
An Aggregate Computing Approach to
Self-Stabilizing Leader Election

Yuanqiu Mo
University of Iowa

Iowa City, Iowa 52242
Email: yuanqiu-mo@uiowa.edu

Jacob Beal
Raytheon BBN Technologies
Cambridge, MA, USA 02138

Email: jakebeal@ieee.org

Soura Dasgupta
University of Iowa⇤

Iowa City, Iowa 52242
Email: soura-dasgupta@uiowa.edu

Abstract—Leader election is one of the core coordination

problems of distributed systems, and has been addressed in

many different ways suitable for different classes of systems.

It is unclear, however, whether existing methods will be effective

for resilient device coordination in open, complex, networked

distributed systems like smart cities, tactical networks, personal

networks and the Internet of Things (IoT). Aggregate computing

provides a layered approach to developing such systems, in

which resilience is provided by a layer comprising a set of

adaptive algorithms whose compositions have been shown to

cover a large class of coordination activities. In this paper,

we show how a feedback interconnection of these basis set

algorithms can perform distributed leader election resilient to

device topology and position changes. We also characterize a

key design parameter that defines some important performance

attributes: Too large a value impairs resilience to loss of existing

leaders, while too small a value leads to multiple leaders. We

characterize the smallest value of this parameter for which

the only stationary points have single leaders, and demonstrate

resilience of this algorithm through simulations.

I. INTRODUCTION

The last few decades have witnessed a proliferation of
systems like smart-cities, tactical networks, personal networks
and the Internet of Things (IoT), that are not only complex,
networked, and distributed, but also open in the sense that they
must support an unbounded and rapidly evolving collection of
distributed services. In all of these, realizing the full potential
of these systems requires devices to interact safely and seam-
lessly with others in their vicinity through low latency peer to
peer communication, and to share tasks. These open systems
cannot effectively meet user needs unless they support frequent
and non-centralized changes in the applications and services
being hosted. By contrast, current modes of device interactions
are typically either highly constrained and inflexible (e.g.,
single-use devices) or else rely on remote infrastructure like
cloud services. The former impairs reusability and prevents
devices from contributing to multiple overlapping applications.
The latter is centralized with high latency and lacks the agility
to exploit local communication, services, and devices.

Aggregate computing offers a potential approach to this
challenge, based on viewing the basic computing unit as a
physical region with a collection of interacting computing de-
vices, rather than an individual physical device [1]. It involves

* Prof. Dasgupta is also a Visiting Professor at Shandong Computer Science
Center, Shandong Provincial Key Laboratory of Computer Networks, China.

(a) G block (b) C block

3"

1"
7"

0"
2"

1"
4"

3"
3"

(c) T block

Fig. 1. Illustration of three basis block operators: (a) information-spreading
(G), (b) information aggregation (C), and (c) temporary state (T)

a separation of concerns into multiple abstraction layers, much
like the OSI model for communication [2], factoring the
overall task of distributed system design into sub-tasks of
device-level communication and discovery, coherence between
collective and local operations, resilience, programmability,
and applications programming.

The lowest layers comprise fundamental device interactions
and a small universal calculus of aggregate level field calculus
constructs, implementing services such as neighborhood dis-
covery and distributed scoping of shared information, agnostic
to the protocols invoking them. The next layer facilitates
resilient device interactions and comprises classes of basis
set modules that are themselves distributed algorithms. Cur-
rently, there are three such classes: (i) G-blocks that spread
information through a network of devices, (ii) C-blocks that
summarize salient information about the network to be used
by interacting units, and (iii) T -blocks that maintain temporary
state. Introduced in [3] and [4], and depicted in Figure 1,
one can show that a broad class of dispersed services can
be described by various compositions of these three blocks.
The blocks interact seamlessly through distributed interactions,
blind to each other’s internal computations, and agnostic to
the applications and protocols that invoke them, the latter
comprising the highest layer.

