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Abstract—Airborne sensor platforms are becoming increas-
ingly significant for both civilian and military operations, yet
at present their sensors are typically idle for much of their flight
time. Opportunistic sensor sharing, e.g., via the Mission-Driven
Tasking of Information Producers (MTIP) [1] can greatly im-
prove sensor utilization, both decreasing the number of platforms
needed to achieve a goal and increasing sensor efficacy. Dynami-
cally changing environments, however, are likely to rapidly render
any initial plan obsolete. In this paper, we address the challenge of
adaptive reallocation of sensor sharing tasks, demonstrating how
the adaptable sensor sharing of MTIP can provide significant
performance improvements in a large-scale disaster response
scenario, as well as identifying areas of inefficiency that are likely
to benefit from further improvement.

I. INTRODUCTION

Recent advances in automated and semi-automated flight
control systems and the increase in the availability of sensors
and sensor-carrying aircraft have led to a rapid increase in the
use of airborne sensor platforms for information gathering by
commercial, civilian, law enforcement, and military organiza-
tions. These platforms range from large to small air vehicles,
fixed wing to rotary wing, and manned or unmanned, and
can be fitted with a wide variety of image collecting sensors.
Yet there is still much untapped potential in these platforms.
In practice, airborne sensor platforms are typically launched,
configured, and controlled for a singular goal or mission for
a single individual or organization. As such, airborne sensors
are often idle for a large portion of a mission, as the platform
moves to, from, and between the particular locations that are
of interest to the platform’s controller.

To make use of this spare sensor capacity, we have de-
veloped Mission-Driven Tasking of Information Producers
(MTIP) [1], a mission-driven, adaptive, and dynamic system
that improves sensor utilization by opportunistically sharing
airborne sensors among individuals and organizations. The net
effect of the use of MTIP is to increase sensor utilization,
improve the suitability of imagery collected by sensors for
user needs, and to increase the amount of information needs
that are satisfied by available sensors. As a result, MTIP can
(a) make sensors available to organizations that lack airborne
platforms, (b) reduce the number of airborne platforms needed
for a given set of missions, and (c) increase mission resilience
by assigning multiple platforms to perform the same task.

To accomplish this, MTIP automatically extracts sensor
tasks from user interactions with information management
systems and allocates these tasks to available airborne sensor
platforms. A key challenge in task allocation, however, is
managing the tradeoff between leveraging pre-deployment
plans and reacting to dynamic deviations that occur at runtime.
Leveraging pre-deployment plans is practical and efficient, as
aircraft operators are typically unlikely to deviate significantly
from the flight plan that most effectively serves their mission
in order to satisfy the needs of others. Put another way, if
satisfying the other users’ information needs were important
to the owner or pilot enough to influence his or her flight
plan, those needs would become part of their mission and
their pre-deployment flight plan. In addition, leveraging pre-
deployment plans has the benefit of providing ample time
to compute optimal or near-optimal allocations. Subsequent
deviations from such plans, however, can have a drastic impact
on the service provided by a planned sensor task allocation.

We address this challenge in the design of MTIP with a
task allocation strategy that considers both platform plans and
dynamically observed deviations from those plans. MTIP per-
forms task allocation using the available platforms as resources
and their planned routes as constraints. Runtime monitoring
of execution then triggers adaptation of task allocations in
response to changes in tasks, priorities, platform routes, and
availability of platform sensors, while attempting to minimize
gratuitous allocation changes, in which small perturbations can
cause “thrashing” between similar allocations.

This paper presents MTIP’s approach to self-adaptation for
task allocation and reallocation in an airborne sensor sharing
system, as well as experimental validation of the benefits
of self-adaptation for task reallocation in a dynamic disaster
response scenario (vs. [1], which evaluates only preplanning of
missions). Following a presentation of background information
about MTIP in Section II, we present the MTIP approach to
task allocation in Section III. Section IV explains our experi-
mental design for evaluating MTIP’s capacity for adaptation,
results of which are discussed in Section V, followed by a
summary and future work in Section VI.

