paper formally develops and experimentally validates these con-
cepts, expanding on a prior version [ABD+19] with an improved and extended presentation
of the operators, complete formal semantics, analysis of key properties, and additional ex-
perimental validation. Following a review of the field calculus and its motivating context
in Section 2, we introduce the share construct in detail in Section 3, along with formal
semantics and analysis of the relationship of the share-based calculus with the prior field
calculus. We then empirically validate the predicted acceleration of speed in frequently used
network propagation and collection algorithms in Section 4, and conclude with a summary
and discussion of future work in Section 5.

2. Background, Motivation, and Related Work

Programming collective adaptive systems is a challenge that has been recognized and ad-
dressed in a wide variety of different contexts. Despite the wide variety of goals and starting

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 3

rep rep rep

nbr nbr nbr

share share share

Device 1 Device 2 Device 3 …

Figure 1: Handling state sharing (nbr) and memory (rep) separately injects a delay while
information “loops around” to where it can be shared (top), while combining state
sharing and memory into the new share operator eliminates that delay (bottom).

points, however, the commonalities in underlying challenges have tended to shape the re-
sulting aggregate programming approaches into several clusters of common approaches, as
enumerated in [BDU+13]: (i) “device-abstraction” methods that abstract and simplify the
programming of individual devices and interactions (e.g., TOTA [MZ09], Hood [WSBC04],
chemical models [VPM+15], “paintable computing” [But02], Meld [ARGL+07]) or en-
tirely abstract away the network (e.g., BSP [Val90], MapReduce [DG08], Kairos [GGG05]);
(ii) spatial patterning languages that focus on geometric or topological constructs (e.g.,
Growing Point Language [Coo99], Origami Shape Language [Nag01], self-healing geome-
tries [CN03, Kon03], cellular automata patterning [Yam07]); (iii) information summariza-
tion languages that focus on collection and routing of information (e.g., TinyDB [MFHH02],
Cougar [YG02], TinyLime [CGG+05], and Regiment [NW04]); (iv) general purpose space-
time computing models (e.g., StarLisp [LMMD88], MGS [GGMP02, GMCS05], Proto [BB06],
aggregate programming [BPV15]).

The field calculus [VAB+18, AVD+19] belongs to the last of these classes, the gen-
eral purpose models. Like other core calculi, such as λ-calculus [Chu32] or Featherweight
Java [IPW01], the field calculus provides a minimal, mathematically tractable program-
ming language—in this case with the goal of unifying across a broad class of aggregate
programming approaches and providing a principled basis for integration and composition.
Indeed, recent analysis [ABDV18] has determined that the current formulation of field cal-
culus is space-time universal, meaning that it is able to capture every possible computation
over collections of devices sending messages. Field calculus can thus serve as a unifying ab-
straction for programming collective adaptive systems, and results regarding field calculus
have potential implications for all other works in this field.

4 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

That same work establishing universality, however, also identified a key limitation of the
current formulation of the field calculus, which we are addressing in this paper. In particular,
the operators for time evolution and neighbor interaction in field calculus interact such that
for most programs either the message size grows with the distance that information must
travel or else information must travel significantly slower than the maximum potential speed.
The remainder of this section provides a brief review of these key results from [ABDV18]:
Section 2.1 introduces the underlying space-time computational model used by the field
calculus, Section 2.2 provides a review of the field calculus itself, followed by its semantics
in Section 2.3 and Section 2.4. Section 2.5 then explains and illustrates the problematic
interaction between time evolution and neighbor interaction operators that will be addressed
by the share operator in the next section.

2.1. Space-Time Computation. Field calculus considers a computational model in which
a program P is periodically and asynchronously executed by each device δ. When an indi-
vidual device performs a round of execution, that device follows these steps in order: (i)
collects information from sensors, local memory, and the most recent messages from neigh-
bors,1 the latter in the form of a neighboring value map φ : δ → v from neighbors to values,
(ii) evaluates program P with the information collected as its input, (iii) stores the results
of the computation locally, as well as broadcasting it to neighbors and possibly feeding it
to actuators, and (iv) sleeps until it is time for the next round of execution. Note that as
execution is asynchronous, devices perform executions independently and without reference
to the executions of other devices, except insofar as they use state that has arrived in mes-
sages. Messages, in turn, are assumed to be collected by some separate thread, independent
of execution rounds.

If we take every such execution as an event ε, then the collection of such executions
across space (i.e., across devices) and time (i.e., over multiple rounds) may be considered as
the execution of a single aggregate machine with a topology based on information exchanges
 . The causal relationship between events may then be formalized as defined in [ABDV18]:

Definition 2.1 (Event Structure). An event structure E = 〈E, , <〉 is a countable set of
events E together with a neighboring relation ⊆ E×E and a causality relation <⊆ E×E,
such that the transitive closure of forms the irreflexive partial order < and the set
{ε′ ∈ E|ε′ < ε} is finite for all ε (i.e., < is locally finite).

Figure 2 shows an example of such an event structure, showing how these relations par-
tition events into “causal past”, “causal future”, and non-ordered “concurrent” subspaces
with respect to any given event. Interpreting this in terms of physical devices and message
passing, a physical device is instantiated as a chain of events connected by relations
(representing evolution of state over time with the device carrying state from one event
to the next), and any relation between devices represents information exchange from
the tail neighbor to the head neighbor. Notice that this is a very flexible and permissive
model: there are no assumptions about synchronization, shared identifiers or clocks, or even
regularity of events (though of course these things are not prohibited either).

In principle, an execution at ε can depend on information from any event in its past
and its results can influence any event in its future. As we will see in Section 2.5, however,
this is problematic for the field calculus as it has been previously defined.

1Stale messages may expire after some timeout.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 5

1

2

3

4

5
d
ev
ic
e

time

1 2 3 4 5

1 2 1 2 3 4

1 2 3 4

1 2 3 4 5 6

1 2 3

Figure 2: Example of a space-time event structure, comprising events (circles) and neighbor
relations (arrows). Colors indicate causal structure with respect to the doubly-
circled event (magenta), splitting events into causal past (red), causal future
(cyan) and concurrent (non-ordered, in black). The numbers written within events
represent a sample space-time value (cf. Def. 2.2) associated with that event
structure. Figure adapted from [ABDV18].

Our aggregate constructs then manipulate space-time data values (see Figure 2) that
map events to values for each event in an event structure:

Definition 2.2 (Space-Time Value). Let V be any domain of computational values and E
be a given event structure. A space-time value Φ = 〈E, f〉 is a pair comprising the space
and a function f : E → V that maps the events E of E to values.

We can then understand an aggregate computer as a “collective” device manipulating
such space-time values, and the field calculus as a definition of operations defined both on
individual events and simultaneously on aggregate computers.

2.2. Field Calculus. The field calculus is a tiny universal language for computation of
space-time values. Figure 3 gives an abstract syntax for field calculus based on the presen-
tation in [VAB+18] (covering a subset of the higher-order field calculus in [AVD+19], but
including all of the issues addressed by the share construct). In this syntax, the overbar
notation e indicates a sequence of elements (e.g., e stands for e1, e2, . . . , en), and multiple
overbars are expanded together (e.g., δ 7→ ` stands for δ1 7→ `1, δ2 7→ `2, . . . , δn 7→ `n).
There are four keywords in this syntax: def and if respectively correspond to the standard
function definition and the branching expression constructs, while rep and nbr correspond
to the two peculiar field calculus constructs that are the focus of this paper, respectively
responsible for evolution of state over time and for sharing information between neighbors.

A field calculus program P is a set of function declarations F and the main expression e.
This main expression e simultaneously defines both the aggregate computation executed on

6 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ f(e)
∣∣ if(e){e}{e}

∣∣ nbr{e}
∣∣ rep(e){(x) => e} expression

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighboring value

Figure 3: Abstract syntax of the field calculus, adapted from [VAB+18]

the overall event structure of an aggregate computer and the local computation executed
at each of the individual events therein. An expression e can be:

• A variable x, e.g. a function parameter.
• A value v, which can be of the following two kinds:

– a local value `, defined via data constructor c and arguments `, such as a
Boolean, number, string, pair, tuple, etc;

– A neighboring (field) value φ that associates neighbor devices δ to local values
`, e.g., a map of neighbors to the distances to those neighbors.

• A function call f(e) to either a user-declared function d (declared with the def

keyword) or a built-in function b, such as a mathematical or logical operator, a data
structure operation, or a function returning the value of a sensor.
• A branching expression if(e1){e2} else {e3}, used to split a computation into oper-

ations on two isolated event structures, where/when e1 evaluates to true or false:
the result is the local value produced by the computation of e2 in the former area,
and the local value produced by the computation of e3 in the latter.
• The nbr{e} construct, where e evaluates to a local value, creates a neighboring

value mapping neighbors to their latest available result of evaluating e. In particular,
each device δ:
(1) shares its value of e with its neighbors, and
(2) evaluates the expression into a neighboring value φ mapping each neighbor δ′

of δ to the latest value that δ′ has shared for e.
Note that within an if branch, sharing is restricted to work on device events within
the subspace of the branch.
• The rep(e1){(x) => e2} construct, where e1 and e2 evaluate to local values, models

state evolution over time: the value of x is initialized to e1, then evolved at each
execution by evaluating e2 where x is the result at previous round.

Thus, for example, distance to the closest member of a set of “source” devices can be
computed with the following simple function:

def mux(b, x, y) { if (b) {x} {y} }

def distanceTo(source) {

rep (infinity) { (d) =>

mux(source, 0, minHood(nbr{d}+nbrRange()))

} }

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 7

Here, we use the def construct to define a distanceTo function that takes a Boolean source

variable as input. The rep construct defines a distance estimate d that starts at infinity,
then decreases in one of two ways. If the source variable is true, then the device is currently
a source, and its distance to itself is zero. Otherwise, distance is estimated via the triangle
inequality, taking the minimum of a neighboring value (built-in function minHood) of the
distance to each neighbor (built-in function nbrRange) plus that neighbor’s distance estimate
nbr{d}. Function mux ensures that all its arguments are evaluated before being selected.