A frequent task in applications like IoT is for a network of
devices to elect a leader that can serve as a coordinator, e.g.,
for resource and task allocation. Leader election (and related
symmetry breaking problems) are of course, a long standing
and well studied problem in the distributed algorithms commu-
nity [5]. More recently, the notion of resilience to perturbations
has been formalized in that community in the form of self-

stabilization [6], [7], and a number of self-stabilizing leader
election algorithms have been introduced (e.g., [8]–[11]).
These algorithms, however, guarantee only that a safe state
will be reached eventually, but provide no guarantees about
the behavior of the system during recovery from perturbations.
In a complex environment with many devices, as in many IoT
applications and other large-scale distributed systems, small
perturbations due to device mobility occur frequently and it
is difficult to determine if such algorithms will retain stability
under typical conditions of persistent perturbations.

In this paper we present a different approach, exploit-
ing the dynamical systems analysis performed on aggregate
computing blocks, to formulate a leader election algorithm
amenable to analysis not just of its converged state but also
of its dynamical behavior. We use a feedback combination
of G and C blocks to perform leader election in a resilient,
distributed manner (Section II). We observe that we have
previously analyzed distinguished G and C blocks for their
behavior under persistent perturbations, [12], [13] and [14].
The algorithm has one free design parameter that defines
certain important performance attributes. Too small a value of
this parameter will lead to multiple leaders. Too large a value
will impair resilience by delaying recovery from loss of current
leaders. A key analytical result, presented in Section III, is thus
to characterize the smallest value of this parameter, so that
the only possible convergence is to a single leader. Section IV
confirms resilience via simulations, and Section V concludes.

II. THE LEADER ELECTION ALGORITHM

This section describes our leader election algorithm. This al-
gorithm must elect a single leader from the nodes {1, 2, ..., N}
of an undirected graph G in a distributed manner that is
resilient to the loss of nodes, including leaders, and edges,
regardless of initial state. Each node has a priority, and
contentions between potential leaders is resolved in favor of
the higher priority nodes. Without loss of generality, we will
assume that a node i has a higher priority than node i + 1.
Two nodes i, j are neighbors if they share an edge . This edge
length will be denoted eij > 0. A node only communicates
with those in its set of neighbors, N (i). A subset S(t) of the
nodes in the graph will form a leader or source set at time t.
The goal is to ensure that

lim

t!1
|S(t)| = 1, (1)

i.e., S(t) eventually comprises only one element.
A definition of pseudodiameter is crucial for our algorithm:

Definition 1. A node is attached to a source if that source is
the nearest source to it (breaking ties by priority). Pseudodi-
ameter at a source is the largest distance from the source in
the union of the set of nodes attached to it and their neighbors.

Thus in Figure 2(a), nodes 3, 4, and 5 are attached to source
1, while 6 and 7 are attached to source 2. The pseudodiameter
at 1 is thus 4, as the union of the set of nodes attached to
1 and its neighbors is {1, 3, 4, 5, 6}, and 6, the node furthest
from 1 in this set is at a distance 4 from it.

1 3 4 5 6 7 2

 D̂[t] 4 4 4 4 3 3 3

1 1 1 1 1 1

(a) Pseudodiameter estimation

G

CGS

k

(b) Leader election algorithm

Fig. 2. (a) Illustration of pseudodiameter estimation for two sources, 1 and
2, on a line graph where all edges are length 1. The top numbers are the
pseudodiameter estimates for each node. (b) Block diagram of leader election.
The top G block is a distance estimate algorithm; C block provides estimated
pseudodiameters to the leaders; the lower G block broadcasts each leader’s
pseudodiameter estimate to nodes attached to it. The block labeled S, itself
a G-block, changes leaders.

Our algorithm is a closed loop of four aggregate computing
blocks following the diagram in Figure 2(b):

A) The top G block estimates the shortest distance ˆdi(t) from
node i to the nearest element in S(t).

B) The C block collects and sends to each source i its current
pseudodiameter estimate Di(t).

C) The lower G block broadcasts Di(t) to each node
attached to source i. Thus at the conclusion of the
broadcast operation a node j attached to node i carries the
pseudodiameter estimate Di(t). For example, in Figure
2(a) nodes 3 and 4, attached to source 1, each carry the
pseudodiameter estimate 4.