II. ADAPTIVE SENSOR-SHARING VIA MTIP

MTIP, described in detail in [1], is a sensor-sharing system.
It is one of many sensor-sharing systems that can be used
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Fig. 1. Traditional Publish-Subscribe Information Management Systems
(IMS) decouple information producers from consumers, potentially causing
consumers’ information needs to go unmet. MTIP uses organically-collected
information from consumers (e.g., the predicates/filters controlling the infor-
mation they receive from the IMS) to task information producers to collect
and share information that is of interest to end-users.

for sharing airborne sensor data, many of which are also
specifically focused on maintaining situational awareness in
emergency or military situations (e.g., [2], [3], [4], [5], [6], [7],
[8], [9]). MTIP itself is built upon one of these systems ([2]),
but while these systems are good at enabling interested parties
to share information, actually tasking sensors to gather that
information must still be accomplished outside of the system
by humans. This tends to create problems in discovery and to
compete for attention with other critical tasks, contributing to
sensor under-utilization.

Another closely related area is collective sensing, which
has been studied for many years in a number of contexts,
both for airborne and other types of platforms [10]. Collective
sensing also considers multiple sensor platforms, but often
those platforms are all assumed to be controlled by a single
organization that can task them and often also place and
move them at will (e.g., [11], [12], [13], [14]), rather than
needing to adapt to the constraints imposed by an independent
platform owner. Recently, smart-phones and other human-
carried sensors have begun to drive interest toward oppor-
tunistic sensor systems [15], [16], [17]. These have primarily
focused on diffuse tasks in which sensors are non-directional
and any sensor contributes only a small portion of the sensing
capability needed for a diffuse task such as pollution or noise
monitoring (e.g., [18], [19], [20], [21], [22]), meaning there is
typically little competition between tasks for sensor resources.
MTIP, by contrast, focuses on highly directional sensors such
as airborne cameras and more specific and localized tasks, in
which the focus is on effective allocation of a large number of
potentially competing individual tasks to individual sensors.

At a high level, the purpose of MTIP is to address a
deficiency common to most publish-subscribe (pub-sub) In-
formation Management Systems (IMS). When clients make
subscriptions into pub-sub systems, they do so with a filter
or predicate that limits the information they receive to that
which matches their interest. However, because the purpose
of pub-sub IMS is to decouple information producers from
information consumers, it is often the case that information
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Fig. 2. Architecture of the MTIP prototype (blue), showing flow from
situation information to sensor task allocation, dispatching of tasks to a set
of airborne platforms (grey), and feedback of task status and results from
platforms, triggering plan adaptation.

producers will collect/provide information that is not of in-
terest to any consumers, while remaining unaware of what
information the consumers are actually interested in. MTIP
addresses this by monitoring subscription predicates and other
information organically provided by information consumers
in the course of normal system usage. This information about
use interest is then automatically transformed into tasks for
information producers to collect information of interest, thus
increasing the chances of meeting users’ information needs, as
shown in Figure 1. Specifically, the current MTIP prototype
provides the following functionality:

• Automatic extraction of information needs from existing
user interfaces. In addition to explicit subscriptions,
MTIP is integrated with several user interfaces, including
map-based interfaces such as OpenStreetMap, to extract
implicit user interests from commonly performed actions.
For example, MTIP identifies placement of a Point of
Interest (POI), drawing of an Area of Interest (AOI), or
creation of a route on a map as indicating user interest in
getting imagery at the POI, within the AOI, or along the
route, respectively. MTIP includes a rich set of semantic
extractors that extract user interest from these and other
commonly used interfaces, such as requests and queries.

• Extraction of goals and tasks from information needs.
MTIP turns the information needs it has extracted into
a set of goals that are desirable to achieve by sensor-
carrying airborne platforms and a set of specific tasks
that can be performed to achieve these goals.

• Allocation of tasks to available platforms. MTIP assigns
the tasks it has derived to the set of available platforms
with the objective of satisfying the largest number of
goals within the constraints of the expected flight plans
of the platforms.

III. TASK ALLOCATION IN MTIP

The overall architecture of MTIP is shown in Figure 2,
comprising the following components:

• A set of Semantic Extractors that gather implicit informa-
tion on user interest (i.e., goals) from user interfaces and
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Fig. 3. MTIP (re)allocation workflow: whenever any change happens to a
platform, a goal, or the condition of a goal at a platform, the task allocation
system is triggered to run.

activities, as well as receiving publications of platform
announcements and route plans.

• A Task Allocation component that assigns tasks to plat-
forms and receives and acts on platform responses and
situation changes that may affect the assignment.

• A Task Dispatcher that sends task assignments to sensor
platforms and receives back from those platforms mes-
sages accepting or rejecting tasks and providing informa-
tion on the progress of tasks toward completion.

• A Closed Loop Controller that responds to requests for
direct control of an airborne platform’s sensor by a user.