2.3. Device Semantics. The computation that takes place on a single device is formal-
ized by a big-step semantics, expressed by the judgement δ; Θ;σ ` emain ⇓ θ, to be read
“expression emain evaluates to θ on device δ with respect to environment Θ and sensor
state σ”. The result of evaluation is a value-tree θ, which is an ordered tree of values that
tracks the results of all evaluated subexpressions of emain. Such a result is made available
to δ’s neighbors for their subsequent firing (including δ itself, so as to support a form of
state across computation rounds). The recently-received value-trees of neighbors are then
collected into a value-tree environment Θ, implemented as a map from device identifiers
to value-trees (written δ 7→ θ as short for δ1 7→ θ1, . . . , δn 7→ θn). Intuitively, the outcome
of the evaluation will depend on those value-trees. Figure 4 (top) defines value-trees and
value-tree environments.

Example 2.3. The graphical representation of the value trees 6〈2〈〉, 3〈〉〉 and
6〈2〈〉, 3〈7〈〉, 1〈〉, 4〈〉〉〉 is as follows:

6 6

/ \ / \

2 3 2 3

/|\

7 1 4

In the following, for sake of readability, we sometimes write the value v as short for the
value-tree v〈〉. Following this convention, the value-tree 6〈2〈〉, 3〈〉〉 is shortened to 6〈2, 3〉,
and the value-tree 6〈2〈〉, 3〈7〈〉, 4〈〉, 4〈〉〉〉 is shortened to 6〈2, 3〈7, 1, 4〉〉.

Figure 4 (bottom) defines the judgement δ; Θ;σ ` e ⇓ θ, where: (i) δ is the identifier of
the current device; (ii) Θ is the neighboring value of the value-trees produced by the most
recent evaluation of (an expression corresponding to) e on δ’s neighbors; (iii) e is a closed
run-time expression (i.e., a closed expression that may contain neighboring values); (iv) the
value-tree θ represents the values computed for all the expressions encountered during the
evaluation of e—in particular the root of the value tree θ, denoted by ρ(θ), is the value
computed for expression e. The auxiliary function ρ is defined in Figure 4 (second frame).

The operational semantics rules are based on rather standard rules for functional lan-
guages, extended so as to be able to evaluate a subexpression e′ of e with respect to the
value-tree environment Θ′ obtained from Θ by extracting the corresponding subtree (when
present) in the value-trees in the range of Θ. This process, called alignment, is modelled by
the auxiliary function π defined in Figure 4 (second frame). This function has two different
behaviors (specified by its subscript or superscript): πi(θ) extracts the i-th subtree of θ;
while π`(θ) extracts the last subtree of θ, if the root of the first subtree of θ is equal to
the local (boolean) value ` (thus implementing a filter specifically designed for the if con-
struct). Auxiliary functions ρ and π apply pointwise on value-tree environments, as defined
in Figure 4 (second frame).

8 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

Value-trees and value-tree environments:

θ ::= v〈θ〉 value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n π`(v〈θ1, θ2〉) = θ2 if ρ(θ1) = `
πi(θ) = • otherwise π`(θ) = • otherwise

For aux ∈ ρ, πi, π` :

 aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
Syntactic shorthands:

δ;π(Θ);σ ` e ⇓ θ where |e| = n for δ;π1(Θ);σ ` e1 ⇓ θ1 · · · δ;πn(Θ);σ ` en ⇓ θn
ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ; Θ;σ ` e ⇓ θ

[E-LOC]

δ; Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ; Θ;σ ` φ ⇓ φ′〈〉

[E-B-APP] δ;π(Θ);σ ` e ⇓ θ v = LbMδσΘ(ρ(θ))

δ; Θ;σ ` b(e) ⇓ v〈θ〉

[E-D-APP] δ;π(Θ);σ ` e ⇓ θ δ; Θ;σ ` body(d)[args(d) := ρ(θ)] ⇓ θ′
δ; Θ;σ ` d(e) ⇓ ρ(θ′)〈θ, θ′〉

[E-NBR] δ;π1(Θ);σ ` e ⇓ θ φ = ρ(π1(Θ))[δ 7→ ρ(θ)]
δ; Θ;σ ` nbr{e} ⇓ φ〈θ〉

[E-REP]
δ;π1(Θ);σ ` e1 ⇓ θ1

δ;π2(Θ);σ ` e2[x := `0] ⇓ θ2
`0 =

{
ρ(π2(Θ))(δ) if δ ∈ dom(Θ)
ρ(θ1) otherwise

δ; Θ;σ ` rep(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

[E-IF] δ;π1(Θ);σ ` e ⇓ θ1 ρ(θ1) ∈ {true, false} δ;πρ(θ1)(Θ);σ ` eρ(θ1) ⇓ θ
δ; Θ;σ ` if(e){etrue}{efalse} ⇓ ρ(θ)〈θ1, θ〉

Figure 4: Big-step operational semantics for expression evaluation.

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either a local
value or a neighboring value, respectively: note that in [E-FLD] we take care of restricting
the domain of a neighboring value to the only set of neighbor devices as reported in Θ.

Rule [E-B-APP] models the application of built-in functions. It is used to evaluate expres-
sions of the form b(e1 · · · en), where n ≥ 0. It produces the value-tree v〈θ1, . . . , θn〉, where
θ1, . . . , θn are the value-trees produced by the evaluation of the actual parameters e1, . . . , en
and v is the value returned by the function. The rule exploits the special auxiliary function
LbMΘ

δ , whose actual definition is abstracted away. This is such that LbMΘ
δ (v) computes the

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 9

result of applying built-in function b to values v in the current environment of the device δ.
In particular: the built-in 0-ary function self gets evaluated to the current device identifier
(i.e., LselfMΘ

δ () = δ), and mathematical operators have their standard meaning, which is

independent from δ and Θ (e.g., L∗MΘ
δ (2, 3) = 6).

Example 2.4. Evaluating the expression ∗(2, 3) produces the value-tree 6〈2, 3〉. The value
of the whole expression, 6, has been computed by using rule [E-B-APP] to evaluate the
application of the multiplication operator ∗ to the values 2 (the root of the first subtree of
the value-tree) and 3 (the root of the second subtree of the value-tree).

The LbMΘ
δ function also encapsulates measurement variables such as nbrRange and in-

teractions with the external world via sensors and actuators.
Rule [E-D-APP] models the application of a user-defined function. It is used to evaluate

expressions of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-B-APP] while producing
a value-tree with one more subtree θ′, which is produced by evaluating the body of the
function d (denoted by body(d)) substituting the formal parameters of the function (denoted
by args(d)) with the values obtained evaluating e1, . . . en.

Rule [E-REP] implements internal state evolution through computational rounds: ex-
pression rep(e1){(x) => e2} evaluates to e2[x := v] where v is obtained from e1 on the first
evaluation, and from the previous value of the whole rep-expression on other evaluations.

Example 2.5. To illustrate rule [E-REP], as well as computational rounds, we consider pro-
gram rep(1){(x) => *(x, 2)}. The first firing of a device δ is performed against the
empty tree environment. Therefore, according to rule [E-REP], to evaluate rep(1){(x) => *(x, 2)}
means to evaluate the subexpression *(1, 2), obtained from *(x, 2) by replacing x with
1. This produces the value-tree θ = 2〈1, 2〈1, 2〉〉, where root 2 is the overall result as usual,
while its sub-trees are the result of evaluating the first and second argument respectively.
Any subsequent firing of the device δ is performed with respect to a tree environment
Θ that associates to δ the outcome θ of the most recent firing of δ. Therefore, evalu-
ating rep(1){(x) => *(x, 2)} at the second firing means to evaluate the subexpression
*(2, 2), obtained from *(x, 2) by replacing x with 2, which is the root of θ. Hence the
results of computation are 2, 4, 8, and so on.

Rule [E-NBR] models device interaction. It first collects neighbors’ values for expressions
e as φ = ρ(π1(Θ)), then evaluates e in δ and updates the corresponding entry in φ.

Example 2.6. To illustrate rule [E-NBR], consider e′ = minHood(nbr{snsNum()}), where the 1-
ary built-in function minHood returns the lower limit of values in the range of its neighboring
value argument, and the 0-ary built-in function snsNum returns the numeric value measured
by a sensor. Suppose that the program runs on a network of three devices δA, δB, and δC
where:

• δB and δA are mutually connected, δB and δC are mutually connected, while δA and
δC are not connected;
• snsNum returns 1 on δA, 2 on δB, and 3 on δC ; and
• all devices have an initial empty tree-environment ∅.

Suppose that device δA is the first device that fires: the evaluation of snsNum() on δA yields

1 (by rules [E-LOC] and [E-B-APP], since LsnsNumM∅δA() = 1); the evaluation of nbr{snsNum()}
on δA yields (δA 7→ 1)〈2〉 (by rule [E-NBR]); and the evaluation of e′ on δA yields

θA = 1〈(δA 7→ 1)〈1〉〉

10 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

(by rule [E-B-APP], since LminHoodM∅δA(δA 7→ 1) = 1). Therefore, at its first fire, device δA
produces the value-tree θA. Similarly, if device δC is the second device that fires, it produces
the value-tree

θC = 3〈(δC 7→ 3)〈3〉〉
Suppose that device δB is the third device that fires. Then the evaluation of e′ on δB is
performed with respect to the environment ΘB = (δA 7→ θA, δC 7→ θC) and the evaluation
of its subexpressions nbr{snsNum()} and snsNum() is performed, respectively, with respect
to the following value-tree environments obtained from ΘB by alignment:

Θ′B = π1(ΘB) = (δA 7→ (δA 7→ 1)〈1〉, δC 7→ (δC 7→ 3)〈3〉)
Θ′′B = π1(Θ′B) = (δA 7→ 1, δC 7→ 3)

We thus have that LsnsNumMΘ′′B
δB

() = 2; the evaluation of nbr{snsNum()} on δB with re-

spect to Θ′B produces the value-tree φ〈2〉 where φ = (δA 7→ 1, δB 7→ 2, δC 7→ 3); and

LminHoodMΘB
δB

(φ) = 1. Therefore the evaluation of e′ on δB produces the value-tree θB =

1〈φ〈2〉〉. Note that, if the network topology and the values of the sensors will not change,
then: any subsequent fire of device δB will yield a value-tree with root 1 (which is the
minimum of snsNum across δA, δB and δC); any subsequent fire of device δA will yield a
value-tree with root 1 (which is the minimum of snsNum across δA and δB); and any subse-
quent fire of device δC will yield a value-tree with root 2 (which is the minimum of snsNum
across δB and δC).