D) The block labeled S, driven by a design parameter k,
either suppresses or creates sources. It is itself a G block
that spreads to each node j within kDj(t) from a source
its distance from the source and the latter’s priority.
Should j itself be a source and find that there is a higher
priority source within kDj(t) from it, then j ceases to
be a source. If on the other hand a non-source node j
cannot find a higher priority source within kDj(t) from
it, then it becomes a source. Thus in Figure 2(a) if k = 1

then neither source is suppressed as neither 1 nor 2 are
respectively within kD

1

(t) = 4 and kD
2

(t) = 3 within
each other. On the other hand with k = 2, the lower
priority source 2 is suppressed as it is less than or equal
to kD

2

(t) = 6 away from source 1.

All these blocks operate iteratively and in tandem with
only nearest neighbor information exchange. Thus, the C
block does not wait for the distance estimation in the top G
block to conclude before it commences its operations. Further
its pseudodiameter estimation also occurs recursively. On the
face of it, choosing a very large k should allow (1) to hold.
However, as argued in Section III, a larger k prolongs the

time to recovery from a lost source. Indeed the key analytical
contribution of this paper is to characterize the smallest k that
ensures (1). In the remainder of this section we present the
state equations that define the closed loop dynamics.

A. The G block for distance estimation
The goal of the top G block in Figure 2(b) is to find the

shortest distance from each non-leader node to the nearest
leader. This block implements the Adaptive Bellman-Ford
(ABF) algorithm analyzed in [14], [15], in which it has been
proved to be globally uniformly asymptotically stable and
robust to perturbations caused by node mobility. Unlike the
classical Bellman-Ford algorithm, [16], [17], it permits the
initial distance estimates to be underestimates. As classical
Bellman-Ford mandates that all initial estimates be overesti-
mates it cannot withstand source perturbations induced at the
input of this block by the S block.

Defining the estimated distance for node i from the source
set S(t) in the t-th iteration as ˆdi(t), the algorithm follows

ˆdi(t+ 1) =

8
<

:
min

j2N (i)
{ ˆdi(t) + eij} i /2 S(t)

0 i 2 S(t)
(2)

The set S(t), serving as input, is from the S block, and
ˆdi(0) may be initialized arbitrarily, though per [14] it is
expected to converge most quickly if all values are initially
overestimates (e.g., infinity); Di(0) below may likewise be
initialized arbitrarily.

B. The C block
This block collects and conveys to each source its estimated

pseudodiameter as defined in Definition 1. Its inputs are
estimated distance ˆdi(t) from the source set computed by the
prior G block, and certain distinguished neighbors computed
by G and defined below.

Definition 2. A minimizing j in the first case of (2) is a current
constraining node ci(t) of i at time t. A source is its own
current constraining node. In other words

ci(t) =

⇢
argminj2{1,··· ,N}{ ˆdj(t) + eij} i /2 S(t)

i i 2 S(t)
. (3)

Note ci(t) need not be unique. We define Ci(t) as the set of
nodes for which i is a current constraining node at time t
excepting i itself.

With ˆdi(t) and Ci(t) as inputs, the C block provides
each leader a current estimated pseudodiameter, as defined in
Definition 1.

Define ri(t) as a temporary variable that at steady state has
the pseudodiameter value at the sources. Its values at non-
source nodes are not the pseudodiameter defined in Definition
1. Specifically for node i at time t, there holds:

ri(t+ 1) = max{ ˆdi(t+ 1) + e
imax

, {rj(t)|j 2 Ci(t)}} (4)

where e
imax

= max

j2N (i)
{eij}. When the C block stabilizes, each

leader will get its estimated pseudodiameter.