This paper focuses on task allocation, the workflow for
which is illustrated in Figure 3: as MTIP receives information
about available resources (airborne sensor platforms) and
goals, it generates a task allocation plan that is passed to the
dispatcher so that it can inform the platforms that have been
assigned tasks. Those platforms may choose to accept or reject
tasks (either automatically or via an operator query), and also
inform the dispatcher about the progress of a task, including
when a task has failed or has been successfully completed.
Task allocation does not distinguish any “pre-planning” phase,
but rather operates continuously on the evolving situation
and goals: upon any receipt of rejection, failure, or success
messages, or upon receipt of new information about goals and
resources (e.g., the changing location of a platform over time),
the task allocation component is triggered to update its plan
and any allocation changes are sent to the platforms.

To actually perform task allocation, we employ an agent-
based task allocation strategy, described in detail in [1] and
illustrated in Figure 4. This task allocation strategy creates
agents for each of (a) the platforms, including the plat-
form’s current position and predicted projections along its pre-
planned route, and (b) sensor tasks, including points, routes,
and areas of interest.1 Each platform agent and projected agent
is responsible for computing the sensor tasks that it is best
equipped to perform. Combining individual agent’s decisions

1At present, agents are run in a single server rather than on platforms, but
the system could be decentralized by dispersing task agents to associated plat-
forms, either localizing each to one platform that proxies its communication
or mirroring on multiple platforms and synchronizing.
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Fig. 4. In MTIP’s agent-based task allocation, agents for current platforms
(light blue) and projections (translucent blue) along the platform’s anticipated
trajectory communicate (purple arrows) with task agents (red) within line-of-
sight and sensor range limitations to determine which tasks will be assigned
to which platforms and on which segments of their anticipated route. (Figure
reproduced from [1])

produces a task allocation, i.e., a mapping between resources
and tasks. Note that the cardinality of resources and tasks in a
task allocation is many-to-many, where a single resource agent
may be assigned many tasks and a single task may be assigned
to multiple resource agents.

While it is vital to provide timely and efficient task alloca-
tions, MTIP has to balance the importance of assigning tasks
to the most-appropriate asset with the inefficiencies that arise
from re-assignment of tasks to different platforms. Task re-
assignment causes additional network traffic, increased risk to
the mission (that the re-assignment will fail), and additional
cognitive load (e.g., to the pilot). As MTIP’s agent-based
allocation strategy is both extremely fast and executed by
allowing agents to negotiate adjustments to their current partial
state of allocation, this allows us to approach the problem of
plan adjustment simply by adjusting the situation model (e.g.,
updating airborne platform positions, adding tasks, changing
task position or priority) and allowing the agents to continue
executing their decision process from a starting point of the
current allocation plan, rather than restarting from scratch,
which limits the expected amount of low-benefit reallocation.

IV. EXPERIMENTAL DESIGN

For evaluating the ability of MTIP to adapt effectively to
change in realistically complex scenarios, we use a disaster re-
sponse scenario based on the one previously developed in [1],
which we review here. Whereas the previous tests considered
only the initial planning phases of a mission, however, we
now enhance the experimental scenario by having simulated
platforms executing missions in real-time against the running
system, with various degrees of unpredicted divergence from
each platform’s initial planned flight route.

A. San Francisco Disaster Response Scenario

For a realistic scenario complexity and distribution of survey
goals, we consider the disaster response scenario previously
developed in [1] and reviewed in this section. The scenario
begins following a major earthquake in the San Francisco Bay



Infrastructure Class # Objects # UAVs UAV Base (Lat/Lon)
Airports 25 2 37.625°, -122.383°
Cell phone towers 251 3 37.418°, -121.883°
Dams 152 2 37.941°, -122.261°
Fire Departments 160 3 37.779°, -122.390°
Heliports 28 1 38.466°, -121.423°
Hospitals 28 1 37.432°, -122.178°
Military Installations 8 1 37.404°, -122.028°
Power Plants 14 1 37.219°, -121.747°
Total 666 14

Fig. 5. Summary of critical infrastructure and associated UAVs for San
Francisco disaster response scenario, reproduced from [1].

area. Critical infrastructure is likely to have been damaged by
the earthquake, and so UAVs are dispatched to assess damage.