Rule [E-IF] is almost standard, except that it performs domain restriction πtrue(Θ) (resp.
πfalse(Θ)) in order to guarantee that subexpression etrue is not matched against value-trees
obtained from efalse (and vice-versa).

2.4. Network Semantics. The overall network evolution is formalized by the small-step
operational semantics given in Figure 5 as a transition system on network configurations
N . Figure 5 (top) defines key syntactic elements to this end. Ψ models the overall status
of the devices in the network at a given time, as a map from device identifiers to value-tree
environments. From it, we can define the state of the field at that time by summarizing the
current values held by devices. τ models network topology, namely, a directed neighboring
graph, as a map from device identifiers to set of identifiers (denoted as I). Σ models
sensor (distributed) state, as a map from device identifiers to (local) sensors (i.e., sensor
name/value maps denoted as σ). Then, Env (a couple of topology and sensor state) models
the system’s environment. So, a whole network configuration N is a couple of a status field
and environment.

We use the following notation for status fields. Let δ 7→ Θ denote a map from device
identifiers δ to the same value-tree environment Θ. Let Θ0[Θ1] denote the value-tree envi-
ronment with domain dom(Θ0) ∪ dom(Θ1) coinciding with Θ1 in the domain of Θ1 and
with Θ0 otherwise. Let Ψ0[Ψ1] denote the status field with the same domain as Ψ0 made
of δ 7→ Ψ0(δ)[Ψ1(δ)] for all δ in the domain of Ψ1, δ 7→ Ψ0(δ) otherwise.

We consider transitions N
act−−→ N ′ of two kinds: firings, where act is the corresponding

device identifier, and environment changes, where act is the special label env. This is
formalized in Figure 5 (bottom). Rule [N-FIR] models a computation round (firing) at device

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 11

System configurations and action labels:

Ψ ::= δ 7→ Θ status field

τ ::= δ 7→ I topology

Σ ::= δ 7→ σ sensors-map

Env ::= τ,Σ environment

N ::= 〈Env; Ψ〉 network configuration

act ::= δ
∣∣ env action label

Environment well-formedness:
WFE(τ,Σ) holds iff dom(τ) = dom(Σ) and τ(δ) ⊆ dom(Σ) for all δ ∈ dom(Σ).

Transition rules for network evolution: N
act−−→ N

[N-FIR] Env = τ,Σ τ(δ) = δ δ;F (Ψ)(δ); Σ(δ) ` emain ⇓ θ Ψ1 = δ 7→ {δ 7→ θ}
〈Env; Ψ〉 δ−→ 〈Env;F (Ψ)[Ψ1]〉

[N-ENV] WFE(Env′) Env′ = τ, δ 7→ σ Ψ0 = δ 7→ ∅
〈Env; Ψ〉 env−−→ 〈Env′; Ψ0[Ψ]〉

Figure 5: Small-step operational semantics for network evolution.

δ: it takes the local value-tree environment filtered out of old values F (Ψ)(δ);2 then by the
single device semantics it obtains the device’s value-tree θ,3 which is used to update the
system configuration of δ and of δ’s neighbors.

Rule [N-ENV] takes into account the change of the environment to a new well-formed
environment Env′—environment well-formedness is specified by the predicate WFE(Env)
in Figure 5 (middle). Let δ be the domain of Env′. We first construct a status field Ψ0

associating to all the devices of Env′ the empty context ∅. Then, we adapt the existing
status field Ψ to the new set of devices: Ψ0[Ψ] automatically handles removal of devices,
map of new devices to the empty context, and retention of existing contexts in the other
devices.

Example 2.7. Consider a network of devices with e′ = minHood(nbr{snsNum()}) as intro-
duced in Example 2.6. The network configuration illustrated at the beginning of Exam-
ple 2.6 can be generated by applying rule [N-ENV] to the empty network configuration. I.e.,
we have

〈∅, ∅; ∅〉 env−−→ 〈Env0; Ψ0〉
where

• Env0 = τ0,Σ0,
• τ0 = (δA 7→ {δB}, δB 7→ {δA, δC}, δC 7→ {δB}),
• Σ0 = (δA 7→ (snsNum 7→ 1), δB 7→ (snsNum 7→ 2), δC 7→ (snsNum 7→ 3)), and

2Function F (Ψ) in rule [N-FIR] models a filtering operation that clears out old stored values from the
value-tree environments in Ψ, implicitly based on space/time tags.

3We shall assume that any device firing is guaranteed to terminate in any environmental condition.
Termination of a device firing is clearly not decidable, but we shall assume—without loss of generality for
the results of this paper—that a decidable subset of the termination fragment can be identified (e.g., by ruling
out recursive user-defined functions or by applying standard static analysis techniques for termination).

12 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

• Ψ0 = (δA 7→ ∅, δB 7→ ∅, δC 7→ ∅).
Then, the three firings of devices δA, δC and δB illustrated in Example 2.6 correspond to
the following transitions, respectively.

(1) 〈Env0; Ψ0〉
δA−→ 〈Env0; Ψ′〉, where

• Ψ′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA), δC 7→ ∅), and
• θA = 1〈(δA 7→ 1)〈1〉〉;

(2) 〈Env0; Ψ′〉 δC−→ 〈Env0; Ψ′′〉, where
• Ψ′′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA, δC 7→ θC), δC 7→ (δC 7→ θC)), and
• θC = 1〈(δC 7→ 3)〈3〉〉;

(3) 〈Env0; Ψ′′〉 δB−→ 〈Env0; Ψ′′′〉, where
• Ψ′′′ = (δA 7→ (δA 7→ θA, δB 7→ θB),

δB 7→ (δA 7→ θA, δB 7→ θB, δC 7→ θC),
δC 7→ (δB 7→ θB, δC 7→ θC)),

• θB = 1〈φ〈2〉〉, and
• φ = (δA 7→ 1, δB 7→ 2, δC 7→ 3).

2.5. Problematic Interaction between rep and nbr Constructs. Unfortunately, the
apparently straight-forward combination of state evolution with nbr and state sharing with
rep turns out to contain a hidden delay, which was identified and explained in [ABDV18].
This problem may be illustrated by attempting to construct a simple function that spreads
information from an event as quickly as possible. Let us say there is a Boolean space-time
value condition, and we wish to compute a space-time function ever that returns true
precisely at events where condition is true and in the causal future of those events—i.e.,
spreading out at the maximum theoretical speed throughout the network of devices. One
might expect this could be implemented as follows in field calculus:

def ever1(condition) {

rep (false) { (old) => anyHoodPlusSelf(nbr{old}) || condition }

}

where anyHoodPlusSelf is a built-in function that returns true if any value is true in its
neighboring value input (including the value old held for the current device). Walking
through the evaluation of this function, however, reveals that there is a hidden delay. In
each round, the old variable is updated, and will become true if either condition is true now
for the current device or if old was true in the previous round for the current device or for
any of its neighbors. Once old becomes true, it stays true for the rest of the computation.
Notice, however, that a neighboring device does not actually learn that condition is true,
but that old is true. In an event where condition first becomes true, the value of old that
is shared is still false, since the rep does not update its value until after the nbr has already
been evaluated. Only in the next round do neighbors see an updated value of old, meaning
that ever1 is not spreading information fast enough to be a correct implementation of ever.

We might try to improve this routine by directly sharing the value of condition:

def ever2(condition) {

rep (false) { (old) => anyHoodPlusSelf(nbr{old || condition}) }

}

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 13

This solves the problem for immediate neighbors, but does not solve the problem for
neighbors of neighbors, which still have to wait an additional round before old is updated.

In fact, it appears that the only way to avoid delays at some depth of neighbor relations
is by using unbounded recursion, as previously outlined in [ABDV18]:

def ever3(condition) {

rep (false) { (old) =>

if (countHood() == 0) { old || condition } {

ever3(anyHoodPlusSelf(nbr{old || condition}))

} } }

where countHood counts the number of neighbors, i.e., determining whether any neighbor
has reached the same depth of recursion in the branch. Thus, in ever3, neighbors’ values
of cond are fed to a nested call to ever3 (if there are any); and this process is iterated
until no more values to be considered are present. This function therefore has a recursion
depth equal to the longest sequence of events ε0 . . . ε ending in the current event ε,
inducing a linearly increasing computational time and message size and making the routine
effectively infeasible for long-running systems.

This case study illustrates the more general problem of delays induced by the interaction
of rep and nbr constructs in field calculus, as identified in [ABDV18]. With these constructs,
it is never possible to build computations involving long-range communication that are as
fast as possible and also lightweight in the amount of communication required.