C. Broadcast
The lower G broadcasts the pseudodiameter estimate at a

source to the nodes attached to that source. It receives as input
the ri(t) from the C block, and although not shown in Figure
2(b) the current constraining nodes from the top G block. Each
node updates its pseudodiameter estimate to the value held at
its current constraining node:

Di(t) =

⇢
ri(t) ci(t) = i

Dj(t� 1) ci(t) = j
(5)

D. The S block
The S block suppresses a source i if it is within kDi(t) of a

higher priority source, and chooses i as a leader if there is no
higher priority source within kDi(t) of i. The state equations
of this block are ABF with a twist. The distance estimate ¯di(t)
at i is its estimated distance from the highest priority source
that is within kDi(t) of i. Thus i also receives �i(t), the index
of this highest priority source. Recall, i itself reflects the index,
in that i has higher priority than i+ 1. Thus by definition

S(t) = {i 2 {1, · · · , N} | �i(t) = i} (6)

Like ABF ¯di(t) is updated with respect to one of its
neighbors. This neighbor must have a ¯di(t) no more than
kDi(t). Thus we define a valid set of neighbors of i as,

Vi(t) = {j 2 N (i) | ¯dj(t) + eij kDi(t)} (7)

To make ¯di(t) the distance from the highest priority node
we further exclude neighbors by choosing one which carries
the distance from a source that has the highest priority. The
neighbor picked is in the set

Mi(t) = {j 2 Vi(t)|�j(t) = min

l2Vi(t)
�l(t)}, (8)

i.e., those valid neighbors with the highest priority source for
their distance estimates. Tie breaks can be arbitrary, and all
j 2 Mi(t) carry identical values of �j(t).

Node i updates �i(t), the index of the source from which
it must estimate its distance, using (9) with any j 2 Mi(t):

�i(t+ 1) =

(
�j(t) Vi(t) 6= ; and �j(t) < i

i Vi(t) = ; or �j(t) � i
(9)

Thus, if Vi(t), i’s set of valid neighbors, is empty then i has no
sources within kDi(t), and must designate itself a source and
will measure its distance from itself, i.e., �i(t + 1) = i, and
in (10) below its new distance estimate will be zero. Likewise
�Mi(t)(t) � i indicates that though i is within kDi(t) of a
source, that source has a lower priority than i and i must
become a source. On the other hand if �Mi(t)(t) < i then the
neighbor Mi(t) has a distance estimate from a higher priority
source within kDi(t) of i, and i must now find its distance
from this source as in (10), i.e., over the set of j 2 Mi(t),:

¯di(t+ 1) =

8
<

:
min

l2Mi(t)
{ ¯dl(t) + eil} Vi(t) 6= ; and �j(t) < i

0 Vi(t) = ; or �j(t) � i
(10)

III. DESIGNING k

The only design parameter in the Leader Election algorithm
given in Section II is k. Taking a stationary point to be a
topology and state such that if topology does not change then
neither does state, to ensure (1) it is necessary that stationary
points cannot have two leaders. Thus k must be large enough
so that at a stationary point at least two among multiple sources
are within k times the pseudodiameter estimates they hold.
This holds the prospect of the lower priority source among
them being suppressed. Too small a k would of course mandate
multiple sources, as for example with k = 1 in Figure 2(a).

S A

B C

0 1
S A

B C

0 1

1 2

Fig. 3. Illustration regarding the impact of gain k on resilience.

The larger that k is, however, the longer the delay in
recovery from the loss of a source. Consider the graph in
Figure 3 with a single leader S. Suppose this leader is lost. All
its neighbors know is that they have lost a neighbor, but do not
know if it is still in the graph, connected by another route. The
ABF in the top G-block continues apace. Thus at successive
rounds the distance estimates [ˆdA, ˆdB , ˆdC] are [3, 3, 2], [3, 3, 4],
etc. This increase in distance estimates continues until at least
one node exceeds k times its pseudodiameter estimate and
becomes a source, and the time this takes is proportional to k.

A. Characterizing k

We now show that for k � 2, a stationary point cannot
have multiple sources in a fixed graph. On the other hand, by
choosing edge e

27

arbitrarily small in the graph of Figure 2(a),
it is readily verified that for all k < 2, one can have a
stationary point in which both 1 and 2 are sources. Thus the
smallest value of k that permits convergence to a single leader
is k = 2.

We will denote the states of the stationary point by dropping
the argument t. For example ˆdi(t) =

ˆdi. By definition of a
stationary point, all successive values of a variable are the
same, e.g., in (2) for a non-source node:

ˆdi = min

j2N (i)
{ ˆdj + eij} (11)

As there may be multiple nodes that minimize (11), we shall
say that any such is a valid ci, a current constraining node of
i. Further a node will be said to be attached to any source it
is the nearest to, i.e., it can be attached to multiple sources.