In particular, we consider eight classes of critical infrastruc-
ture, obtained by restricting publicly available GIS datasets to
a quadrangle of latitude 37.0° to 38.5°, longitude -123.0° to
-121.0° (infrastructure classes are summarized in Figure 5).
We assume a separate organization is in charge of each class
of critical infrastructure, and plans to survey damage to the
objects in its charge using by a set of 1-3 UAVs. All UAVs
controlled by an organization start from the same location (one
of its infrastructure objects), and each UAV is provided with an
independently hand-planned route at a cruise altitude ranging
from 500 to 1500 meters depending on terrain. The UAVs used
for this scenario are Boeing ScanEagles, a frequently used
small high-endurance UAV. Based on the published ScanEagle
specifications, we assume platforms have a flight speed of
40 m/s and a high-resolution electro-optical sensor. We also
assume that the sensor is sufficient for acquiring images for a
damage assessment of sites within 20 km at a rate of three sites
per minute. For purposes of these experiments, we configure
MTIP to plan using projections at 5 minute intervals (which,
with a three site per minute sensor implies a maximum of 15
tasks per planning location), with the planned routes averaging
approximately two and half hours duration.

B. Simulated Mission Execution Experiments

In order to test the behavior of MTIP in a dynamically
evolving mission environment, we simulated each UAV as an
independent process, running in real-time with its own set of
threads independent of the operation of the MTIP system. Each
simulated UAV launches a server that receives and responds
to task allocation messages following the MTIP protocol, with
each UAV accepting all tasks that it is sent by MTIP.

Since the UAV imagers are assumed to take 20 seconds to
effectively survey a site, UAV operations are simulated in 20
second steps. At each step the UAV moves 20 seconds (800
meters) along its flight path, sends its new position to MTIP
(as a standard Cursor on Target (CoT) packet), and attempts to
select a task site for imaging. From its list of assigned tasks,
the UAV finds the set of tasks that are both close enough for
imaging (less than 20 km from the UAV) and within line of
sight (i.e. not blocked by terrain). If any of these task sites
has not yet been imaged, one of the non-imaged task sites is
selected arbitrarily for imaging. Otherwise, the task site that
has been imaged the fewest times is selected for additional

Fig. 6. Example of planned path vs. adaptation challenge path generated by
random waypoint deletion: here the planned UAV path (light blue) to survey
hospital infrastructure (red) is subjected to 50% random waypoint deletion.
In this case, the route loses 5 of its 8 non-terminal waypoints, causing both
of its Eastward excursions to be replaced with the truncated path segments
shown in dark blue and leaving 11 of 28 survey goals without coverage.

imaging (again breaking ties arbitrarily), and if no task sites
are nearby and visible then the sensor is idle for that time step.

In order both to further stress the system in our experiments
and to make their running time tractable, however, we actually
run most of each mission at a greatly accelerated rate. For
each simulation, we first run the system for 5n seconds in
real-time (where n is the number of infrastructure classes in
the experiment) in order to allow for MTIP initialization the
first round of planning and assignment dispatch. Thereafter, we
shift the simulated platforms to run at a 100:1 rate, taking a
20 second simulated step every 200 milliseconds of real time.

A dynamic environment of adaptation challenges is created
by random deletion of waypoints from each UAV’s planned
route: the route to be flown is created by taking the planned
route and giving each waypoint an independent probability of
being deleted d (except the first and last waypoints at the base
where the UAV takes off and lands). An example of random
waypoint deletion is shown in Figure 6. These deletions create
a situation similar to what might happen if UAV operators are
receiving emergency requests that lead them to skip planned
survey sites and instead send their UAVs directly to sites that
had been scheduled for later observation.

We evaluate the adaptivity of the MTIP system by means
of two experiments. In the first experiment, we evaluate the
impact of various levels of dynamism by varying the rate of
deletion d from 0.0 to 0.7 in steps of 0.1, comparing the
full scenario of eight infrastructure classes under MTIP to the
situation without MTIP, in which UAVs do not share their
sensors but only image their own originally assigned tasks.
The second experiment evaluates the degree to which each
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Fig. 7. MTIP dynamic sensor sharing allows coverage to be sustained well
even when UAVs diverge greatly from their anticipated routes.
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Fig. 8. Coverage of sensor tasks is significantly improved by sensor sharing
even between a small number of UAVs.

available sensor increases resilience by running MTIP with
fixed high rate of deletion d = 0.5 and selecting a random
subset of n infrastructure classes (adding both UAVs and
targets for each class), varying n incrementally from 1 to 8.
We run 20 trials for each condition in each experiment.