3. The Share Construct

In order to overcome the problematic interaction between rep and nbr, we propose a new
construct that combines aspects of both:

share(e1){(x) => e2}
While the syntax of this new share construct is identical to that of rep, the two constructs
differ in the way the construct variable x is interpreted each round:

• in rep, the value of x is the local value produced by evaluating the construct in the
previous round, or the result of evaluating e1 if there is no prior-round value;
• in share, on the other hand, x is a neighboring value comprising that same value for

the current device plus the values of the construct produced by neighbors in their
most recent evaluation. In other words, x is substituted with the evaluation of the
share construct in all neighbouring events, using the local evaluation of e1 for the
current device if a past evaluation is not available.

Notice that since x is a neighboring value rather than a local value, e2 is responsible for
processing it into a local value that can be shared with neighbors at the end of the evaluation.
These apparently small differences in the construct interpretations have significant effects,
allowing share to improve the dynamics of many algorithms.

Section 3.1 presents the operational semantics of the share construct. Section 3.2
introduces automatic rewritings of rep constructs into share constructs: two preserving
the behavior, thus showing that share has the expressive power to substitute most usages
of rep and nbr in programs; and one changing the behavior (in fact, improving it in many
cases). Section 3.3 demonstrates the automatic behavior improvement for the example in
Section 2.5, while estimating the general communication speed improvement induced by the

14 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

Auxiliary functions:

φ0[φ1] = φ2 where φ2(δ) =

{
φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

Rule for expression evaluation:

[E-SHARE]
δ;π1(Θ);σ ` e1 ⇓ θ1 φ′ = ρ(π2(Θ)) φ = (δ 7→ ρ(θ1))[φ′]
δ;π2(Θ);σ ` e2[x := φ] ⇓ θ2

δ; Θ;σ ` share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

Figure 6: Operational semantics for the share construct.

rewriting. Section 3.4 shows examples for which the rewriting fails to preserve the intended
behavior, and Section 3.5 concludes by showing that behavior is preserved for the relevant
subset of field calculus pinpointed in [VAB+18].

3.1. Operational Semantics. Formal operational semantics for the share construct is
presented in Figure 6 (bottom frame), as an extension to the semantics given in Section 2.3.
The evaluation rule is based on the auxiliary functions given in Figure 6 (top frame), plus
the auxiliary functions in Figure 4 (second frame). In particular, we use the notation
φ0[φ1] to represent “field update”, so that its result φ2 has dom(φ2) = dom(φ0)∪dom(φ1)
and coincides with φ1 on its domain, or with φ0 otherwise.

The evaluation rule [E-SHARE] produces a value-tree with two branches (for e1 and e2

respectively). First, it evaluates e1 with respect to the corresponding branches of neighbors
π1(Θ) obtaining θ1. Then, it collects the results for the construct from neighbors into the
neighboring value φ′ = ρ(π2(Θ)). In case φ′ does not have an entry for δ, ρ(θ1) is used
obtaining φ = (δ 7→ ρ(θ1))[φ′]. Finally, φ is substituted for x in the evaluation of e2 (with
respect to the corresponding branches of neighbors π2(Θ)) obtaining θ2, setting ρ(θ2) to be
the overall value.

Example 3.1 (Operational Semantics). Consider the body of function ever:

def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Suppose that device δ = 0 first executes a round of computation without neighbors (i.e.,
Θ is empty), and with condition equal to false. The evaluation of the share construct
proceeds by evaluating false into θ1 = false〈〉, gathering neighbor values into φ′ = •
(no values are present), and adding the value for the current device obtaining φ = (0 7→
false)[•] = 0 7→ false. Finally, the evaluation completes by storing in θ2 the result of
anyHoodPlusSelf(0 7→ false)||false (which is false〈. . .〉4). At the end of the round,
device 0 sends a broadcast message containing the result of its overall evaluation, and thus
including θ0 = false〈false, false〈. . .〉〉.

Suppose now that device δ = 1 receives the broadcast message and then executes a
round of computation where condition is true. The evaluation of the share constructs
starts similarly as before with θ1 = false〈〉, φ′ = 0 7→ false, φ = 0 7→ false, 1 7→

4We omit the part of the value tree that are produced by semantic rules not included in this paper, and
refer to[VAB+18, Electronic Appendix] for the missing parts.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 15

false. Then the body of the share is evaluated as anyHoodPlusSelf(0 7→ false, 1 7→
false)||true into θ2, which is true〈. . .〉. At the end of the round, device 1 broadcasts the
result of its overall evaluation, including θ1 = true〈false, true〈. . .〉〉.

Then, suppose that device δ = 0 receives the broadcast from device 1 and then performs
another round of computation with condition equal to false. As before, θ1 = false〈〉, φ =
φ′ = 0 7→ false, 1 7→ true and the body is evaluated as anyHoodPlusSelf(0 7→ false, 1 7→
true)||false which produces true〈. . .〉 for an overall result of θ2 = true〈false, true〈. . .〉〉.

Finally, suppose that device δ = 1 does not receive that broadcast and discards 0 from
its list of neighbor before performing another round of computation with condition equal to
false. Then, θ1 = false〈〉, φ′ = 1 7→ true, φ = (1 7→ false)[1 7→ true] = 1 7→ true, and
the body is evaluated as anyHoodPlusSelf(1 7→ true)||false which produces true〈. . .〉.

3.2. Automatic Rewritings of rep Constructs into share Constructs. The share

construct can be automatically incorporated into programs using rep and nbr in few ways.
First, we may want to rewrite a program while maintaining the behavior unchanged, thus
showing that the expressive power of share is enough to replace other constructs to some
extent. In particular, we can fully replace the rep construct through the following rewriting,
expressed through the notation e[e1 := e′1, . . . , en := e′n] representing an expression e

in which the distinct subexpressions e1, . . . , en have been simultaneously replaced by the
corresponding expressions e′1, . . . , e

′
n—if ei is a subexpression of ej (for some i 6= j) then

the occurrences ej are replaced by e′j .

Rewriting 1 (rep-elimination).

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x)]}
where localHood is a built-in operator that given a neighboring value φ returns the local
value φ(δ) for the current device.

Theorem 3.2. Rewriting 1 preserves the program behavior.

Proof. Correctness follows since the value φ(δ) in the neighbouring value φ substituted for
x in the share construct corresponds exactly to the value that is substituted for x in the
corresponding rep construct.

In addition to eliminating rep occurrences, the share construct is able to factor out
many common usages of the nbr construct as well (even though not all of them), as per the
following equivalent rewriting. For ease of presentation, we extend the syntax of share to
handling multiple input-output values: share(e1, e2){(x1, x2) => e′1, e

′
2}, to be interpreted

as a shorthand for a single-argument construct where the multiple input-output values have
been gathered into a tuple (unpacking them before computing e′1, e

′
2 and then packing their

result).

Rewriting 2 (nbr-elimination).

rep(e1){(x) => e2} −→
fst(share(e1, e1){(x, y) =>

e2[y := localHood(x), nbr{x} := localChange(y, localHood(x))],

localHood(x)

})

16 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

where y is fresh variable and localChange(φ, `) updates the value of φ for the current
device δ with `, returning φ[δ 7→ `].

Theorem 3.3. Rewriting 2 preserves the program behavior.

Proof. We prove by induction that the two components of the share translation correspond
to the rep current and previous results (respectively, using e1 if no such previous value
is available). On initial rounds of evaluation, the share construct evaluates to e2[x :=
e1, nbr{x} := nbr{e1}], e1 (by substituting x, y by e1), as the rep construct. On other
rounds, the second component of share is localHood(x), which is the previous result of
the first component of share, which is the previous result of the rep construct by inductive
hypothesis. Furthermore, the first component of share is e2 with arguments localHood(x)
(again, the previous result of the rep construct) and localChange(y, localHood(x)), which
is the neighbours’ values for the second argument together with the previous value of the
rep construct for the current device. On the other hand, nbr{x} is the neighbours’ values
for the old value of the rep construct, together with the local previous value of the rep
construct. By inductive hypothesis, the two things coincide, concluding the proof.

However, a more interesting rewriting is the following non-equivalent one, which for
many algorithms is able to automatically improve the communication speed while preserving
the overall meaning.

Rewriting 3 (non-equivalent).

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x), nbr{x} := x]}
In particular, we shall see in Section 3.3 how this rewriting translates the inefficient

ever1 routine into a program equivalent to ever3, and in Section 3.5 that this rewriting pre-
serves the eventual behavior of a whole fragment of field calculus programs, while improving
its efficiency. In particular, the improvement in communication speed can be estimated to
be at least three-fold (see Section 3.3). Unfortunately, programs may exist for which this
translation fails to preserve the intended meaning (see Section 3.4). This usually happens
for time-based algorithms where the one-round delay is incorporated into the logic of the
algorithm, or weakly characterised functions which may need reduced responsiveness for
allowing results to stabilise. Thus, better performing alternatives using share may still
exist after the program logic has been accordingly fixed.

3.3. The share Construct Improves Communication Speed. To illustrate how share

solves the problem illustrated in Section 2.5, let us once again consider the ever function
discussed in that section, for propagating when a condition Boolean has ever become true.
By applying Rewriting 3 to the ever1 function introduced in Section 2.5 we obtain exactly
the ever function introduced in Section 3.1:

def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }

}

Function ever is simultaneously (i) compact and readable, even more so than ever1 and
ever2 (note that we no longer need to include the nbr construct); (ii) lightweight, as it
involves the communication of a single Boolean value each round and few operations; and
(iii) optimally efficient in communication speed, since it is true for any event ε with a causal
predecessor ε′ ≤ ε where condition was true. In particular

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 17

• in such an event ε′ the overall share construct is true, since it goes to anyHoodPlusSelf(old) || true

regardless of the values in old;
• in any subsequent event ε′′ (i.e. ε′ ε′′) the share construct is true since the field

value old contains a true value (the one coming from ε′), and
• the same holds for further following events ε by inductive arguments.

In field calculus without share, such optimal communication speed can be achieved only
through unbounded recursion, as argued in [ABDV18] and reviewed above in Section 2.5.