Lemma 1. Suppose G is connected, the source set at a
stationary point obeys |S| > 1 and without loss of generality
the highest priority node in S is 1. Then there is without loss
of generality 2 2 S, and a set of nodes {i

1

, · · · , il, · · · , iL},

i
1

= 1, iL = 2, and 1 p L such that the following hold.
(i) For all l, such that 2 < l p, il�1

, is a valid cil . (ii) For
all l, such that p < l < L, il+1

is a valid cil . (iii) For all
l, such that 1 l q, �il = 1 and for all q + 1 l L,
�il = L. (iv) The distance estimates obey,

ˆdim =

(Pm�1

j=1

elj ,lj+1 8 2 m pPL
j=m+1

elj ,lj�1 8 p+ 1 m L� 1

. (12)

(v) The distance estimates in the S-block obey

¯dim =

(Pm�1

j=1

elj ,lj+1 8 2 m qPL
j=m+1

elj ,lj�1 8 q + 1 m L� 1

. (13)

(vi) The pseudodiameter estimates obey:

D
2

� ˆdip + eip,ip+1 (14)

Proof. At a stationary point the ABF is also at a stationary
point. As shown in [14], ABF’s stationary point is unique and
ˆdi is the true distance of i from S. As S has at least two
sources apart from 1, suppose 2 is the source nearest to 1.
Now define the nodes on this shortest path from 1 to 2 to
be il defined in the theorem statement. Suppose ip is the last
node attached to 1. First suppose ip+1

is attached to 2. Then
for all l � p, il is attached to 2, as otherwise as each node is
attached to some source, this source must be closer to 1 than is
2. If on the other hand if ip+1

is not attached to 2. then by the
same argument 2 cannot be the closest source to 1. Then the
recursion in (2) and the definition of valid ci, proves, (i), (ii)
and (12). Further (iii) follows as 2 is a valid source. Then the
recursion in (10) proves (13), and that in (4) proves (14). ⌅

Lemma 1 leads to the following theorem:

Theorem 1. Suppose the graph G is connected and k � 2.
Then at a stationary point |S| = 1.

Proof. To establish a contradiction suppose |S| > 1. Then
Lemma 1 holds. Consider the various quantities defined in
Lemma 1. In particular (i), (ii) and (12) imply that nodes
{i

1

, · · · , ip} and {ip+1

, · · · , iL} are attached to 1 and 2,
respectively. The fact that ip is attached to 1 and ip+1

to 2

means that
ˆdip+1 + eip,ip+1 � ˆdip . (15)

Also observe from (13) and (12) that
¯diq + eiq,iq+1 ˆdip +

ˆdip+1 + eip,ip+1 . (16)

Further as 1 has higher priority than 2, k � 2, �iq = 1 and
�iq+1 = 2,

¯diq + eiq,iq+1 > 2D
1

.

Then using (14), (15) and (16) we get a contradiction from:

2

⇣
ˆdip+1 + eip,ip+1

⌘
 2D

1

< ¯diq + eiq,iq+1

 ˆdip+1 +
ˆdip + eip,ip+1

 2

ˆdip+1 + 2eip,ip+1 .

⌅

B. The need for hysteresis
We conclude with yet another subtlety regarding the selec-

tion of k. As presented, the algorithm is fragile to mobility and
loss of nodes. In particular suppose a node oscillates to move
in and out of the network. Then the source set perpetually
oscillates. Thus we need two parameters kL < kA, such
that a leader is created if the node does not find a higher
priority leader within kA times its pseudodiameter estimate,
and is suppressed if it finds a higher priority leader within
kL times its pseudodiameter estimate. This also has stability
implications beyond resilience to mobility. As confirmed by
simulations in Section IV, the choice of kL = kA decreases
convergence speed as leaders that are suppressed can quickly
return while the pseudodiameter estimates change. Thus hys-
teresis is needed for stability for fast convergence even without
mobility or other structural perturbations in the network. This
calls for carrying two instead one set of valid neighbors like
Vi(t) and Mi(t), one for source suppression the other for
creation. Thus (7) should be replaced by the two sets