V. RESULTS

As anticipated, the results of these experiments show that
MTIP greatly increases the resilience of sensing missions.
Figure 7 shows the effect of varying the fraction of waypoints
deleted on the fraction of tasks that are able to be successfully
surveyed. With MTIP’s dynamic sensor sharing, the fraction
of tasks surveyed degrades much more slowly than when
UAVs do not share their sensors. Not until more than 30%
of waypoints are deleted does the fraction surveyed show any
significant decrease, and even at the extreme value of 70%
waypoint deletion the system is consistently able to survey
around 90% of tasks. Performance is much less variable as
well, another indicator of reduced fragility.

Analysis of individual tests shows that this increased re-
silience comes from two different sources: first, the fact that
MTIP “backs up” the survey plan for each task with the spare
capacity of other UAVs whenever possible, and second, the
fact that the fast agent-based planning system can rapidly
reallocate when unexpected UAV movements cause tasks to
become unassigned or create new observation opportunities,
almost as soon as those movements are observed.

The results of our second experiment show that even a small
amount of sensor sharing can greatly improve resilience. Fig-
ure 8 shows that sharing between even just two sets of UAVs
eliminates approximately half of the observed degradation in
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Fig. 9. Adaptation can pose a significant cost on the system, as measured by
the number of cancellations per task.

task completion, as well as greatly decreasing variability of
performance. More sets of UAVs continue to incrementally
improve the situation, up until five sets of UAVs, beyond which
additional sets of UAVs do not appear to provide significant
further benefit in this scenario.

Rapidly adaptation to changing circumstances, however,
comes at a cost. Whenever a survey task is allocated to a UAV
or cancelled on that UAV, it must be informed of the change,
adding network traffic. Worse, if MTIP is in interactive mode,
which queries platform operators to accept or reject each task,
every new allocation produces an operator query, which can
be a significant burden on the scarce resource of operator
attention. Of particular concern is the possibility of adaptation
resulting in a “thrashing” condition, a well-known problem of
replanning (e.g., [23], [24]) in which a system shifts rapidly
between plans with significantly different content but nearly
equivalent utility (e.g., target coverage). Minor changes in
conditions can thus cause the “best” plan to change frequently.

We quantify the adaptation cost for MTIP by measuring
how frequently a survey task assignment is cancelled (which
is also linked to the rate at which tasks are reassigned). To
compare scenarios with different numbers of tasks, we divide
the number of cancellations recorded by the number of tasks
in the scenario. The cancellation rates for our two experiments
are shown in Figure 9. As can be seen, cancellations are fairly
frequent (though not excessively so), suggesting that there
is likely to be some degree of thrashing in the reallocation
process. This is further strengthened by the counterintuitive
behavior of the rate of cancellation, which goes down as
more waypoints are deleted and is at a maximum with only
an intermediate number of infrastructure sets sharing sensors.



If the primary cause of tasks being cancelled and reassigned
was the divergence of UAVs from their planned routes, then
we would instead expect these values to be highest in the
conditions where there are the most deletion and the least
platforms available for sharing. Inspection of individual runs
confirms that there is thrashing taking place: notably, however,
reallocations tend to be concentrated in a small number of
densely concentrated task sites visible to UAVs whose sensors
are saturated with tasks on that part of their path. This
then explains the shape of the cancellation curves: as the
number of deletions increases, UAV paths become shorter and
more separated, and as the number of UAVs sharing sensors
increases, the available sensor capacity eventually saturates the
tasks at hand. These facts indicate that future improvements
to the MTIP allocation algorithms may be able to greatly
reduce the amount of reallocations and their associated costs
in communication and operator attention.

VI. DISCUSSION

Our tests in simulation demonstrate that the MTIP airborne
sensor sharing system can quickly and effectively adapt plans
to changing circumstances, even for radical changes in ex-
pected paths of sensor platforms. Adaptation does come at
a cost, however, which can be measured in the potentially
frequent cancellations and reassignments of survey goals.

In future work, we aim to improve the performance of
the MTIP allocation system by adding either hysteresis or
reallocation cost to the allocation system, such that reallocation
will not take place unless it makes a significant improvement,
thus eliminating the observed tendency to thrashing when there
are multiple near-equivalent allocations available. We also
aim to transition MTIP toward deployment on various fielded
airborne platforms (including validation against other types of
dynamism, such as changing goals and platform loss), where
its ability to improve situational awareness through sensor-
sharing can be put to real use and validated in the field. Finally,
the MTIP approach of lightweight agent-based planning may
be applicable to other complex and dynamical environments
as well, such as smart transportation systems or services for
mass public events, and these results may form a foundation
on which to investigate such further expansions.
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