As a further example of successful application of Rewriting 3, consider the following
routine where maxHoodPlusSelf is a built-in function returning the maximum value in the
range of a numeric neighboring value.

def sharedcounter1() {

rep (0) { (old) => max(maxHoodPlusSelf(nbr{old}), rep(0){(c)=>c+1}) }

}

This function computes a local counter through rep(0){(c)=>c+1} and then uses it to com-
pute the maximum number of rounds a device in the network has performed (even though
information about the number of rounds for other devices propagates at reduced speed). If
we rewrite this function by eliminating the first rep through Rewriting 3, we obtain:

def sharedcounter2() {

share (0) { (old) => max(maxHoodPlusSelf(old), rep(0){(c)=>c+1}) }

}

where information about the number of rounds for other devices is propagated to neighbors
at the full multi-path speed allowed by share. It is worth observing that eliminating the
remaining rep by further applying Rewriting 3 would produce the same result of applying
Rewriting 1, i.e:

def sharedcounter() {

share (0) { (old) => max(maxHoodPlusSelf(old), share(0){(c)=>localHood(c)+1}) }

}

and therefore would not affect the information propagation speed.
The average improvement in communication speed of a routine being converted from

the usage of rep+nbr to share according to Rewriting 3 can also be statistically estimated,
depending on the communication pattern used by the routine.

An algorithm follows a single-path communication pattern if its outcome in an event
depends essentially on the value of a single selected neighbor: prototypical examples of such
algorithms are distance estimations [ADV17, ADV18, ACDV17], which are computed out
of the value of the single neighbor on the optimal path to the source. In this case, letting
T be the average interval between subsequent rounds, the expected communication delay
of an hop is T/2 with share (since it can randomly vary from 0 to T) and T/2 +T = 3/2T
with rep + nbr (since a full additional round T is wasted in this case). Thus, the usage
of share allows for an expected three-fold improvement in communication speed for these
algorithms.

An algorithm follows a multi-path communication pattern if its outcome in an event is
obtained from the values of all neighbors: prototypical examples of such algorithms are data
collections [ABDV19], especially when they are idempotent (e.g. minimums or maximums).
In this case, the existence of a single communication path ε0 . . . ε is sufficient for the

18 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

value in ε0 to be taken into account in ε. Even though the delay of any one of such paths
follows the same distribution as for single-path algorithms (0 to T per step with share, T
to 2T per step with rep + nbr), the overall delay is minimized among each existing path.
It follows that for sufficiently large numbers of paths, the delay is closer to the minimum of
a single hop (0 with share, T with rep + nbr) resulting in an even larger improvement.

3.4. Limitations of the Automatic Rewriting. In the previous section, we showed how
the non-equivalent rewriting of rep + nbr statements into share statements is able to im-
prove the performance of algorithms, both in the specific case of the ever and sharedcounter

functions, and statistically for the communication speed of general algorithms. However,
this procedure may not work for all functions: for example, consider the following routine

def fragilesharedcounter() {

rep (0) { (old) => maxHoodPlusSelf(nbr{old})+1 }

}

that, if the scheduling of computation rounds is sufficiently regular across the network, is
able to approximate the maximum number of rounds a device in the network has performed
(even though information about the number of rounds for other devices propagates at
reduced speed). If we rewrite this function through Rewriting 3, we obtain:

def fragilesharedcounter1() {

share (0) { (old) => maxHoodPlusSelf(old)+1 }

}

which does not approximate the same quantity. Instead, it computes the maximum length
of a path of messages reaching the current event, which may be unboundedly higher than
round counts in case of dense networks.

In fact, the fragile shared counter function is a paradigmatic example of rewriting
failure: it is a time-based function, whose results are strongly altered by removing the one-
round wait generated by rep+ nbr. Another class of programs for which the rewriting fails
is that of functions with weakly defined behavior, usually based on heuristics, for which
the increase in responsiveness may increase the fluctuations in results (or even prevent
stabilisation to a meaningful value).

3.5. The share Construct Preserves Self-stabilisation. In this section, we prove that
the automatic rewriting is able to improve an important class of functions with strongly de-
fined behavior: the self-stabilising fragment of field calculus identified in [VAB+18]. Func-
tions complying to the syntactic and semantic restrictions imposed by this fragment are
guaranteed to be self-stabilising, that is, whenever the function inputs and network struc-
ture stop changing, the output values will eventually converge to a value which only depends
on the limit inputs and network structure (and not on what happened before the conver-
gence of the network). This property captures the ability of a function to react to input
changes, self-adjusting to the new correct value, and is thus a commonly used notion for
strongly defining the behavior of a distributed function.

For example, function ever is not self-stabilising: if the inputs stabilise to being false
everywhere, the function output could still be true if some past input was indeed true. As
a positive example, the following function is self-stabilising, and computes the hop-count
distance from the closest device where source is true.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 19

s ::= x
∣∣ v

∣∣ f(s)
∣∣ if(s){s}{s}

∣∣ nbr{s} self-stabilising expression with rep∣∣ rep(e){(x) => fC(nbr{x}, nbr{s}, e)}∣∣ rep(e){(x) => f(mux(nbrlt(s), nbr{x}, s), s)}∣∣ rep(e){(x) => fR(minHoodLoc(fMP(nbr{x}, s), s), x, e)}

s ::= x
∣∣ v

∣∣ f(s)
∣∣ if(s){s}{s}

∣∣ nbr{s} self-stabilising expression with share∣∣ share(e){(x) => fC(x, nbr{s}, e)}∣∣ share(e){(x) => f(mux(nbrlt(s), x, s), s)}∣∣ share(e){(x) => fR(minHoodLoc(fMP(x, s), s), localHood(x), e)}

Figure 7: Syntax of the self-stabilising fragment of field calculus introduced in [VAB+18],
together with its translation through Rewriting 3. Self-stabilising expressions s

occurring inside rep and share statements cannot contain free occurrences of the
share-bound variable x.

def hopcount(source) {

share (infinity) { (old) => mux(source, 0, minHood(old)+1) }

}

Here, minHood computes the minimum in the range of a numeric neighboring value (excluding
the current device), while mux (multiplexer) selects between its second and third argument
according to the value of the first (similarly as if, but evaluating all arguments).

A rewriting of the self-stabilising fragment with share is given in Figure 7, defining a
class s of self-stabilising expressions, which may be:

• any expression not containing a share or rep construct, comprising built-in func-
tions;
• three special forms of share-constructs, called converging, acyclic and minimising

pattern (respectively), defined by restricting both the syntax and the semantic of
relevant functional parameters.

We recall here a brief description of the patterns: for a more detailed presentation, the
interested reader may refer to [VAB+18]. The semantic restrictions on functions are the
following.

Converging (C): A function f(φ, ψ, v) is said converging iff, for every device δ, its
return value is closer to ψ(δ) than the maximal distance of φ to ψ.

Monotonic non-decreasing (M): a stateless5 function f(x, x) with arguments of lo-
cal type is M iff whenever `1 ≤ `2, also f(`1, `) ≤ f(`2, `).

Progressive (P): a stateless function f(x, x) with arguments of local type is P iff
f(`, `) > ` or f(`, `) = > (where > denotes the unique maximal element of the
relevant type).

Raising (R): a function f(`1, `2, v) is raising with respect to total partial orders <,
C iff: (i) f(`, `, v) = `; (ii) f(`1, `2, v) ≥ min(`1, `2); (iii) either f(`1, `2, v) B `2 or
f(`1, `2, v) = `1.

Hence, the three patterns can be described as follows.

5A function f(x) is stateless iff its outputs depend only on its inputs and not on other external factors.

20 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

Converging: In this pattern, variable x is repeatedly updated through function fC

and a self-stabilising value s. The function fC may also have additional (not neces-
sarily self-stabilising) inputs e. If the range of the metric granting convergence of fC

is a well-founded set6 of real numbers, the pattern self-stabilises since it gradually
approaches the value given by s.

Acyclic: In this pattern, the neighborhood’s values for x are first filtered through a
self-stabilising partially ordered “potential”, keeping only values held in devices with
lower potential (thus in particular discarding the device’s own value of x). This is ac-
complished by the built-in function nbrlt, which returns a field of booleans selecting
the neighbors with lower argument values, and could be defined as def nbrlt(x) {nbr{x} <
x}.

The filtered values are then combined by a function f (possibly together with
other values obtained from self-stabilising expressions) to form the new value for x.
No semantic restrictions are posed in this pattern, and intuitively it self-stabilises
since there are no cyclic dependencies between devices.

Minimising: In this pattern, the neighborhood’s values for x are first increased by a
monotonic progressive function fMP (possibly depending also on other self-stabilising
inputs). As specified above, fMP needs to operate on local values: in this pattern it
is therefore implicitly promoted to operate (pointwise) on fields.

Afterwards, the minimum among those values and a local self-stabilising value is
then selected by function minHoodLoc(φ, `) (which selects the “minimum” in φ[δ 7→
`]). Finally, this minimum is fed to the raising function fR together with the old
value for x (and possibly any other inputs e), obtaining a result that is higher than
at least one of the two parameters. We assume that the second partial order C is
noetherian,7 so that the raising function is required to eventually conform to the
given minimum.

Intuitively, this pattern self-stabilises since it computes the minimum among the
local values ` after being increased by fMP along every possible path (and the effect
of the raising function can be proved to be negligible).

For expressions in the self-stabilising fragment, we can prove that the non-equivalent
rewriting preserves the limit behavior, and thus may be safely applied in most cases.

Theorem 3.4. Assume that every built-in operator is self-stabilising. Then closed expres-
sions s as in Figure 7 self-stabilise to the same limit for rep + nbr as their rewritings
with share, the latter with a tighter bound on the number of full rounds of execution8 of a
network needed before stabilisation.

Proof. See Appendix A.