ViL(t) = {j 2 N (i) | ¯dj(t) + eij kLDi(t)} (17)

ViA(t) = {j 2 N (i) | ¯dj(t) + eij kADi(t)} (18)

Likewise (8) must be replaced by

MiL(t) = {j 2 ViL(t)|�j(t) = min

l2ViL(t)
�l(t)}, (19)

MiA(t) = {j 2 ViA(t)|�j(t) = min

l2ViA(t)
�l(t)}, (20)

The equations (9) and (10) respectively become, for any j 2
MiL(t) and m 2 MiA(t), (21) and (22).

�i(t+ 1) =

8
><

>:

�j(t) ViL(t) 6= ; and �j(t) < i

i ViA(t) = ; or �m(t) � i

�m(t) otherwise
(21)

¯di(t+1) =

8
>>>>><

>>>>>:

min

l2MiL(t)
{ ¯dl(t) + eil} ViL(t) 6= ; and �j(t) < i

0 ViA(t) = ; or �m(t) � i

min

l2MiA(t)
{ ¯dl(t) + eil} otherwise

(22)
The analysis in Section III-A will carry through mutatis
mutandis with k replaced by kL. Our experiments indicate
that kL = 2 and kA = 3 are reasonable values to trade off
stability and speed.

IV. SIMULATION

In this section, we empirically confirm the results presented
in the prior sections through simulations for two graph types.
We also include hysteresis, as described in Section III.

The first graph has 500 nodes randomly distributed in a
4 ⇥ 1 km

2 area, each communicating over a 0.25 km radius
i.e., each has roughly 20 neighbors. The second, which we
conjecture represents a worst case scenario, is a line graph
with 500 nodes, priority randomly assigned, and an edge

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

(a) Average number of leaders vs time(randomized graph)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

100

200

300

(b) Average number of leaders vs time(line graph)

Fig. 4. Comparison between (a) the average number of leaders using different
k in the randomized graph, and (b) the average number of leaders using
different k in the line graph.

length of 1 km. Initial conditions for each state are set as:
ˆdi(0) =

¯di(0) = 0, ri(0) = Di(0) = 1, ci(0) = �i(0) =

i, Ci(0) = ; and S(0) = {1, 2, ...N}. All simulations are run
10 times with the same initial states.

We first run the algorithm with kA = kL = k = 1.5 and
kA = kL = k = 2, and kA = 3 and kL = 2. In Figure
4(a), both k = 2 and the hysteresis method elect a single
leader in the randomized graph, with hysteresis speeding
convergence. With k = 1.5, the average number of leaders
is 1.6. This confirms are our observation in Section III that
beyond instilling robustness to mobility, hysteresis increases
the speed of convergence.

Compared to the randomized graph, the line graph performs
much worse in leader suppression as shown in Figure 4(b). In
this case, we run the algorithm for 6000 simulated seconds,
finding that although convergence time is long, k = 1.5, k =

2, and the hysteresis method do all eventually converge to a
single leader.

Our second simulation adds measurement errors: Edge
lengths change from their nominal values as

ēij(t) = 1 + ✏ij(t), |✏ij(t)| < 1. (23)

The bound ensures that no edge length is negative. More-
over, the noise is asymmetric, i.e., the following is allowed::

ēij(t) 6= ēji(t) (24)

Figure 5 depicts the setting where measurement errors are
sampled from a uniform distribution of U(�0.5, 0.5) in each
round. In Figure 5(a), for randomized graph, the hysteresis
method and k = 2 still successfully elect a single leader,
while the average number of leaders under k = 1.5 keeps
oscillating. As before, the line graph behaves the worst in
leader suppression as shown in Figure 5(b).

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

(a) Average number of leaders vs time(randomized graph)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

(b) Average number of leaders vs time(line graph)

Fig. 5. Comparison between (a) the average number of leaders using different
k in the randomized graph under measurement error, and (b) the average
number of leaders using different k in the line graph under measurement
error.

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

(a) Average number of leaders vs time(randomized graph)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

(b) Average number of leaders vs time(line graph)

Fig. 6. Comparison between (a) the average number of leaders using different
k in the randomized graph under node mobility, and (b) the average number
of leaders using different k in the line graph under node mobility.