4. Application and Empirical Validation

Having developed the share construct and shown that it should be able to significantly
improve the performance of field calculus programs, we have also applied this development
by extending the Protelis [PVB15] implementation of field calculus to support share (the

6An ordered set is well-founded iff it does not contain any infinite descending chain.
7A partial order is noetherian iff it does not contain any infinite ascending chains.
8A full round of execution is a sequence firings encompassing each device at least once.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 21

implementation is a simple addition of another keyword and accompanying implementation
code following the semantics expressed above). We have further upgraded every function
in the protelis-lang library [FPBV17] with an applicable rep/nbr combination to use
the share construct instead, thereby also improving every program that makes use of these
libraries of resilient functions. The official Protelis distribution includes these changes to
the language and the library into the main distribution, starting with version 11.0.0. To
validate the efficacy of both our analysis and its applied implementation, we empirically
validate the improvements in performance for a number of these upgraded functions in
simulation.

4.1. Evaluation Setup. We experimentally validate the improvements of the share con-
struct through two simulation examples. In both, we deploy a number of mobile devices,
computing rounds asynchronously at a frequency of 1 ±0.1 Hz, and communicating within
a range of 75 meters. All aggregate programs have been written in Protelis [PVB15] and
simulations performed in the Alchemist environment [PMV13]. All the results reported in
this paper are the average of 200 simulations with different seeds, which lead to different
initial device locations, different waypoint generation, and different round frequency. Data
generated by the simulator has been processed with Xarray [HH17] and matplotlib [Hun07].
For the sake of brevity, we do not report the actual code in this paper; however, to guaran-
tee complete reproducibility, the execution of the experiments has been entirely automated,
and all the resources have been made publicly available along with instructions.9

In the first scenario, we position 2000 mobile devices into a corridor room with sides of,
respectively, 200m and 2000m. All but two of the devices are free to move within the corridor
randomly, while the remaining two are “sources” are fixed. We experiment with different
locations for the latter, ranging from the opposite ends of the corridor to a distance of 100m.
At every point of time, only one of the two sources is active, switching at 80 seconds and
200 seconds (i.e., the active one gets disabled, the disabled one is re-enabled). Devices are
programmed to compute a field yielding everywhere the farthest distance from any device
to the current active source. In order to do so, they execute the following commonly used
coordination algorithms:

(1) they compute a potential field measuring the distance from the active source through
BIS [ADV18] (bisGradient routine in protelis:coord:spreading);

(2) they accumulate the maximum distance value descending the potential towards the
source, through Parametric Weighted Multi-Path C [ABDV19] (an optimized version
of C in protelis:coord:accumulation);

(3) they broadcast the information along the potential, from the source to every other
device in the system (an optimized version of the broadcast algorithm available in
protelis:coord:spreading, which tags values from the source with a timestamp
and propagates them by selecting more recent values).

The choice of the algorithms to be used in validation revealed to be critical. The usage of
share is able to directly improve the performance of algorithms with solid theoretical guar-
antees; however, it may also exacerbate errors and instabilities for more ad-hoc algorithms,
by allowing them to propagate quicker and more freely, preventing (or slowing down) the

9 Experiments are separated in two blocks, available on two separate repositories:
https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/

https://github.com/DanySK/Experiment-2019-LMCS-Share

https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/
https://github.com/DanySK/Experiment-2019-LMCS-Share

22 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

0 50 100 150 200 250 300
simulated time (s)

0
100

101

102

103

di
st

an
ce

 e
rro

r

single computations, error in distance

0 50 100 150 200 250 300
simulated time (s)

0

100

101

102

tim
e

er
ro

r

single computations, error in time

0 50 100 150 200 250 300
simulated time (s)

0
100

101

102

103

di
st

an
ce

 e
rro

r

stack computations, error in distance

0 50 100 150 200 250 300
simulated time (s)

0

100

101

102

tim
e

er
ro

r

stack computations, error in time

rep-broadcast
rep-collection
rep-distance

share-broadcast
share-collection
share-distance

Figure 8: Performance in the corridor scenario, for both individual algorithms (top) and the
composite computation (bottom). Vertical axis is linear in [0, 1] and logarithmic
above. Charts on the left column show distance error, while the right column
shows time error. The versions of the algorithms implemented with share (warm
colors) produce significantly less error and converge significantly faster in case of
large disruptions than with rep (cold colors).

stabilization of the algorithm result whenever the network configuration and input is not
constant. Of the set of available algorithms for spreading and collecting data, we thus
selected variants with smoother recovery from perturbation: optimal single-path distance
estimation (BIS gradient [ADV18]), optimal multi-path broadcast [VAB+18], and the lat-
est version of data collection (parametric weighted multi-path [ABDV19], fine-tuning the
weight function).

We are interested in measuring the error of each step (namely, in distance vs. the
true values), together with the lag through which these values were generated (namely,
by propagating a time-stamp together with values, and computing the difference with the
current time). Moreover, we want to inspect how the improvements introduced by share

accumulate across the composition of algorithms. To do so, we measure the error in two
conditions: (i) composite behavior, in which each step is fed the result computed by the
previous step, and (ii) individual behavior, in which each step is fed an ideal result for the
previous step, as provided by an oracle.

Figure 8 shows the results from this scenario. Observing the behavior of the individual
computations, it is immediately clear how the share-based version of the algorithm provides
faster recovery from network input discontinuities and lower errors at the limit. These effects
are exacerbated when multiple algorithms are composed to build aggregate applications.
The only counterexample is the limit of distance estimations, for which rep is marginally
better, with a relative error less than 1% lower than that of share.

Moreover, notice that the collection algorithm with rep was not able to recover from
changes at all, as shown by the linearly increasing delay in time (and the absence of spikes

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 23

0 50 100 150 200 250 300
Simulation time (s)

5

10

15

20

25

Pa
ck

et
 d

el
ay

 (s
)

rep vs. share performance, broadcast

rep-single
rep
share-single
share

0 50 100 150 200 250 300
Simulation time (s)

5

10

15

20

25

Pa
ck

et
 d

el
ay

 (s
)

rep vs. share performance, accumulation

rep-single
rep
share-single
share

250 500 750 1000 1250 1500 1750 2000
Distance between source and destination (m)

0

5

10

15

20

25

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

rep vs. share performance, broadcast
rep-single
rep
share-single
share

250 500 750 1000 1250 1500 1750 2000
Distance between source and destination (m)

0

5

10

15

20

25

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

rep vs. share performance, accumulation
rep-single
rep
share-single
share

Figure 9: Performance in the corridor scenario, showing on top the packet lag between the
two fixed devices for the scenario in which they are at opposite ends of the corridor,
and on bottom how the average packet lag changes with the distance between such
devices. Broadcast data is on the left, accumulation on the right. Thinner lines
depict mean ± standard deviation. Darker lines depict “stacked” computations,
namely, they use respectively rep-based or share-based algorithms to compute
distances; lighter lines depict “single” computations, where distances are provided
by an oracle. The versions of the algorithms implemented with share (warm
colors) stabilize faster, and once stabilized they provide much lower network lags.
The effect stacks when multiple algorithms are used together, as shown by the
chart on packet delay in accumulation (top right): the collection algorithm using
the distance computed with rep requires a longer time for stabilization, after
which provides the same performance (in terms of lag) of the version relying on
an oracle. Bottom charts show how both implementations scale linearly with the
distance between devices (hence, for a network, linearly in its diameter); however,
for rep-based algorithms scaling is noticeably worse.

in distance error). The known weakness of multi-path collection strategies, that is, failing to
react to changes due to the creation of information loops, proved to be much more relevant
and invalidating with rep than with share.

Further details on the improvements introduced by share are depicted in Figure 9,
which shows both the lag between two selected devices and how such lag is influenced
by the distance between them. Algorithms implemented on share provide, as expected,
significantly lower network lags, and the effect is more pronounced as the distance between
nodes increases: in fact, even though network lags expectedly scale linearly in both cases,
rep-based versions accumulate lag much more quickly.

In the second example, we deploy 500 devices in a city center, and let them move
as though being carried by pedestrians, moving at walking speed (1.4ms) towards random
waypoints along roads open to pedestrian traffic (using map data from OpenStreetMaps

24 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

Figure 10: Snapshots of the Voronoi partitioning scenario using share (left) or rep (right).
Colored dots are simulated devices, with each region having a different color.
Faster communication with share leads to a higher accuracy in distance esti-
mation, allowing the share implementation to perform a better division into
regions and preventing regions from expanding beyond their limits: note the
mixing of colors on the right.

[HW08]). In this scenario, devices must self-organize service management regions with a
radius of at most 200 meters, creating a Voronoi partition as shown in Figure 10 (functions
S and voronoiPatitioningWithMetric from protelis:coord:sparsechoice). We evaluate
performance by measuring the number of partitions generated by the algorithm, and the
average and maximum node distance error, where the error for a node n measures how
far a node is beyond of the maximum boundary for its cluster. This is computed as εn =
max(0, d(n, ln) − r), where d computes the distance between two devices, ln is the leader
for the cluster n belongs to, and r is the maximum allowed radius of the cluster.

Figure 11 shows the results from this scenario, which also confirm the benefits of faster
communication with share. The algorithm implemented with share has much lower error,
mainly due to faster convergence of the distance estimates, and consequent higher accuracy
in measuring the distance from the partition leader. Simultaneously, it creates a marginally
lower number of partitions, by reducing the amount of occasional single-device regions which
arise during convergence and re-organization.

5. Conclusion and Future Work

We have introduced a novel share construct whose introduction allows a significant ac-
celeration of field calculus programs. We have also made this construct available for use
in applications though an extension of the Protelis field calculus implementation and its

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 25

0 100 200 300 400 500 600
simulated time (s)

0

10 1

100

101

102

di
st

an
ce

 e
rro

r

rep[Mean]
rep[Max]

share[Mean]
share[Max]

0 100 200 300 400 500 600
simulated time (s)

102

le
ad

er
s c

ou
nt

rep share

Figure 11: Performance in the Voronoi partition scenario: error in distance on the left,
leaders count with time on the right. Vertical axis is linear in [0, 0.1] and loga-
rithmic elsewhere. The version implemented with share has much lower error:
the mean error is negligible, and the most incorrect value, after an initial con-
vergence phase, is close to two orders of magnitude lower than with rep, as
faster communication leads to more accurate distance estimates. The leader
count shows that the systems create a comparable number of partitions, with
the share-based featuring faster convergence to a marginally lower number due
to increased consistency in partitioning.

accompanying libraries, and have empirically validated the expected improvements in per-
formance through experiments in simulation.

In future work, we plan to study for which algorithms the usage of share may lead to
increased instability, thus fine-tuning the choice of rep and nbr over share in the Protelis
library. Furthermore, we intend to fully analyze the consequences of share for improvement
of space-time universality [ABDV18], self-adaption [BVPD17], and variants of the seman-
tics [ADVC16] of the field calculus. It also appears likely that the field calculus can be
simplified by the elimination of both rep and nbr by finding a mapping by which share

can also be used to implement any usage of nbr. Finally, we believe that the improvements
in performance will also have positive consequences for nearly all current and future appli-
cations that are making use of the field calculus and its implementations and derivatives.

Acknowledgements. We thank the anonymous COORDINATION 2019 referees for their
comments and suggestions on improving the presentation.

References

[ABD+19] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli. The share
operator for field-based coordination. In Coordination Models and Languages, volume 11533 of
Lecture Notes in Computer Science, pages 54–71. Springer, 2019.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-time universality
of field calculus. In Coordination Models and Languages, volume 10852 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2018.

[ABDV19] Giorgio Audrito, Sergio Bergamini, Ferruccio Damiani, and Mirko Viroli. Effective collective
summarisation of distributed data in mobile multi-agent systems. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2019.

[ACDV17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. Compositional blocks
for optimal self-healing gradients. In 11th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2017), pages 91–100. IEEE, 2017.

26 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

[ADV17] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. Optimally-self-healing distributed gra-
dient structures through bounded information speed. In Coordination Models and Languages,
volume 10319 of LNCS, pages 59–77. Springer, 2017.

[ADV18] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. Optimal single-path information prop-
agation in gradient-based algorithms. Science of Computer Programming, 166:146–166, 2018.

[ADVC16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei. Run-time management
of computation domains in field calculus. In 1st International Workshops on Foundations and
Applications of Self* Systems (FAS*W), pages 192–197. IEEE, 2016.

[ARGL+07] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padman-
abhan Pillai. Meld: A declarative approach to programming ensembles. In IEEE International
Conference on Intelligent Robots and Systems (IROS ’07), pages 2794–2800, 2007.

[AVD+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. A higher-
order calculus of computational fields. ACM Transactions on Computational Logic (TOCL),
20(1):5:1–5:55, 2019.

[BB06] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intelligent Systems, 21:10–19, March/April 2006.

[BDU+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Organizing the
aggregate: Languages for spatial computing. In Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, chapter 16, pages 436–501. IGI Global, 2013.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for the Internet of
Things. IEEE Computer, 48(9), 2015.

[But02] William Butera. Programming a Paintable Computer. PhD thesis, MIT, Cambridge, USA, 2002.
[BVPD17] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. Self-adaptation to device

distribution in the Internet of Things. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 12(3):12:1–12:29, 2017.

[CGG+05] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti, Amy L. Murphy, and
Gian Pietro Picco. Mobile data collection in sensor networks: The tinylime middleware. El-
sevier Pervasive and Mobile Computing Journal, 4:446–469, 2005.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics,
33(2):346–366, 1932.

[CN03] Lauren Clement and Radhika Nagpal. Self-assembly and self-repairing topologies. In Workshop
on Adaptability in Multi-Agent Systems, RoboCup Australian Open, 2003.

[Coo99] Daniel Coore. Botanical Computing: A Developmental Approach to Generating Inter connect
Topologies on an Amorphous Computer. PhD thesis, MIT, Cambridge, MA, USA, 1999.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[FPBV17] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. Towards a foundational api for
resilient distributed systems design. In 2017 IEEE 2nd International Workshops on Foundations
and Applications of Self* Systems (FAS* W), pages 27–32. IEEE, 2017.

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-programming
wireless sensor networks using kairos. In Distributed Computing in Sensor Systems (DCOSS),
pages 126–140, 2005.

[GGMP02] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw Prusinkiewicz. Compu-
tational models for integrative and developmental biology. Technical Report 72-2002, U. d’Evry,
LaMI, 2002.

[GMCS05] Jean-Louis Giavitto, Olivier Michel, Julien Cohen, and Antoine Spicher. Computations in space
and space in computations. In Unconventional Programming Paradigms, volume 3566 of Lecture
Notes in Computer Science, pages 137–152. Springer, Berlin, 2005.

[HH17] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and datasets in Python. Journal of Open
Research Software, 5(1), 2017.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,
9(3):90–95, 2007.

[HW08] M. Haklay and P. Weber. OpenStreetMap: User-generated street maps. IEEE Pervasive Com-
puting, 7(4):12–18, oct 2008.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 27

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3),
2001.

[Kon03] Attila Kondacs. Biologically-inspired self-assembly of 2d shapes, using global-to-local compi-
lation. In International Joint Conference on Artificial Intelligence (IJCAI), pages 633–638.
Morgan Kaufmann Publishers Inc., 2003.

[LMMD88] C. Lasser, J.P. Massar, J. Miney, and L. Dayton. Starlisp Reference Manual. Thinking Machines
Corporation, 1988.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: A Tiny
AGgregation Service for Ad-hoc Sensor Networks. SIGOPS Oper. Syst. Rev., 36:131–146, 2002.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing ap-
plications: The tota approach. ACM Transactions on Software Engineering Methodologies
(TOSEM), 18(4):1–56, 2009.

[Nag01] Radhika Nagpal. Programmable Self-Assembly: Constructing Global Shape using Biologically-
inspired Local Interactions and Origami Mathematics. PhD thesis, MIT, Cambridge, MA, USA,
2001.

[NW04] Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor net-
works. In Workshop on Data Management for Sensor Networks, DMSN ’04, pages 78–87. ACM,
2004.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simulation, 7(3):202–215, 2013.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: Practical aggregate programming. In
ACM Symposium on Applied Computing 2015, pages 1846–1853, April 2015.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Engineering
resilient collective adaptive systems by self-stabilisation. ACM Transactions on Modelling and
Computer Simulation (TOMACS), 28(2):16:1–16:28, 2018.

[Val90] Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[VBD+18] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo
Pianini. From field-based coordination to aggregate computing. In Coordination Models and
Languages, volume 10852 of Lecture Notes in Computer Science, pages 252–279. Springer, 2018.

[VPM+15] Mirko Viroli, Danilo Pianini, Sara Montagna, Graeme Stevenson, and Franco Zambonelli. A
coordination model of pervasive service ecosystems. Science of Computer Programming, 110:3
– 22, 2015.

[WSBC04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neighborhood ab-
straction for sensor networks. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM Press, 2004.

[Yam07] Daniel Yamins. A Theory of Local-to-Global Algorithms for One-Dimensional Spatial Multi-
Agent Systems. PhD thesis, Harvard, Cambridge, MA, USA, 2007.

[YG02] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Record, 31:9–18, 2002.

Appendix A. Proof of Self-Stabilisation

In this section, we prove Theorem 3.4. First, we prove the result for the minimising pattern
(Lemma A.1), since it is technically more involved than the proof for the remainder of the
fragment. We then prove a stronger form of the desired result (Lemma A.2) more suited
for inductive reasoning, which in turn implies Theorem 3.4.

Given a self-stabilising expression s, we denote with JsK = Φ = δ 7→ v the self-stabilising
limit value of this expression in a given network. This limit is attained for every fair

evolution of a network, that is, an infinite sequence of firings N0
δ0−→ N1

δ1−→ . . . encompassing
every device in the network infinitely often (in other words, containing an infinite number

28 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

of full rounds of execution). Let:

srmin = rep(e){(x) => fR(minHoodLoc(fMP(nbr{x}, sr), sr), x, e)}

ssmin = share(e){(x) => fR(minHoodLoc(fMP(x, ss), ss), localHood(x), e)}

be corresponding minimising patterns such that JsrK = JssK = Φ, JsrK = JssK = Φ. Let
P = δ be a path in the network (a sequence of pairwise connected devices), and define its
weight as the result of picking the eventual value `1 = Φ(δ1) of sr in the first device δ1, and
repeatedly passing it to subsequent devices through the monotonic progressive function,
so that `i+1 = fMP(`i, v) where v is the result of projecting fields in Φ(δi+1) to their δi
component (leaving local values untouched). Notice that the weight is well-defined since
function fMP is required to be stateless. Finally, let Φout be such that Φout(δ) = `δ is the
minimum weight for a path P ending in δ.

Lemma A.1. Let srmin, ssmin be corresponding minimising patterns. Then they both self-
stabilise to Φout, with a bound on the number of full rounds of execution (after stabilising
of sub-expressions) which is lower for ssmin than for srmin.

Proof. Let `δ be the minimal weight for a path P ending in δ, and let δ0, δ1, . . . be the list
of all devices δ ordered by increasing `δ. Notice that the path P of minimal weight `δi for
device i can only pass through nodes such that `δj ≤ `δi (thus s.t. j < i). In fact, whenever
a path P contains a node j the weight of its prefix until j is at least `δj ; thus any longer
prefix has weight strictly greater than `δj since fMP is progressive.

Let N0
δ0−→ N1

δ1−→ . . . be a fair evolution10 and assume w.l.o.g. that subexpressions sr,
ss, sr, ss have already self-stabilised to computational fields Φ, Φ (as in the definition of
weight) in the initial state N0. We now prove by complete induction on i that expressions
srmin, ssmin stabilise to `δi in device δi after a certain number of steps tri , t

s
i .