Finally, Figure 6 depicts the effect of node mobility: at
each t, a node is perturbed from its nominal location by
[r cos ✓, r sin ✓]T with r ⇠ U(0, 0.5) and ✓ ⇠ U(0, 2⇡)
(though always remaining connected). The behavior is similar
to the case of measurement error.

V. CONCLUSION

In this paper, we have presented a feedback combination
of aggregate programming blocks to elect a leader among a
network of devices in a distributed resilient manner. We have
considered design issues associated with the key parameter
k, showing that too large a value leads to delayed recovery,

while too small a value leads to multiple leaders. We have
shown that as long as k � 2, the only stationary point of
the algorithm comprises a solitary leader. Simulations confirm
our theoretical predictions. Next steps for this work include an
analytical stability analysis as done for G blocks in [12] and
[14] and that of an open loop G�C combination as done in
[13], along with application to large-scale open systems.

ACKNOWLEDGMENT

This work has been supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR001117C0049. The views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be inter-
preted as representing the official views or policies of the
Department of Defense or the U.S. Government. This docu-
ment does not contain technology or technical data controlled
under either U.S. International Traffic in Arms Regulation or
U.S. Export Administration Regulations. Approved for public
release, distribution unlimited (DARPA DISTAR case 29610,
6/13/2018).

REFERENCES

[1] J Beal, D Pianini, and M Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[2] H. Zimmermann, “Osi reference model–the iso model of architecture
for open systems interconnection,” Communications, IEEE Transactions
on, vol. 28, no. 4, pp. 425–432, 1980.

[3] J Beal and M Viroli, “Building blocks for aggregate programming of
self-organising applications,” in 8th Int’l. Conf. on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), 2014, pp. 8–13.

[4] M. Viroli and F. Damiani, “A calculus of self-stabilising computational
fields,” in 16th Int’l. Conf. on Coordination Models and Languages
(COORDINATION), vol. 8459 of LNCS, pp. 163–178. Springer, 2014.

[5] N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco,
USA, 1996.

[6] S. Dolev, Self-Stabilization, MIT Press, 2000.
[7] M. Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25,

pp. 45–67, 1993.
[8] S. Dolev, A. Israeli, and S. Moran, “Uniform dynamic self-stabilizing

leader election,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 4, pp. 424–440, 1997.

[9] A. Derhab and N. Badache, “A self-stabilizing leader election algorithm
in highly dynamic ad hoc mobile networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 7, pp. 926–939, 2008.

[10] A. K. Datta, L. L. Larmore, and P. Vemula, “Self-stabilizing leader
election in optimal space under an arbitrary scheduler,” Theoretical
Computer Science, vol. 412, no. 40, pp. 5541–5561, 2011.

[11] K. Altisen, A. Cournier, S. Devismes, A.ı̈s Durand, and F. Petit, “Self-
stabilizing leader election in polynomial steps,” Information and
Computation, vol. 254, pp. 330–366, 2017.

[12] S. Dasgupta and J. Beal, “A lyapunov analysis for the robust stability of
an adaptive bellman-ford algorithm,” in Decision and Control (CDC),
2016 IEEE 55th Conference on. IEEE, 2016, pp. 7282–7287.

[13] Y Mo, J Beal, and S Dasgupta, “Error in self-stabilizing spanning-tree
estimation of collective state,” in Int’l Workshops on Foundations and
Applications of Self* Systems (FAS*W). IEEE, 2017, pp. 1–6.

[14] Y. Mo, S. Dasgupta, and J. Beal, “Robustness of the adaptive bellman-
ford algorithm: Global stability and ultimate bound,” submitted to IEEE
Transactions on Automatic Control, 2018.

[15] A Kumar, J Beal, S Dasgupta, and R Mudumbai, “Toward predicting
distributed systems dynamics,” in Int’l Conf. on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW). IEEE, 2015, pp. 68–73.

[16] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[17] L. R. Ford Jr, “Network flow theory,” Tech. Rep. Paper P-923, RAND
Corporation, 1956.