Assume that devices δj with j < i are all self-stabilised and their limit values are
available to neighbours11 from a certain number of steps tri−1, tsi−1. Consider the evaluation

of the expressions srmin, ssmin in a device δk with k ≥ i. Since the local argument ` of
minHoodLoc is also the weight of the single-node path P = δk, it has to be at least ` ≥
`δk ≥ `δi . Similarly, the restriction φ′ of the field argument φ of minHoodLoc to devices δj

with j < i has to be at least φ′ ≥ `δk ≥ `δi since it corresponds to weights of (not necessarily
minimal) paths P ending in δk (obtained by extending a minimal path for a device δj with
j < i with the additional node δk). Finally, the complementary restriction φ′′ of φ to devices
δj with j ≥ i is strictly greater than the minimum value for whole srmin, ssmin expression
among those devices (delayed by one round for rep + share), since fMP is progressive.

It follows that as long as the minimum value for the whole expressions among non-stable
devices is lower than `δi , the result of the minHoodLoc subexpression is strictly greater than
this minimum value. The same holds for the overall value, since it is obtained by combining
the output of minHoodLoc with the previous value for x through the rising function fR,
and a rising function has to be equal to the first argument (the minHoodLoc result strictly
greater than the minimum), or B than the second. In the latter case, it also needs to be

10Notice that δ0 is the first device firing while δ0 is the device with minimal weight.
11For rep+ nbr, one additional full round of execution is needed between stabilisation on the limit being

available; whereas for share the limit values are immediately available after stabilisation.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 29

greater or equal to the first argument (again, strictly greater than the minimum) or strictly
greater than the second argument12 (not below the minimum value).

Thus, every full round of execution (two full rounds for rep + nbr, in order to allow
value changes to be received) the minimum value among non-stable devices has to increase,
until it eventually surpasses `δi . From that point on, that minimum cannot drop below `δi ,
and the output of minHoodLoc in δi stabilises to `δi . In fact, if P is a path of minimum
weight for δi, then either:

• P = δi, so that `δi is exactly the local argument of the minHoodLoc operator, hence
also the output of it (since the field argument is greater than `δi).
• P = Q, δi where Q ends in δj with j < i. Since fMP is monotonic non-decreasing,

the weight of Q′, δi (where Q′ is minimal for δj) is not greater than that of P ; in
other words, P ′ = Q′, δi is also a path of minimum weight. It follows that φ(δj)
(where φ is the field argument of the minHoodLoc operator) is exactly `δi .

Since the order C is noetherian, the rising function has to select its first argument in-
finitely often. In particular, on δi it will select the output of the minHoodLoc subexpression,
which is `δi . From that point on, the minimising expression will have self-stabilised on
device δi to `δi , concluding the inductive step and the proof.

Let Φ be a map from devices to values. We write s[x := Φ] to indicate an aggregate
process in which each device is computing a possibly different substitution s[x := Φ(δ)] of
the same expression.

Lemma A.2. Assume that every built-in operator is self-stabilising. Let sr be an expression
in the self-stabilising fragment of [VAB+18], ss its non-equivalent translation with share,
and Φ be a sequence of computational fields of the same length as the free variables x

occurring in sr, ss. Then sr[x := Φ], ss[x := Φ] self-stabilise to the same limit, and the
second does so with a smaller bound on the number of full rounds of execution.

Proof. The proof proceeds by induction on the syntax of expressions and programs. The
given expressions sr, ss could be:

• A variable xi, so that sr[x := Φ] = ss[x := Φ] = Φi are already self-stabilised and
identical.
• A value v, so that sr[x := Φ] = ss[x := Φ] = v are already self-stabilised and

identical.
• A functional application fr(sr), fs(ss). Fix an environment Env, in which all expres-

sions sr, ss self-stabilise to Φ after a certain amount of full rounds of execution (lower
for ss by inductive hypothesis). After stabilisation of the arguments, if fr = fs = f

is a built-in function then f(sr), f(ss) are already self-stabilised. Otherwise, fr(sr),
fs(sr) evaluate to the same value of the expression body(fr)[args(fr) := Φ] (resp.
with fs) which are self-stabilising in a number of full rounds of executions lower for
fs by inductive hypothesis.
• A conditional sr = if(sr1){sr2}{sr3}, ss = if(ss1){ss2}{ss3}. Fix an environment Env,

in which expressions sr1, ss1 self-stabilise to Φguard (with fewer rounds for share by
inductive hypothesis). Let Envtrue be the sub-environment consisting of devices δ
such that Φguard(δ) = true, and analogously Envfalse. Assume that sr2, ss2 self-
stabilise to Φtrue in Envtrue and sr3, ss3 to Φfalse in Envfalse (with fewer rounds

12It cannot be equal to the second argument, as it is B-greater than it.

30 G. AUDRITO, J. BEAL, F. DAMIANI, D. PIANINI, AND M. VIROLI

for share). Since a conditional is computed in isolation in the above defined sub-
environments, sr, ss self-stabilise to Φ = Φtrue ∪ Φfalse.
• A neighborhood field construction nbr{sr}, nbr{ss}. Fix an environment Env, in

which expressions sr, ss self-stabilise to Φ after some rounds of computation (fewer
for share). Then nbr{sr}, nbr{ss} self-stabilises to the corresponding Φ′ after one
additional full round of execution, where Φ′(δ) is Φ restricted to τ(δ).
• A converging pattern src, s

s
c:

src = rep(e){(x) => fC(nbr{x}, nbr{sr}, e)}

ssc = share(e){(x) => fC(x, nbr{ss}, e)}

Fix an environment Env and a fair evolution of the network N0
δ0−→ N1

δ1−→ . . ., and
assume w.l.o.g. that sr, ss have already self-stabilised (the latter with fewer rounds
of computation) to a same Φ; we prove that src, s

s
c stabilise as well to the same Φ.

Given any index t, let drt , d
s
t be the maximum distances src − Φ(δrt), s

s
c − Φ(δst)

respectively realised by devices δrt , δ
s
t in Nt.

13 Let tr0 = ts0 = 0 and tsi+1 be the first
firing of device δstsi

after tsi , t
r
i+1 be the first firing of device δrtri

after one full round

of execution after tri . Since δrtri
realises the maximum distance in the whole network

Ntri
, no device firing of src between tri and tri+1 can assume a value more distant

than drtri
without violating the converging property. Similarly, no device firing of ssc

between tsi and tsi+1 can assume a value more distant than dstsi
. Thus drt , δ

r
t remain

constant in the whole interval from tri to tri+1 (excluded), and respectively with dst ,
δst in [tsi , t

s
i+1).

Finally, in fire tri+1 device δrtri
recomputes its value, necessarily obtaining a closer

value to Φ(δrtri
) (by the converging property) thus forcing the overall maximal dis-

tance in the network to reduce: drtri+1
< drtri

(respectively with dstsi
). Since the set of

possible values is finite, so are the possible distances and eventually the maximal
distances dri , d

s
i will reach 0. In particular, dsi will reach 0 in a number of full rounds

of execution lower than the number of possible distances V , while dri will reach 0
in a number of full rounds of execution lower than 2V (after the stabilisation of sr,
ss).
• An acyclic pattern sra, s

s
a:

sra = rep(e){(x) => fr(mux(nbrlt(srp), nbr{x}, sr), sr)}
ssa = share(e){(x) => fs(mux(nbrlt(ssp), x, s

s), ss)}

Fix an environment Env and a fair evolution of the network N0
δ0−→ N1

δ1−→ . . ., and
assume w.l.o.g. that sr, ss have already self-stabilised (the latter with fewer rounds
of computation) to a same Φ, and similarly for srp, s

s
p with Φp and sr, ss with Φ.

Let t be any fire of the device δ0 of minimal potential Φp(δ0) in the network.
Since Φp(δ0) is minimal, nbrlt(srp) is false and mux(nbrlt(srp), nbr{x}, sr) reduces
to sr and the whole sra to fr(sr, sr), which self-stabilises by inductive hypothesis
after a certain round tr0 (including one extra round for the stabilised value to be
available to neighbours). The same applies to ssa after ts0, with fewer full rounds of
computation by inductive hypothesis.

13If multiple devices attain the same distance, we select the device with lower index.

FIELD-BASED COORDINATION WITH THE SHARE OPERATOR 31

Let now t be any fire of the device δ1 of second minimal potential Φp(δ1) after
tr0. Then mux(nbrlt(srp), nbr{x}, sr) in δ1 only (possibly) depends on the value
of the device of minimal potential, which is already self-stabilised and available
to neighbours. Thus by inductive hypothesis sra self-stabilises also in δ1 after some
index tr1 ≥ tr0 (including one extra round for the value being available to neighbours).
The same holds for ssa after ts1 with fewer rounds of computation. By repeating the
same reasoning on all devices in order of increasing potential, we obtain final trn, tsn
after which all devices have self-stabilised.
• A minimising rep: this case is proved for closed expressions in Lemma A.1, and its

generalisation to open expressions is straightforward.

	1. Introduction
	2. Background, Motivation, and Related Work
	2.1. Space-Time Computation
	2.2. Field Calculus
	2.3. Device Semantics
	2.4. Network Semantics
	2.5. Problematic Interaction between rep and nbr Constructs

	3. The Share Construct
	3.1. Operational Semantics
	3.2. Automatic Rewritings of rep Constructs into share Constructs
	3.3. The share Construct Improves Communication Speed
	3.4. Limitations of the Automatic Rewriting
	3.5. The share Construct Preserves Self-stabilisation

	4. Application and Empirical Validation
	4.1. Evaluation Setup

	5. Conclusion and Future Work
	References
	Appendix A. Proof of Self-Stabilisation

